From Modelling to Systematic Deployment of
Distributed Active Objects

Ludovic Henrio and Justine Rochas

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271 06900 Sophia Antipolis, France

ludovic.henrio@cnrs.fr, justine.rochas@unice.fr

Abstract. In the context of the expansion of actors and active objects,
we are still facing a gap between the safety guaranteed by modelling
and verification languages and the efficiency of distributed middlewares.
In this paper, we reconcile two active object-based languages, ABS and
ProActive, that respectively target the aforementioned goals. We com-
pile ABS programs into ProActive, making possible to benefit from
the strengths of both languages, while requiring no modification on the
source code. After introducing the translational semantics, we establish
the properties and the correctness of the translation. Overall, this paper
presents an approach to running different active object models in dis-
tributed environments, and more generally studies the implementation
of programming languages based on active objects.

1 Introduction

Writing distributed and concurrent applications is a challenging task. In dis-
tributed environments, the absence of shared memory makes information shar-
ing more difficult. In concurrent environments, data sharing is easy but shared
data must be manipulated with caution. Several languages and tools have been
developed to handle those two programming challenges and make distributed
and concurrent systems safe by construction. Among them, the active object
programming model [18] helps building safe multi-core applications in object-
oriented programming languages. The active object model derives from the actor
model [1] that is particularly regaining popularity with Scala [11] and Akka'.
Such models are natively adapted to distribution because entities do not share
memory and behave independently from each other.

There exist now several programming languages implementing and enhanc-
ing in various ways the active object and actor models. In particular, emerging
active object languages, like the Abstract Behavioral Specification language [15]
(hereafter ABS), provide various programming abstractions or static guarantees
that help the developer designing and implementing robust distributed systems.
Among existing implementations of active objects, ProActive? is a Java middle-
ware implementing multi-threaded active objects that provides a holistic support

! http://akka.io
2 http://proactive.inria.fr/



for deployment and execution of active objects on distributed infrastructures.
This paper reconciles cooperative active object languages by translating their
main concurrent paradigms into ProActive, thus benefiting from its support for
deployment. We illustrate our approach on ABS, which has a wide support for
modelling and verification. We translate all the concurrent object layer of ABS
into ProActive. We also introduce in this paper MultiAsp, a formal language
that models ProActive, in order to verify the translation.

Beyond the generic high-level approach to cross-translating active object lan-
guages, the practical contribution of this paper is a ProActive backend for ABS,
that automatically translates an ABS application into a distributed ProActive
application. As a result, the programmer can design and verify his program using
the powerful toolset of ABS, and then generate efficient distributed Java code
that runs with ProActive. The proof of correctness of the translation ensures the
equivalence of execution in terms of the operational semantics. Consequently, it
guarantees that the verified properties dealing with the program behaviour (e.g.
absence of deadlocks, typing properties) will still be valid. Our approach re-
quires no change in the ABS code except the minimal (required) deployment
information. Overall, our contribution can be summarised in four points:

— We analyse existing active object programming paradigms in Section 2.

— We provide MultiAsP, a class-based semantics of the multi-threaded active
objects featured in ProActive in Section 3.

— We present a systematic strategy to translate active objects with coopera-
tive scheduling into ProActive, and present more specifically the ProActive
backend for ABS in Section 4. The translation is formalised in Section 5.

— We prove translation equivalence in Section 6 and highlight similarities and
differences between active object models. In particular the proof of equiva-
lence reveals intrinsic differences between explicitly typed futures and trans-
parent first-class futures.

2 Background and Related Works

The actor model was one of the first to schematically consider concurrent en-
tities evolving independently and communicating via asynchronous messages.
Later on, active objects have been designed as the object-oriented counterpart
of the actor model. The principle of active objects is to have a thread associated
to them. We call this notion activity: a thread together with the objects man-
aged by this thread. Objects from different activities communicate with remote
method invocations: when a method is invoked on a remote active object, this
creates a request in the remote activity; the invoker continues its execution while
the invoked active object serves the request asynchronously. Requests wait in a
request queue until they are executed. In order to allow the invoker to continue
execution, a placeholder for the expected result is created, known as future [9]:
an empty object that will later be filled by the result of the request. When the
value of a future is known, we say that it is resolved.



2.1 Design choices for active object-based languages

Implementing active objects raises the three following questions:

How are objects associated to activities? In uniform active object models, all
objects are active and have their own execution thread (e.g. Creol [16]). This
model is distinguished from non uniform active object models which feature
active and passive objects (e.g. ASP [6]). Each passive object is a normal object
not equipped with any thread nor request queue; there is no race condition on
the access to passive object because each of them is accessible by a single active
object. In practice, non uniform active object models are more scalable, but they
are trickier to formalise than uniform active object models. A trade-off between
those two models appeared with JCoBox [20] that introduced the active object
group model, where all objects are accessible from any object, but where objects
of the same group share the same execution thread.

How are requests scheduled? The way requests are executed in active objects de-
pends on the threading model used. In the original programming model, active
objects are mono-threaded. With cooperative scheduling like in Creol, requests
in execution can be paused on some condition (e.g. awaiting on the resolution of
a future), letting another request progress in the meantime. In all cooperative ac-
tive object languages, while no data race is possible, interleaving of the different
request services (triggered by the different release points) makes the behaviour
more difficult to predict than for the mono-threaded model. Still, the previous
models are inefficient on multi-cores and can lead to deadlocks due to reentrant
calls and/or inadequately placed release points. Newest active object models
like multiactive objects [12] and Encore [5] feature controlled multi-threading.
Such active object models succeed in maximising local parallelism while avoid-
ing communication overhead, thanks to shared memory between the different
threads [12]. Also, controlled multi-threading prevents many deadlocks in active
object executions.

Is the programmer aware of distributed aspects? Existing implementations of ac-
tive objects either choose to hide asynchrony and distribution or, on the contrary
to use an explicit syntax for handling asynchronous method calls and to use an
explicit type for handling futures. This makes the programmer aware of where
synchronisation occurs, but consequently requires more expertise. The choice of
transparency also impacts the language possibilities, like future reference trans-
mission: it is easier to transmit futures between active objects when no specific
future type is used, and the programmer does not have to know how many future
indirections have to be unfolded to get the final value.

2.2 Overview of active object-based languages

Crreol [16] is a uniform active object language that features cooperative schedul-
ing based on await operations that can release the execution thread. In this
language, asynchronous invocations and futures are explicit, and futures are not
transmitted between activities. De Boer et al. formalised such futures based on



gi=b | 7 | gng' guard

su=skip | =z | suspend | await g statement
| returne | ife{s}else{s} | s; s

zi=e | em(€) | em(e) | new [cog]C(€) | x.get expression with side effect

ex=v | x | this | arithmetic-bool-exp expression

vi=null | primitive-val value

Fig. 1: Class-based syntax of the concurrent object layer of ABS. Field access is
restricted to current object (this).

_|-»Request queue

“| *Request

- *Execution thread

“*Reference

Fig.2: An example of ABS program execution

Creol in [4]. Overall, explicit future access, explicit release points, and explicit
asynchronous calls make Creol rich and precise but also more difficult to program
than the languages featuring more transparency.

JCoBox [20] is an active object programming model implemented in a language
based on Java. It has an object group model, called CoBox, and also features
cooperative scheduling. In each CoBox, a single thread is active at a time; it can
be released using await (). JCoBox better addresses practical aspects than Creol:
it is integrated with Java and the object group model improves thread scalability,
however JCoBox does not support distributed execution. Thread interleaving is
similar and has the same advantages and drawbacks as in Creol.

AmbientTalk [7] is an object-oriented distributed programming language that
can execute on the JVM. One original aspect of AmbientTalk is that a future
access is a non-blocking operation: it is an asynchronous call that returns an-
other future; the call will be performed when the invoked future is resolved. The
AmbientTalk future model forces two activities to coordinate only through call-
backs. This inversion of control has the advantage to avoid deadlocks but also
breaks the program into independent procedures where sequences of instructions
are difficult to enforce.

ABS [15] is an active object-based language that targets modelling of distributed
applications. The fragment of the ABS syntax regarding the concurrent object
layer is shown on Figure 1. ABS has an object group model, like JCoBox, based
on the notion of concurrent object group (hereafter CoOG). Asynchronous method
calls and futures are explicit:

1| Fut<V> future = object!method();

Figure 2 pictures an ABS configuration with a request sending between COGs.
Requests are scheduled in a cooperative manner thanks to the await keyword,



inspired from Creol and JCoBox and used as follows:

1| await future?; await a > 2 && b < 3;

In those examples, the execution thread is released if the future is not resolved
or if the condition is not fulfilled. ABS also features a get accessor to retrieve a
future’s value; it blocks the execution thread until the future is resolved:

1|V v = future.get;

The ABS tool suite® provides a wide variety of static verification engines that
help designing safe distributed and concurrent applications. Those engines in-
clude a deadlock analyser [10], resource, cost, and deployment analysers for cloud
environments [2,17], and general program properties verification with the ABS-
Key tool [8]. The ABS tool suite also includes a frontend compiler and several
backend translators into various programming languages. The Java backend for
ABS translates ABS programs into concurrent Java code that runs on a single
machine. The Haskell backend for ABS [3] performs the translation into dis-
tributed Haskell code. The ABS semantics is preserved thanks to the thread
continuation support of Haskell, which is not supported on the JVM.

ASP and ProActive. Asynchronous Sequential Processes (ASP) [6] is a mono-
threaded active object programming language that has a non-uniform object
model. In ASP, active objects are transparent to the programmer and futures are
created and manipulated implicitly. A wait-by-necessity is triggered upon access
to an unresolved future. Futures are first class: they are transparently passed and
updated across activities. ProActive is the Java library that implements ASP.
ProActive is a middleware that supports application deployment on distributed
infrastructures such as clusters, grids and clouds. The program below creates
explicitly an active object using newActive instead of new. The variable v stores
an implicit future that is the result of a (transparent) asynchronous call.

T t = PAActiveObject.newActive(T.class, parameters, node);

Vv=t.barQ);

o.foo(v); // does not block even if v is unresolved (o is any active or passive object)
v.foobar(); // blocks if v is unresolved

AW N o=

Recently, ProActive integrated multiactive objects [12] to enable multi-threaded
request processing. MultiAspP, presented in the next section, is an update of ASP
and thus formalises the new version of ProActive. In practice, a programmer
declares which requests of an active object can safely be executed in parallel,
namely which requests are compatible, as shown in the following example:

1 @Group(name="groupl", selfCompatible=true)

2 QGroup (name="group2", selfCompatible=false)

3 @Compatible({"groupl", "group2"})

4 public class MyClass {

5 @Member0f ("groupl") public ... method1(...) { ... }
6 @Member0f ("group2") public ... method2(...) { ... }
7}

In this example, a request for methodl can be executed at the same time as a
request for method2, but two requests for method2 cannot be executed at the

3 http://abs-models.org/



same time. With similar annotations, it is also possible to set a limit on the
number of threads running in parallel [13]. The limit can be applied in two
ways: a hard limit restrains the overall number of threads whereas a soft limit
only counts threads that are not in wait-by-necessity.

Encore. Encore [5] is an active object-based parallel language currently in devel-
opment. Encore features active and passive objects but even if passive objects are
private by default, they can be shared at different scales depending on qualify-
ing keywords. Asynchronous calls are transparent for active objects (by default)
but futures are explicit, using a dedicated type. Finally, an active object has a
single thread of execution by default, but parallelism is automatically created
by attaching callbacks to future updates and using parallel combinators.

2.3 Positioning of this work

The reason why there are many different implementations of the active object
programming model is to better fit particular objectives, from reasoning about
programs to optimised program execution. Implementations that focus on the
deployment of real-world systems comply to constraints related to existing execu-
tion platforms and languages. They are mostly used by programmers interested
in the performance of the application. ProActive and Encore typically fit in this
category. On the other side, some active object languages target verification and
proof of programs, but have not been originally designed for efficient execu-
tion, like typically ABS and Creol. They are massively used and developed by
academics and less constrained by existing execution platforms.

We give a proven translation of ABS programs into ProActive code in order
to reconcile both domains: verified applications also have the right to be run ef-
ficiently. We also study the generalisation of our approach to other active object
languages. Overall, our objective is to show that generic active object abstrac-
tions can be correctly encoded with different active object implementations.

3 Class-based Semantics of MultiASP

We start by introducing the semantics of Multiasp?, the calculus represent-
ing ProActive and multiactive objects. Unlike the preliminary formalisation of
multiactive objects in [12], we present here a class-based formalisation and the
formalisation of threading policies. MultiASP is an imperative programming lan-
guage and its syntax is close to the one of ABS.

Syntazx of MultiAsp. Figure 3 shows the static syntax of MultiAsp. A program
is made of classes and a main method. T denotes local variables in method
bodies and object fields in class declarations. There are two ways to create an
object: new creates a new object in the current activity, and newActive creates a
new active object. e.m(€) is the generic method invocation, there is no syntactic
distinction between local and remote (asynchronous) invocations. Similarly, as

4 Formalised in Isabelle/HOL: www-sop.inria.fr/members/Ludovic.Henrio/misc.html



P:=C{%; s} program
S = n(T) method signature
C :=class C(z) {z M} class
M == S{T s} method definition
su=skip | =z | returne | s; s statement
zu=e | em(€) | new C(€) | newActive C(€) expression with side effects
ex=v | x | this | arithmetic-bool-exp expression
v z=null | primitive-val value
Fig. 3: Class-based static syntax of MultiASp
vizolal... Storable == [T = v] |v | f
elem ::= vur(f,v,0) | rur(f, L) | acr(a, 0,0,p, Rq) o = 0> Storable
cn = elem q == (f,m,v)
E:=={l]s} Rg:=@|q: Rq
Fu= M::F £ = this » v, T = 0
pu=q— F su=z=e]...

Fig. 4: Runtime syntax of MultiAsp

synchronisation on futures is transparent and handled with wait-by-necessity,
there is no particular syntax for interacting with a future. A special variable
this exists for accessing the current object.

Semantics of Multiasp. MultiASP semantics is defined as a transition relation
between configurations, noted c¢n, and for which the runtime syntax is displayed
in Figure 4. At runtime, the dynamic configuration of a MultiASP program con-
sists of a set of activities and a set of futures. The transition relation uses three
infinite sets: object locations in the local store, ranged over by o, o', +; active
objects names, ranged over by a, 3, --+; and future names, ranged over by f, f’,
-+, Activities are of the form acr(, 0,0, p, Rq) where « is an activity name; o is
the location of the active object in o; o is a local store mapping object locations
to storable values; p is a set of requests currently served (a mapping from re-
quests to their thread F); and Rq is a FIFO request queue of requests awaiting
to be served. A thread is a stack of methods being executed, and each method
ezecution E consists of local variables ¢ and statement s to execute. The first
method of the stack is the one that is executing, the others have been put in the
stack due to local synchronous method calls. £ is a mapping from local variables
(including this) to runtime values. A configuration also contains future binders.
They are of two forms: rur(f, 1), meaning that the value for the future has not
been computed yet, and rur(f,v,0), when the reply value is known; if it is an
object (and not a static value), then v will be its location in the store o.

An object o is fresh if it does not exist in the store in which it is added.
Similarly, a future or an activity name is fresh if it does not exist in the current
configuration. Runtime values (v, -++) can be either static values, object locations,
or active object names. An object is a mapping from field names to their values,
denoted [z~ v]. We denote mappings by _~ _, and use union U (resp. disjoint
union w) over mappings. Mapping updates are of the form o[x — v]. dom returns
the domain of a mapping. Storable values are objects, futures, or runtime values.



—

([primitive-val]] (,+¢) £ primitive-val

serialise(o,0) =

(o~ o(0)) userialise(c(0),0) [[f]](ﬁg) 1
serialise([z =~ v],0) = [« (0+0) o
[null]](s4+¢) 2 null

Uyrep serialise(v’, o)
serialise(f,0)=
serialise(a, o) =

[£(x) ]l o+ if © € dom(¥)
[[¢(this)(2)(o+ey if 2 ¢ dom(¥)

—
.
8
~
9 9
+
~
N>
L1 o | L | T | 3

serialise(null, o) =g (o+0) o ifo(o)=foro(o)=[z7]
serialise(primitive-val, o) =@ [o]lorey = [[o(0)(ore) else
Fig. 5: Serialisation Fig. 6: Evaluation function

The following auxiliary functions are used in the semantic rules: [[e]](s+r)
returns the value of e by computing the arithmetic and boolean expressions and
by retrieving the values stored in o or /; the evaluation function is displayed
in Figure 6. If the value of e is a reference to a location in the store, it follows
references recursively; it only returns a location if the location points to an
object or a future. [[€]](s4¢) returns the tuple of values of €. fields(C) returns
fields as defined in the class declaration C. bind initialises method execution:
bind(o,m,v’) = {y + v’, z = null, this + o | s}, where the arguments of method
m, typed in the class of o, are 7, and where the method body is {Z; s}. ready is
a predicate deciding whether a request ¢ in the queue Rq is ready to be served:
ready(q, p, Rq) is true if ¢ is compatible with all requests in p (requests currently
served by the activity) and with older requests in Rq. Serialisation reflects the
communication style happening in Java RMI; it ensures that each activity has
a single entry point: the active object. Consequently, all references to passive
objects are serialised when communicated between activities, so that they are
always handled locally. serialise(o,0) marks and copies the objects referenced
from o to deeply serialise, recursively; it returns a new store made of all the
objects that are referenced by o. serialise is defined as the mapping verifying the
constraints of Figure 5. rename, (7,c") renames the object locations appearing
in 7 and o/, making them disjoint from the object locations of o; it returns a
renamed set of values v/ and a store o”.

Figure 7 shows the part of MultiASP semantics that regards active object
execution. Rules involving classical objects, namely object creation, field assign-
ment, passive invocation, and local return of method call have been removed due
to space limitation. The full MultiASP semantics can be found in the extended
version of this paper in [14]. In all cases, rules only show activities and futures in-
volved in the current reduction. SERVE picks the first request that is ready in the
queue (compatible with executing requests and with older requests in the queue)
and allocates a new thread to serve it. It fetches the method body and creates
the execution context. ASSIGN-LOCAL assigns a value to a local variable. If the
statement to be executed is an assignment of an expression that can be reduced
to a value, then the mapping of local variables is updated accordingly. NEW-
ACTIVE creates a new activity that contains a new active object. It picks a fresh
activity name, and assigns serialised object parameters: the initial local store
of the activity is the piece of store referenced by the parameters. INVK-ACTIVE



ASSIGN-LOCAL
x € dom(¥) v =[[e]l(o+e)
act(@, 0a,0,{q~ {€|x=¢;s}:: F} wp, Rq)
- ACT(aaOOUO—7 {q = {é[l‘ = ’U] | S} R F} Lﬂp7 Rq)

SERVE
ready(q,p, 2g)  q=(f,m,©)  bind(oa,m,v) = {{]s}
acr(a, 0a,0,p, Rq:: q = Rq’) — act(a, 0a,0,{q— {{|s}} wp, Rq: Rq)

NEW-ACTIVE
fields(C) == 0,7 fresh o' = {ow [T =0]} userialise(v, o) [Ell(ose) =T

acr(a, 0a,0,{q— {£| z =newActive C(€);s} : F'} wp, Rq)
— acr(a, 00,0, {q = {l |z ="7;s} = F}wp, Rq) acr(y,0,0",3,2)

INVK-ACTIVE
[ellw+ey=8  [Ell(orey=0

f,o fresh o1=0U{o~f} (vr, 0r) =rename, (v, serialise(v, o)) d’'=0"uao,

acr(@, 00,0, {q {£ |z = em(€); s} = F} wp, Rq) acr(B,08,0 ,p', Rq)
= acr(@, 0a,01,{g = {{|z = 0;s} = F'} wp, Rq)
acr(B,08,0" .0, Rq = (f,m,r))rur(f, L)

UPDATE
o(o)=7f (vr,0r) = rename, (v,0") o =olomv.]uo,

acr(@, 0a, 0,0, Rq) rur(f,v,0") = acr(a, 0a,0”,p, Rq) rur(f,v,c")

RETURN
v =[[ello+n)
acr(a, 0a,0,{(f,m,v) — {{| return e; s, }} & p, Rq) rur(f, 1)
= acr(@, 0a,0,p, Rq) rur(f,v,serialise(v,0))

Fig.7: Semantics of MultiAsp

performs an asynchronous remote method invocation on an active object. It cre-
ates a fresh future with undefined value. The arguments of the invocation are
serialised and put in the store of the invoked activity, possibly renaming loca-
tions to avoid clashes. The special case o = 8 requires a trivial adaptation of this
rule (not shown here). RETURN is triggered when a request finishes. It stores
the value computed by the request as a future value. Serialisation is necessary
to pack the objects referenced by the future value. UPDATE updates a future
reference with a resolved value. This is performed at any time when a future is
referenced and the future value is resolved. Finally, the main effect of the miss-
ing rules is to modify the local store (NEW-OBJECT and AsSSIGN-FIELD) and to
affect the execution context (INVK-PASSIVE and RETURN-LOCAL).

Threading Policies. We extend the above semantics to specify the threading poli-
cies featured in multiactive objects (see Section 2.2). First, we extend the syntax
of MultiAsP so that the threading policy can be programmatically changed from
a soft limit, i.e. a thread blocked in a wait-by-necessity is not counted in the
limit, to a hard limit, i.e. all threads are counted in the limit:



10

s u=... | setLimitSoft | setLimitHard
Each request ¢ belongs to a group group(q). The filter p|g gives, among the
active threads p, only requests of group g. There is a thread limit £, defined
for each group. We tag each of the currently served request as either active or
passive. p contains then two kinds of served requests: active ones, noted ga — F,
and passive ones, noted gp — F. Active(p) returns the number of active requests
in p. Finally, each activity is either in a soft limit state written acr(...)s (by
default at activity creation), or in a hard limit state written acr(...)y. sh is a
variable ranging over S and H. MultiAsP semantics is modified as follows:
— Each rule allowing a thread to progress requires now that the thread is active,
i.e. ¢ is replaced by g4 in all rules except SERVE and UPDATE.
— The rule SERVE is only triggered if the thread limit is not reached, i.e. if

ACtive(meup(q)) < Ly. Simmilarly, a rule for activating a thread is added:

ACTIVATE-THREAD
Group(q) =g Active(p|g) <Ly

acr(@, 0a,0,{qp = F} wp, Rq)sh — act(,0a,0,{qa — F} wp, RQ)sn

— There are two additional rules for switching the kind of limit, we show one
hereafter (SET-SOFT-LIMIT is the reverse):

SET-HARD-LIMIT
acr(a, 0q,0,{qa — {{ | setLimitHard; s} :: F} & p, Rq)s,
— acr(Q, 0a,0,{qa — {L| s} = F} wp, RQ)u
— If the kind of limit is a soft limit, a wait-by-necessity passivates the current
thread®; a rule for method invocation on a future is added:
INVK-FUTURE
(el =0 o(o)=f
acr(a, 0a,0,{qa ~ {{|x =em(€);s} = F} wp, Rg)s
- acr(@, 0a,0, {gp ~ {€| z =em(€);s} = Ftwp, Rq)s

4 Example-Driven Translation Principles

In this section, we informally present the ProActive backend for ABS, that trans-
lates ABS programs into ProActive code. Basically, this section shows how the
formal translation that will be defined in Section 5 is instantiated in practice
in ProActive. This backend is based on the existing Java backend for ABS. We
keep the translation of the functional layer unchanged and provide a translation
of the object and concurrency layers.

Object Addressing and Invocation. To handle the differences between two active
object languages, one needs first to define what happens when a new object
(active or not) is created. As translating each ABS object into a ProActive
active object is not a viable solution (because it is not scalable and because it

5 Wait-by-necessity occurs only in case of method invocation on a future since field
access is only allowed on the current object.



11

requires a complex synchronisation of processes), we put several objects under
the control of one active object, which fits the active object group model of
ABS. To this end, in the translation, we introduce a class COG for representing
ABS cogas; only objects of the COG class are active objects in the ProActive
translation. We translate the ABS new statement that creates a new object in a
new COG:

1| Server server = mew Server();

This instruction is translated into ProActive by the ProActive backend:

Server server = new Server();

COG cog = PAActiveObject.newActive(COG.class, new Object[]{Server.class}, node);
server.setCog(cog) ;

cog.registerObject (server) ;

Bw N e

Line 1 creates a regular server object. Lines 2 uses the newActive ProActive
primitive to create a new COG active object. Additionally to the constructor
parameters, ProActive allows the specification of the node onto which the active
object is deployed. Line 3 makes the local server aware of its COG. Finally in line
4, due to the ProActive by-copy parameter passing, the server object is copied
in the local memory space of the newly created remote COG, and is thus locally
accessible there. For objects created with new local in ABS, the ProActive
backend simply registers them locally in the current coG. To enable the same
object invocation model as in ABS, we use a two-level reference system in the
ProActive translation: each cOG is accessible by a global reference and each
translated ABS object is accessible inside its cOG through a local identifier.
The pair (COG, identifier) is a unique reference for each object and allows the
runtime to retrieve any object. When objects are transmitted between coaG (e.g.
as parameter of method invocations), a lightweight copy is transmitted by the
ProActive middleware; it can be used to reach the original object by using its
coG and identifier. As only the cOG and the identifier are needed to reference an
ABS object, we tune the object serialisation mechanism so that only those fields
are transmitted between active objects, thus saving memory and bandwidth. The
same strategy can be applied to translate any language featuring active object
groups into non uniform active objects. For uniform active objects, creating one
active object per translated object handles straightforwardly the translation but
limits scalability; grouping several objects behind a same active object (proxy)
would produce a more efficient program.

In order to explain now how we translate ABS asynchronous method calls in
ProActive, consider the following ABS asynchronous method call:

1| server!start(paraml, param2); ‘

In ProActive such a call becomes a remote method invocation. In order to handle
it with our object translation model, we perform a generic method call (implicitly
asynchronous) named execute, on the cOG of the translated server object:

1 server.getCog() .execute(server.getId(), "start", new Object[]{paraml, param2});

When run, the execute method of the COG class retrieves the target object
through its identifier and runs the start method on it by reflection with the given



12

parameters. Upon execute remote call, objects paraml and param2 are copied to
the memory space of the retrieved coG. Consequently, two copies of paraml and
param?2 exist in the translation whereas only one of them exists in ABS. However,
if method calls occurs on them, the requests for those objects always go to the
COG that manages those objects. This callback ensures that only one copy of a
translated object is manipulated, like in ABS. Consequently, the behaviour by
reference of ABS-like languages can be simulated with the behaviour by copy of
ProActive. This mechanism is also applied for future updates.

Cooperative Scheduling. Active object languages often support special threading
models and have constructs to impact on the scheduling of requests. Those con-
structs can be translated into adequate request scheduling of multiactive objects.
For demonstration, we consider here the translation that the ProActive backend
gives for ABS await statements (representative of cooperative scheduling), and
for ABS get statements (representative of explicit futures).

- await statements on futures. An await statement on an unresolved futures
releases the execution thread, for example:

1| await startedFut?;

In order to have the same behavior in the ProActive translation, we force a
wait-by-necessity. We use the getFutureValue ProActive primitive to do that:

1 PAFuture.getFutureValue(startedFut);

As in ProActive a wait-by-necessity blocks the thread, we need to configure the
ProActive coG class with multiactive object annotations (see Section 2.2) in
order to qualify the execute method and to specify a soft thread limit:

1 @Group(name="scheduling", selfCompatible=true)

2 @DefineThreadConfig(threadPoolSize=1, hardLimit=false)
3 public class COG {
4

@Member0f ("scheduling")
public ABSValue execute(UUID objectID, String methodName, Object[] args) {...}
}

N o

This configuration allows a thread to process an execute request while a current
thread that processes another execute request is waiting for a future. Indeed,
the hardLimit=false parameter ensures that the threads counted in the limit
(of 1 thread) are only active threads. In the example, the thread can be handed
over to another execute request if startedFut is not resolved, just like in ABS.

- get statements. The ABS get statement blocks the execution thread to retrieve
a future’s value, as for example on the previous future variable:

1| Bool started = startedFut.get;

The ProActive backend translates this ABS instruction into the following code:

1 getCog().switchHardLimit(true); // the retrieved COG is local: the call is synchronous
2 PAFuture.getFutureValue(startedFut);
3 getCog() .switchHardLimit (false);

This temporarily hardens the threading policy (i.e. all threads are counted in
the thread limit) so that no other thread can start while the future is awaited.



13

- Other synchronisation constructs. We also tackled the translation of ABS
suspend statements and of await statements on conditions. In this paper, we
only provide the formal definition of their translation in Section 5. The details
of their translation into ProActive code can be found in [19].

Wrap Up and Applicability. In order to finalise the ProActive backend for ABS,
we add deployment information in the translation; for that we use the deploy-
ment descriptor embedded in ProActive: configuration files binding virtual nodes
to physical machines. On the ABS side, new cog is followed by the name of a
node for deployment. This is the only modification that ABS programs must
incur to be executed in a distributed way. An experimental evaluation (detailed
in the extended version of this paper in [14]) shows that a significant speedup
can be achieved by a distributed execution of an ABS program thanks to the
ProActive backend. It also shows that the program obtained with the ProActive
backend incurs an overhead of less than 10% compared to a native ProActive
application.

We have presented in details the ProActive backend for ABS and discussed
the translation of common active object constructs. The concepts applied in the
case of ABS are generic and can systematically turn various active object lan-
guages into deployable active objects. As an example, JCoBox is similar enough
to ABS so that the approach presented here is straightforwardly applicable. The
most challenging aspect is that JCoBox features a globally accessible and im-
mutable memory, which could be translated into one active object, or which
could rely on copies since the immutable property holds. Regarding Creol, in
which all objects are active, the best approach is to group several objects be-
hind a same proxy for performance reasons. Then, preserving the semantics of
Creol relies on a precise interleaving of local threads. The transposition to Am-
bientTalk is trickier on the scheduling aspect, due to the existence of callbacks.
However, we found that a callback on a future can be translated as a request that
is ready to run but that starts by a wait-by-necessity on the adequate future.

5 Translational Semantics

This section formalises the translation given by the ProActive backend by intro-
ducing the translational semantics from ABS to MultiAsp. We refer to Figure 1
for the concurrent object layer of ABS. Runtime syntax and semantics of ABS
can be found in [14]. Most of the translation from ABS to MultiASP impacts
statements. The rest of the source structure (classes, interfaces, methods) is
unchanged except the two following:

1) We define a new class C0G. It has methods to store and retrieve local objects,
and to execute a method on a local object; UUID is the type of object identifiers:

Class C0G {
UUID freshID()
UUID register(Object x, UUID id)
Object retrieve(UUID id)
Object execute(UUID id, MethodName m, params) { \\
w=this.retrieve(id); x=w.m(params); return x}

}




14

2) All translated ABS classes are extended with two parameters: a cog parameter,
storing the COG to which the object belongs, and an id parameter, storing the
object’s identifier in that coG; methods cog() and myld() return those two
parameters; a dummy method get() that returns null is added to each object.

The translation of statements and expressions is shown in Figure 8. Each of
them is explained below. Object instantiation first gets a fresh identifier from the
current COG. Then, the new object is created with the current coG and the iden-
tifierS. It is stored in a reserved temporary local variable no. Finally, the object is
referenced in the current COG and stored in . Object instantiation in a new COG
is similar to object instantiation in the current coG but method invocations on
newcog variable are asynchronous remote method calls. The new object is thus
copied to the memory space of the remote new COG via the register invocation,
before being assigned to xz. Await future uses the dummy get() method, that all
translated objects have, in order to trigger the wait-by-necessity mechanism and
potentially block the thread if the future is not resolved. Get future sets a hard
limit on the current activity, so that no other thread starts, and then restores
the soft limit after having waited for the future. Await on conditions performs
sequential get() within an activity in soft limit. Conditional guards are detailed
later in this section. Asynchronous method call retrieves the COG of the object
and relies on the execute asynchronous method call as described in Section 4.
Synchronous local method call distinguishes two cases, like in ABS. Either the
call is local and an execution context is pushed in the stack, or the call is remote
and, like in ABS, we perform an asynchronous remote method invocation and
immediately wait the associated future within an activity in hard limit. Finally,
instructions that do not deal with method invocation, future manipulation, or
object creation, are kept unchanged.

In the translation, there exist different multiactive object groups and each
group has its own thread limit. Group g; encapsulates freshld requests; those
requests cannot execute in parallel safely, so g; is not self compatible and can
only use one thread at a time. Group g gathers execute requests. It is limited to
one thread to comply with the threading model of ABS, and the requests are self
compatible to enable interleaving. Group gs contains register requests that are
self compatible and that have an infinite thread limit. Concerning compatibility
between groups, they are all compatible except g3 and go: their compatibility
is defined dynamically such that an execute request and a register request are
compatible only if they do not affect the same identifier. In summary:

group(freshld) = g1 group(execute) = ga group(register) = gs
Ly, =1 Ly, =1 Lgs =00
Vq,q". (¢ #q # freshld() A (Bid.q = register(x,id) A ¢’ = execute(id,m,e))) =
compatible(q, q")

In order to support ABS conditional guards, for each guard g, we generate a
method condition_g that takes as parameters the needed local variables Z. The

5 The step in which the coc of the new object is set in ProActive is directly encoded
in the object constructor in MultiAsp.



15

[x =em(e)] = t=e.cog();id=e.myld(); [await z7] = w = x.get()
x = t.ezecute(id, m,e) [await g A ¢']| = [await g]); [await ¢']

[z = y.get] = setLimitHard; [x=e.m(€)] £ a = e.cog(); b = this.cog();

w=y.get(); if(a==0) {z=em(e)}
setLimitSoft; else {t=-e.cog();id=e.myld();
T=y x = t.execute(id, m,€);
setLimitHard;
[x=¢] =2 z=¢ w = z.get(); setLimitSoft}
[z=new local C(€)] £ ¢ = this.cog(); [x=new C(€)] = newcog=newhctive COG();
id = t.freshld(); id = newcog. freshId();
no = new C(e, t,id); no = new C(€, newcog, id);
z = t.register(no, id); z = newcog.register(no, id);
x =no T =no

[await g]z 2 if(-g) { t=this.cog(); id = this.myld();
z = t.exzecute_condition(id, condition_g,T);w = z.get }

[suspend] = t=this.cog(); id = this.myld();
z = t.execute_condition(id, condition_True,T);w = z.get

Fig.8: Translational semantics from ABS to MultiAsp

method body can normally access the fields of the object this. A condition eval-
uation g is defined as follows:  condition_g(T) = while(—~g) skip;return null.
We encode the suspend statement the same way with a True condition. We define
an execute_condition method in the COG class; it executes generated condition
methods. The execute_condition method has its own group with an infinite thread
limit because any number of conditions can evaluate in parallel. More formally,
we have: group(ezecute_condition) = gx  Lg, = 0

6 Translation Equivalence and Active Object Insights

Proving that MultiASP executions exactly simulate ABS semantics is not possible
by direct bisimulation of the two semantics. Instead, we prove two different
theorems stating under which conditions each semantics simulates the other. We
present all technical details on the equivalence and the proof in the research
report associated to this paper [14]. We summarise below the highlights of the
proof, the principles of the underlying equivalence between MultiAsp and ABS
terms, the differences between the languages and the restrictions of the proof.
Communication and request serving ordering. The semantics of ABS relies on a
completely asynchronous communication scheme while MultiASP ensures causal
ordering of requests. The equivalence can only be valid for the ABS reductions
that preserve causal ordering of requests. Also, MultiAsP serves requests in FIFO
order, so similarly we execute a FIFO service of ABS requests, like in the existing
Java backend for ABS. Note that those differences are more related to scheduling
and communication patterns than to the nature of the two languages.

Shallow translation. ABS requests, COGs and futures respectively match one-
to-one MultiASP requests, active objects and futures. Likewise, except for coG



16

objects, for each ABS object there exist several copies of this object in MultiAsP,
all with the same COG and the same identifier, but only one of those copies (the
one hosted in the right cOG) is equivalent to the ABS object.

Futures. Because of the difference between the future update mechanisms of
ABS and Multiasp, the equivalence relation can follow as many local future
indirections in the store as necessary. A variable holding a pointer to a future
object in MultiASP is equivalent to the same variable holding directly the future
reference in ABS. But also, the equivalence can follow future references in ABS:
a future might have been updated transparently in MultiAsp while in ABS, the
explicit future read has not been performed yet.

Equating Multiasp and ABS configurations. A crucial part of the correctness
proof consists in stating whether an ABS and a MultiASP configuration are
considered equivalent. The principles of this equivalence are the following:

— Equivalence can “follow futures”: A MultiAsP value v is equivalent to an ABS
future provided the future’s value is equivalent to v; indeed in MultiAsp a
future can be automatically updated earlier than in the ABS case.

— Objects are identified by their identifier and their COG name: the value of
the object fields are meaningless except in the COG that initially created the
object. It is in this cOG that we check that fields are equivalent.

— Equivalence between requests distinguishes two cases. 1) active tasks: there
is a single active task per coG in ABS and it must correspond to the single
active thread serving an ezxecute request in MultiAsp. The second element
in the call stack corresponds to the invoked request. 2) inactive tasks in
ABS correspond either to passive requests being currently interrupted or to
not-yet-served requests in MultiAsp. For each task, equivalence of executed
statements, of local variables, and of corresponding future is checked.

Observational equivalence. The precise formulation of our theorems proves that
the ABS behaviour is faithfully simulated by our translation and conversely. This
is proven by adequately choosing the observable and not observable actions in the
weak simulation. For example remote method invocation, object creation, and
field assignment can be observed and faithfully simulated. The most striking ob-
servable reduction in ABS that is not always observable in MultiASP is the future
value update. For example, in ABS the configurations (a) fut(f, f') fut(f’,1) and
the configuration (b) fut(f, 1) are observationally different, whereas in MultiAsp
they are not. Indeed, in MultiAspP, there is no process able to detect whether
the first future has been updated or not. However, this example is artificial as
no information is stored in the first future of configuration (a); any access to
the future’s value will have to follow indirections and eventually access the value
that is not a future. Thus, transparency of futures and of future updates create
an intrinsic difference between the two languages. This is why, in the theorem,
we exclude the possibility to have a future’s value being a future in the configu-
ration. Eliminating syntactically such programs is not possible, thus we reason
on reductions for which the value of a future is not a future; this is not a major
restriction on expressiveness because it is still possible to have a future value
that is an object containing a future (as future wrappers).



17

In the other direction, namely from Multiasp to ABS, the translation adds
several steps in the reduction. However, the added sequences of actions never
introduce concurrency so equivalence still holds because we can ignore additional
local actions such as assignments and method calls that are not in the ABS
program source (e.g. myld()).

Theorem 1 (ABS to Multiasp). The translation simulates all ABS executions
with FIFO policy and rendez-vous communications provided that no future value
s a future reference.

Theorem 2 (Multiasp to ABS). Any reduction of the Multiasp translation
corresponds to a valid ABS execution.

Globally, our translational semantics fully respects the ABS semantics and
simulates exactly all executions complying to the aforementioned restrictions,
which either are already existing restrictions of the Java backend for ABS, or
for which we have given relevant alternatives.

7 Conclusion

This paper tackled the question of providing active object languages, aimed at
modelling and verification, with systematic deployment for distributed comput-
ing. For that, we have identified the necessary design choices for active object
models and languages, involving: object referencing, language transparency, and
request scheduling. These design choices have to be considered when implement-
ing any active object language. We have introduced MultiAsp, a multi-threaded
active object language that has showed to be expressive enough to embody
the main paradigms of ABS, featuring in particular cooperative scheduling. We
demonstrated how to translate the constructs of an easy to program and verify
active object language into the executable code of an efficient and scalable active
object middleware. We have instantiated our approach by translating ABS into
the ProActive middleware, that implements MultiASP in Java. The immediate
outcome of this work is a ProActive backend for ABS. Our approach could be
quite easily ported other active object languages since we reason more on ac-
tive object abstractions than on language specifics. Typically, our work can be
straightforwardly adapted to any active object language featuring cooperative
scheduling, like Creol and JCoBox. Porting our results on AmbientTalk only
requires minor adaptations. A comparison of the ProActive backend against a
currently developed Java 8 backend for ABS [21] is ongoing. This analysis fo-
cuses on the different implementation approaches for efficiently encoding the
ABS semantics. More generally, the provided proof of correctness highlighted
the intrinsic differences between active object languages and models. This work
will help active object users to choose the language that is the most adapted for
their needs, and also help active object designers to identify the implication of
specific language constructs and abstractions.



18

References

1.

2.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

G. Agha and C. Hewitt. Concurrent programming using actors. In Foundations of
Software Technology and Theoretical Computer Science. Springer, 1985.

E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gdémez-Zamalloa,
E. Martin-Martin, G. Puebla, and G. Roméan-Diez. SACO: Static analyzer for
concurrent objects. In TACAS’14. Springer, 2014.

N. Bezirgiannis and F. Boer. SOFSEM 2016, chapter ABS: A High-Level Modeling
Language for Cloud-Aware Programming. Springer, Berlin, Heidelberg, 2016.

F. S. D. Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
ESOP’07. Springer, 2007.

S. Brandauer, E. Castegren, D. Clarke, K. Fernandez-Reyes, E. Johnsen, K. Pun,
S. Tarifa, T. Wrigstad, and A. Yang. Parallel objects for multicores: A glimpse
at the parallel language Encore. In Formal Methods for Multicore Programming,
LNCS. Springer, 2015.

D. Caromel and L. Henrio. A Theory of Distributed Objects. Springer, 2004.

J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter.
Ambient-oriented programming in ambienttalk. In ECOOP’06. Springer, 2006.
C. Din, R. Bubel, and R. Hahnle. KeY-ABS: A deductive verification tool for the
concurrent modelling language abs. In A. P. Felty and A. Middeldorp, editors,
Automated Deduction - CADE-25, LNCS. Springer, 2015.

C. Flanagan and M. Felleisen. The semantics of future and its use in program
optimization. In POPL ’95. ACM, 1995.

E. Giachino, C. Laneve, and M. Lienhardt. A framework for deadlock detection in
ABS. Journal of Software and Systems Modeling, 2014.

P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., Feb. 2009.

L. Henrio, F. Huet, and Z. Istvan. Multi-threaded active objects. In COORDINA-
TION’13. Springer, 2013.

L. Henrio and J. Rochas. Declarative Scheduling for Active Objects. In SAC’14.
ACM, 2014.

L. Henrio and J. Rochas. From Modelling to Systematic Deployment of Distributed
Active Objects — Extended Version. Research report, 13S, Apr. 2016.

E. Johnsen, R. Héahnle, J. Schifer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In FMCQO’12. Springer, 2012.

E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for
distributed concurrent systems. Theoretical Computer Science, 2006.

E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa. Integrating deployment archi-
tectures and resource consumption in timed object-oriented models. Journal of
Logical and Algebraic Methods in Programming, 2015.

R. G. Lavender and D. C. Schmidt. Active object: an object behavioral pattern
for concurrent programming. In Pattern languages of program design 2. 1996.

J. Rochas and L. Henrio. A ProActive Backend for ABS: from Modelling to De-
ployment. Research Report RR-8596, Sept. 2014.

J. Schéfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In ECOOP’10. Springer, 2010.

V. Serbanescu, K. Azadbakht, F. de Boer, C. Nagarajagowda, and B. Nobakht.
A design pattern for optimizations in data intensive applications using ABS and
JAVA 8. Concurrency and Computation: Practice and Experience, 2016.



