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Abstract. We give a short account of some time-frequency methods which are relevant in

the context of gravity waves detection. We focus particularly on the case of wavelet analysis

which we believe particularly appropriate. We show how wavelet transforms can lead to e�cient

algorithms for detection and parameter estimation of binary coalescence signals. In addition,

we give in an appendix some of the ingredients needed for the construction of discrete wavelet

decompositions and corresponding fast algorithms.

1. Introduction and Notations.

1.1. Generalities. It has been recognized for a long time that a wide class of signals are

e�ciently described by means of so-called Time-Frequency representations, i.e. represen-

tations in which time (or position) and frequency variables appear simultaneously. The

prototype of such transforms is the so-called Gabor transform:

f(x) 2 L

2

(IR) ,! G

f

(b; !) 2 L

2

(IR

2

) ;

The paper is in �nal form and no version of it will be published elsewhere.
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2 J.M. INNOCENT AND B. TORRESANI

where the function of the two variables b (time) and ! (frequency) is de�ned as

G

f

(b; !) =

Z

IR

f(x)e

�i!(x�b)

g(x� b)dx : (1)

Here, g(x) is a window, generally chosen in such a way that g(x) (resp. ĝ(�)) is well

localized near the origin of times x = 0 (resp. the origin of frequencies � = 0). Under

these assumptions, one may think of the coe�cient G

f

(b; !) as describing the \content

of the signal f(x) near time x = b and frequency � = !". Of course, the localization with

respect to time and frequency variables simultaneously has to be understood in a \fuzzy

sense", because of Heisenberg's uncertainty principle. By improving precision in time, we

lose precision in frequency.

It is a standard result that the set of coe�cients G

f

(b; !) characterize the signal f(x),

in the sense that f(x) may be \reconstructed" from its Gabor transform as

f(x) =

1

2�jjgjj

2

Z

IR

2

G

f

(b; !)e

i!(x�b)

g(x� b)dbd! : (2)

The inversion formula (2) has to be understood in the weak L

2

(IR) sense, i.e. in the sense

of \energy conservation":

1

2�jjgjj

2

Z

IR

2

jG

f

(b; !)j

2

dbd! =

Z

IR

jf(x)j

2

dx : (3)

As we said, the Gabor representation is one among many other time-frequency repre-

sentations. Several examples may be found in monographs such as [14, 22, 37, 46] or

papers [4, 7, 25]. Throughout this paper, we shall concentrate on the wavelet transform,

which seems to be particularly well adapted to binary coalescence signals, and more par-

ticularly on continuous wavelet transform. The paper is organized as follows. The rest of

the current section is devoted to some generalities and notations. In Section 2 we recall

the basic de�nitions and properties of continuous wavelet transform. We describe in Sec-

tion 3 some elementary facts on the wavelet analysis of stationary stochastic processes.

Section 4 is devoted to a description of wavelet-based methods for detecting amplitude

and frequency modulated signals in noisy environment, and we address the problem of

detection of binary coalescence signals in Section 5. Section 6 is devoted to conclusions.

Finally, we give in the Appendix some aspects of discrete wavelet transforms and their

numerical implementation.

1.2. Fourier Analysis. Let us start with some notions of Fourier analysis. We shall work

in the framework of the space of complex valued square-integrable functions, denoted by

L

2

(IR), equipped with a natural inner product which turns it into a Hilbert space. We

shall use the following convention for the inner product. For any two functions f(x) and

g(x) in L

2

(IR), we denote:

hf; gi =

Z

f(x)g(x) dx: (4)

Our convention for the Fourier transform is the following: for f(x) 2 L

1

(IR), its Fourier

transform

^

f (�) is de�ned as:

^

f (�) =

Z

f(x)e

�i�x

dx: (5)
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In fact one shows that:

Z

jf(x)j

2

dx =

1

2�

Z

j

^

f(�)j

2

d� (6)

whenever f(x) is a smooth function decaying rapidly at in�nity. Relation (6) (the so-

called Plancherel formula) expresses the fact that the Fourier transform can be extended

to the whole space L

2

(IR) as an isometry and more precisely as a Hilbert space unitary

equivalence between L

2

(IR; dx) and L

2

(IR; d�=2�). The inverse transform is given by:

�

f (x) =

1

2�

Z

f(�)e

i�x

dx: (7)

1.3. Hilbert Transform, Analytic Signal. In addition to L

2

(IR), we shall often make use

of the complex Hardy space sometimes called the space of analytic signals:

H

2

(IR) =

n

f(x) 2 L

2

(IR);

^

f(�) = 0 8� � 0

o

: (8)

H

2

(IR) is intimately related to the Hilbert transform H, de�ned by:

H � f(x) =

1

�

P:V:

Z

f(x � y)

dy

y

; (9)

(where P:V: denotes principal value) and conveniently expressed in the Fourier domain

as

d

H � f (�) = �i sgn(�)

^

f (�) : (10)

Notice that it transforms sine waves into cosine waves, and vice versa.

Given a real valued function f(x), the associated analytic signal is de�ned as (up to a

factor 2) its orthogonal projection Z

f

(x) onto H

2

(IR). It is given by the formula:

Z

f

(x) = [Id+ iH]f(x) ; (11)

where Id denotes the identity operator. Equivalently, its Fourier transform is given by:

c

Z

f

(�) = 2�(�)

^

f (�) ; (12)

where �(�) denotes the Heaviside step function which is equal to 1 when � � 0 and to

0 otherwise. The analytic signal representation has been proven to be useful in many

applications. In particular, the notion of time-dependent frequency, or instantaneous

frequency, makes sense as the derivative of the instantaneous phase of the analytic signal:

�(x) =

1

2�

d arg Z

f

(x)

dx

(13)

1.4. Stationary Processes and their Spectral Representation. We give here the basic prop-

erties of stationary processes, without going into sophisticated mathematical details. Our

goal is rather to provide the reader with the main expressions which are needed in order

to follow the discussion below, at least with formal calculations. The interested reader

may want to consult [33] for more details.

Let us consider a real-valued stationary stochastic process n(x) = n

!

(x) of mean zero (for

convenience, we suppress the explicit dependence on the random parameter ! throughout
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this paper). Then the autocovariance function C(� ) = IEfn(x+ � )n(x)g is non-negative

de�nite and by Bochner's theorem, there exists a non-decreasing function F (�) such that

C(� ) = IEfn(x+ � )n(x)g =

1

2�

Z

e

i��

F (d�) : (14)

For the sake of simplicity, we shall stick to the case where the measure F (d�) is absolutely

continuous with respect to the Lebesgue measure d�, so that we may write F (d�) =

E(�)d�, and we write

C(� ) =

1

2�

Z

e

i��

E(�)d� : (15)

Here, E(�) is the spectral density of the process.

The Cram�er representation states that n(x) may be obtained through linear �ltering of

white noise. More precisely, the Cram�er representation of the stochastic process n(x) is

given by

n(x) =

1

2�

Z

p

E(�)e

i�x

dW

�

; (16)

where dW

�

is a (real) white noise measure, such that

IEfdW

�

g = 0 8� ; (17)

and

IEfdW

�

dW

�

g = 2��(� � �)d� : (18)

We will not go into further details on this point.

1.5. Spectral Estimation It is a standard problem in signal analysis to estimate the spec-

tral density from a unique (discrete) realization of �nite length. Spectral estimation is a

technical subject, often involving subtle choices.

To start with let us assume that we are given a discrete stationary time series, consisting

of a �nite number of samples X

i

= f(x

i

); i = 0; : : :N � 1 of a continuous time function

f(x). Then the spectral density E(k) is usually estimated from the sample periodogram

^

E(`) =

�

�

�

�

�

1

N

N�1

X

k=0

X

k

e

�ik�

`

�

�

�

�

�

2

` = 0; 1; : : :N � 1 (19)

where �

`

= 2�`=N . However, it may be shown that such an estomator is 1) biased

and 2) unconsistent. The situation is usually improved by considering tapered sample

periodograms of the form

^

E(`) =

�

�

�

�

�

1

N

N�1

X

k=0

w

k

X

k

e

�ik�

`

�

�

�

�

�

2

` = 0; 1; : : :N � 1 (20)

with a well chosen weighting sequence w

k

. Several choices are possible. Ours consists in

the sequence

w

k

=

8

<

:

j sin(k�=L)j

n

if 0 � k � L

1 if L � k � N � L

j sin((N � k)�=L)j

n

if N � L � k � N � 1

(21)

for suitably chosen integers L < N=2 and n.

As an example we display in Figure 1 the spectral density of the simulated VIRGO

detector noise, estimated from a sample size of 2

15

.
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Figure 1: Power spectrum of the VIRGO detector noise.

2. Time-Frequency Transforms andWavelet Analysis. The starting point of time-

frequency analysis was the fact that a wide class of signals may be represented more

adequately by using simultaneously time and the frequency variables. Let us quote for

example musical signals, which are interpreted by human ear in terms of time (i.e. time

of emission, and duration) and frequency (the height of the sound), or chirp signals such

as gravitational waves generated by coalescing binaries. Throughout this paper, we shall

in particular be concerned with model signals of the form

f(x) =

X

k

A

k

(x) cos �

k

(x) ; (22)

where the functions A

k

(x) (termed local amplitudes) are assumed to be slowly varying

compared with the oscillations corresponding to �

k

(x) (local phases).

Of course, the notion of \time-frequency content" of a signal cannot make sense in an

in�nitely precise way. For example, Heisenberg's inequality prevents us from localizing

perfectly functions simultaneously in time and frequency. As a result, some arbitrariness

is necessarily introduced into time-frequency representations. Let us simply stress some

of the main consequences.

� First, time-frequency representations are not unique: there are many di�erent ways

of describing the \time-frequency content" of a signal.

� Second, for a given time-frequency representation, it is impossible to achieve perfect

time-frequency localization, because of the Heisenberg uncertainty principle. This

means that we shall always have to look for a compromise between time localization

and frequency localization.

There exists now a large class of time-frequency representations enjoying di�erent prop-

erties. It is not the purpose of this paper to review them (for this we refer to [22] for

example), and we shall stick to the particular case of the continuous wavelet transform.

2.1. The Continuous Wavelet Transform. Let us start by introducing the continuous

wavelet transform (CWT for short). Let  (x) 2 L

1

(IR) \ L

2

(IR) be a �xed function,
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called the analyzing wavelet, or mother wavelet. The corresponding family of wavelets is

the family of shifted and scaled copies of  (x) de�ned by:

 

(b;a)

(x) =

1

a

 

�

x� b

a

�

: (23)

Given an analyzing wavelet  (x), the associated continuous wavelet transform is de�ned

as follows

Definition 2.1. Let  (x) 2 L

1

(IR) \ L

2

(IR) be an analyzing wavelet. The continuous

wavelet transform of f(x) 2 L

2

(IR) is de�ned by the integral transform

T

f

(b; a) = hf;  

(b;a)

i =

1

a

Z

f(x) 

�

x� b

a

�

dx (24)

The (real or complex) number T

f

(b; a) carries information concerning the signal f(x) at

scale a around the point b.

Remark 2.1. If the wavelet  (x) is progressive, i.e. if  (x) 2 H

2

(IR), then the CWT of

a signal f(x) reads

T

f

(b; a) = hf;  

(b;a)

i =

1

2

hZ

f

;  

(b;a)

i :

A crucial property of the continuous wavelet transform is that, under a mild condition on

the analyzing wavelet (see equation (25) below), the transform is invertible on its range

(see e.g. [25] for a proof):

Theorem 2.1. Let  (x) 2 L

1

(IR) \ L

2

(IR), and let

c

 

=

Z

1

0

j

^

 (a�)j

2

da

a

: (25)

If c

 

is �nite, nonzero and independent of � 2 IR (resp. �nite and nonzero), every

f(x) 2 L

2

(IR) (resp. f(x) 2 H

2

(IR)) may be decomposed as

f(x) =

1

c

 

Z

1

�1

Z

1

0

T

f

(b; a) 

(b;a)

(x)

da

a

db ; (26)

with strong convergence in L

2

(IR).

Assuming that c

 

is independent of � actually amounts to assume independence with

respect to sgn(�). Obviously, such an assumption is not needed anymore in the H

2

(IR)

context. Concerning the �niteness of c

 

it implies the vanishing of the integral of the

wavelet  (x):

Z

 (x)dx =

^

 (0) = 0 :

An admissible wavelet is then essentially a band pass �lter (we shall come back to this

comment later on). Such a condition may be enforced by assuming vanishing moments

for the wavelet: for example

Z

x

m

 (x)dx = 0 ; 8m = 0; 1; :::M � 1 :
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In the Fourier domain, the vanishing moments essentially control the behaviour of the

Fourier transform of the wavelet at the origin. Such a property turns out to be essential

for the analysis of singularities and transients in signals.

As a consequence, we have the following partial isometry between L

2

(IR) and the target

space of the transform, namely H = L

2

(IR� IR

�

+

; a

�1

dadb):

jjf jj

2

=

1

c

 

Z

1

�1

Z

1

0

jT

f

(b; a)j

2

da

a

db (27)

for all f(x) 2 L

2

(IR). This allows for the interpretation of the squared-modulus of the

wavelet transform (suitably normalized) as a time-frequency or more precisely a time-

scale energy density.

2.2. Redundancy and Reproducing Kernels. For a given admissible wavelet  (x) ful�lling

the admissibility condition, the image of L

2

(IR) by the wavelet transform is a closed

subspace H

 

of L

2

(IR� IR

�

+

; a

�1

dadb). This space is called the reproducing kernel Hilbert

space. It is the space of solutions F (b; a) of the integral equation

F (b

0

; a

0

) = P

 

F (b

0

; a

0

) =

Z

1

�1

Z

1

0

K

 

(b

0

; a

0

; b; a)F (b; a)

da

a

db ; (28)

where the reproducing kernel K

 

is given by:

K

 

(b

0

; a

0

; b; a) =

1

c

 

h 

(b;a)

;  

(b

0

;a

0

)

i : (29)

This fact is readily proved by taking the inner product of both sides of equation (26)

with the wavelet  

(b

0

;a

0

)

(x). The corresponding integral operator P

 

is easily shown to

be an orthogonal projection on the H

 

space (i.e. P

�

 

= P

2

 

= P

 

).

Remark 2.2. Equation (28) expresses the redundancy of the CWT. As before, a con-

sequence of this redundancy is the existence of many di�erent inversion formulas for

the CWT, or otherwise stated the possibility of using in the inversion formula (26) a

reconstruction wavelet di�erent form the analysis  (x) wavelet: if the function �(x) 2

L

1

(IR) \ L

2

(IR) is such that the number

c

 �

=

Z

1

0

^

 (a�)�̂(a�)

da

a

(30)

is �nite, nonzero and independent of �, then equation (26) may be replaced with:

f(x) =

1

c

 �

Z

1

�1

Z

1

0

T

f

(b; a)�

(b;a)

(x)

da

a

db ; (31)

where the wavelet coe�cients T

f

(b; a) are still de�ned by (24).

Remark 2.3. There exists a simpler version of continuous wavelet analysis, known under

the name of continuous Littlewood-Paley decompositions. Given a wavelet  (x) 2 L

1

(IR)\

L

2

(IR), and assuming that the number

k

 

=

Z

1

0

^

 (a�)

da

a

(32)
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is well-de�ned, �nite, nonzero and independent of �, we have the following simple in-

version formula (known as Morlet's inversion formula) for the corresponding continuous

wavelet transform

f(x) =

1

k

 

Z

1

0

T

f

(x; a)

da

a

; (33)

the proof of which is elementary.

2.3. Translation and Scaling Covariance. The wavelet transform enjoys built-in covari-

ance properties. For example, the CWT of a shifted copy of the signal f(x) equals the

corresponding time-shifted copy of the CWT of f(x). A similar property holds with

dilations. More generally we have the following

Lemma 2.1. Let f(x) 2 L

2

(IR), and set

~

f (x) = f

�

x� x

0

�

�

:

Then

T

~

f

(b; a) = T

f

�

b� x

0

�

;

a

�

�

: (34)

Remark 2.4. Lemma 2.1 may be given an instructive geometric interpretation, which

we sketch here. The space of scale and translation variables may be endowed with a

(Lie) group structure, with product given by (b; a) � (b

0

; a

0

) = (b + ab

0

; aa

0

) and inverse

(b; a)

�1

= (�b=a; 1=a). This group is termed the a�ne group and denoted by G

aff

. The

natural action of G

aff

on L

2

(IR) given by

�(b; a)f(x) =

1

p

a

f

�

x� b

a

�

(35)

is actually an unitary representation of G

aff

, in the sense that �(b; a) is a unitary oper-

ator for all (b; a) 2 G

aff

, and that �(b; a)�(b

0

; a

0

) = �((b; a) � (b

0

; a

0

)), and the connection

to the wavelet transform is as follows: if f(x) 2 L

2

(IR)

T

f

(b; a) =

1

p

a

hf; �(b; a) i ; (b; a) 2 G

aff

: (36)

Back to Lemma 2.1, we have that

~

f (x) =

p

��(x

0

; �)f(x), and T

~

f

(b; a) =

p

a

�

hf; �((x

0

; �)

�1

�

(b; a)) i =

p

a

�

hf; �

�

b�x

0

�

;

a

�

�

 i, which yields the lemma. The invariance properties of

the wavelet transform then have a deeper geometric interpretation in terms of the action

of the a�ne group. We shall come back to that point in Section 5.2.

Such properties have found a lot of applications, for example for the study of fractal

and multifractal functions and measures. We shall see below their implications for the

particular case of binary coalescence detection.

2.4. The Case of (Complex) Progressive Wavelets. A wavelet  (x) is said to be progres-

sive if it is admissible and belongs to H

2

(IR). If  (x) is a progressive wavelet, Eq. (26)

holds for functions f(x) 2 H

2

(IR). Progressive wavelets are also well suited for L

2

(IR)

real signals. Indeed, if (f(x) is a real valued function, then its Fourier transform pos-

sesses Hermitian symmetry (i.e.

^

f (��) =

^

f(�)) and is completely characterized by its
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projection on H

2

(IR). Then the H

2

(IR) version of wavelet analysis may be used as well,

and is particularly convenient as we shall see.

The wavelet transform of real signals with respect to progressive wavelets is a complex-

valued function, and is also progressive with respect to the variable b. As such, it may

be uniquely written (as long as a determination has been speci�ed for the logarithm) in

the form

T

f

(b; a) = jT

f

(b; a)je

i
(b;a)

; (37)

where 
(b; a) = arg T

f

(b; a). Let us denote by !(b; a) the local frequency of T

f

(b; a), i.e.

!(b; a) = @

b


(b; a) : (38)

Then it is easy to see that

!(b; a) =

1

a

~

R

f

(b; a)I

f

(b; a)�

~

I

f

(b; a)R

f

(b; a)

jT

f

(b; a)j

2

; (39)

where we have set

~

T

f

(b; a) =

1

a

Z

f(x) 

0

�

x� b

a

�

dx ; (40)

and R

f

and I

f

(resp.

~

R

f

and

~

I

f

) are the real and imaginary parts of T

f

(resp.

~

T

f

). Note

that

~

T

f

(b; a) is a wavelet transform of f(x) as well, the wavelet being the derivative of

 (x).

3. Wavelet Transform of Stationary Processes We now turn to the description of

the CWT of stochastic processes. Let us consider �rst a stochastic process, and denote

by C its covariance operator. Then if  (x) 2 \L

2

(IR) we have

IEfT

n

(b; a)T

n

(b

0

; a

0

)g = hC 

(b

0

;a

0

)

;  

(b;a)

i 8(b; a); (b

0

; a

0

) : (41)

In the case of stationary time series the covariance operator is a convolution operator,

with the spectral density E(�) as multiplier. Let n(x) be such a time series, and consider

its Cram�er representation given in Eq. (16). Then, its CWT takes the form of a stochastic

integral

T

n

(b; a) =

1

2�

Z

e

i�b

p

E(�)

^

 (a�)dW

�

; (42)

and we have the following

Proposition 3.1. Let n(x) be a Gaussian stationary time series, with spectral density

denoted by E(�), and let T

n

(b; a) denote its CWT, with respect to the progressive wavelet

 (x) 2 L

1

(IR) \ L

2

(IR). Then

1. T

n

(b; a) is a Gaussian process.

2. For �xed scale a, T

n

(b; a) is a stationary time series, with mean zero and power

density

E

a

(�) = E(�)j

^

 (a�)j

2

(43)

3. In particular, one has

IEfjT

n

(b; a)j

2

g =

1

2�

Z

E(�)j

^

 (a�)j

2

d� : (44)
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4. Assume now that  (x) 2 H

2

(IR). Then for �xed a and b, the real and imaginary

parts of T

n

(b; a) are independent Gaussian random variables.

Let us consider as an example the case of a white noise process n(x). In this case, Eq. (41)

becomes

IEfT

n

(b; a)T

n

(b

0

; a

0

)g = h 

(b;a)

;  

(b

0

;a

0

)

i = c

 

K

 

(b; a; b

0

; a

0

) 8(b; a); (b

0

; a

0

) :

and we have in particular

IEfjT

n

(b; a)j

2

g = jj jj

2

=a :

Let us now consider the \signal + noise" case, i.e.

f(x) = f

0

(x) + n(x) ;

where f

0

(x) is a deterministic signal, and n(x) is a weakly stationary process with mean

�. Then clearly

T

f

(b; a) = T

f

0

(b; a) + T

n

(b; a) :

In addition, we may write

jT

f

(b; a)j

2

= jT

f

0

(b; a)j

2

+ N (b; a) ; (45)

where

N (b; a) = 2<

�

T

f

0

(b; a)T

n

(b; a)

�

+ jT

n

(b; a)j

2

: (46)

Since wavelets are functions of vanishing integral, we have in addition

IEfN (b; a)g =

1

2�

Z

E(�)j

^

 (a�)j

2

d� : (47)

4. Ridge Detection Methods for Time-Varying Frequencies. We now address

the problem of characterizing time and amplitude modulated signals from the behavior

of a given time-frequency representation. Such a problem has been addressed by several

authors in various contexts. We just give here a few methods that seem to us well suited

to the gravitational waves detection problem, and we focus to the wavelet transform case.

4.1. Generalities Let us consider as toy model a signal of the form

f(x) = A(x) cos �(x) (48)

and assume that the amplitude A(x) is slowly varying compared to the oscillations. Let

 (x) 2 H

2

(IR) be a progressive wavelet, and assume that j

^

 (�)j has a (unique) maximum

at � = !

0

. Then we have

T

f

(b; a) �

1

2

A(b)e

i�(b)

^

 (a�

0

(b)) ; (49)

which indicates that the wavelet transform is essentially localized near a curve, called

the ridge of the wavelet transform, of equation

a = a

r

(b) =

!

0

�

0

(b)

: (50)
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Figure 2: Square modulus of the wavelet transform of a binary coalescence signal.

As an illustration of this fact, we display in Figure 2 the modulus of the wavelet trans-

form of a (newtonian) gravitational wave signal generated (or at least expected to be

generated) by a coalescing binary system (the model for such signals is given in Eq. (70)

below). More precisely, we computed a (complex, progressive) wavelet transform with

Morlet's wavelet

 (x) = e

�x

2

=2

e

i!

0

x

with !

0

= 2�, and scales of the form 2 a

n

0

, with a

0

= 2

1=8

and n = 1; 2; : : :40. With

such a choice, it may be veri�ed that the scale variable is equivalent to a period (at

least when the sampling frequency is set to 1). The wavelet transform square modulus is

represented with gray levels: in our convention, the gray level at point (b; a) is directly

proportional to the value jT

f

(b; a)j

2

. We can clearly see the localization properties of the

wavelet transform. The transform is localized in a neighborhood of a ridge (superimposed

to the �gure). The algorithm used to estimate the ridge is described in Section 4.2 below.

It is possible to derive a more precise approximation, using stationary phase approxima-

tions. For this, let us suppose that the wavelet  (x) is progressive, and may be written

in its canonical form as

 (x) = A

 

(x)e

i�

 

(x)

: (51)

Then we may write

T

f

(b; a) �

r

�

2

e

i

�

4

sgn(�

00

(b;a)

(x

0

))

q

a

2

j�

00

(b;a)

(x

0

)j

 

�

x

0

� b

a

�

Z

f

(x

0

) ; (52)

where

�

(b;a)

(x) = �(x)� �

 

�

x� b

a

�

; (53)

and x

0

= x

0

(b; a) is a stationary point of the integrand, i.e. a time such that

�

0

(b;a)

(x

0

) = 0 : (54)

In addition, it is assumed that for any (b; a) under consideration, there exists only one

such point, and that �

00

(b;a)

(x

0

) 6= 0. We refer to [19] for a more detailed analysis.
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Figure 3: Wavelet transform of a smaller part of the binary coalescence signal; left: square

modulus; right: phase.

We now show how such a remark may be used for the analysis of such components, in

several di�erent ways.

4.2. Local Analysis of the Wavelet Transform The basic formulae (49) and (50) have two

immediate and important consequences. First,if the ridge equation a = a

r

(b) is known,

then equation (50) yields the local frequency of the signal:

�(x) =

1

2�

�

0

(x) =

1

2�

!

0

a

r

(x)

(55)

Second, the local amplitude of the signal is obtained by putting a = a

r

(b) into equa-

tion (49) :

A(x) = 2

jT

f

(x; a

r

(x))j

j

^

 (!

0

)j

(56)

This stresses the interest of the ridge extraction. More precise estimates of the wavelet

coe�cients, such as the stationary phase approximation described above, lead to e�cient

methods using the phase of the wavelet transform. The general framework is given in [19].

Let us just show how it works with the above mentioned Morlet wavelet,

 (x) = e

�x

2

=2

e

i!

0

x

; (57)

with Fourier transform

^

 (�) =

p

2�e

�(��!

0

)

2

=2

: (58)

For !

0

large enough (say !

0

> 5)  is (at least numerically) admissible and progressive

. The wavelets coe�cients of the signal f(x)

T

f

(b; a) =

1

2a

Z

A(x)e

�

1

2

(

x�b

a

)

2

e

i

[

�(x)�!

0

x�b

a

]

dx (59)

are approximately equal to the leading term in the stationary phase expansion of this

oscillatory integral

T

f

(b; a) � jT

0

(b; a)j e

i


0

(b;a)

(60)
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where

jT

0

(b; a)j =

r

�

2

e

�

1

2

(x

0

�b)

2

�

00

(x

x

)

2

a

2

�

00

(x

0

)

2

+a

�2

[1 + a

4

�

00

(x

0

)

2

]

1=4

(61)

and




0

(b; a) = �(x

0

)� !

0

x

0

� b

a

+

1

2

(x

0

� b)

2

�

00

(x

0

)

1 + a

4

�

00

(x

0

)

2

+

1

2

arctan

�

a

2

�

00

(x

0

)

�

(62)

(see[19]) In these formulas x

0

= x

0

(b; a) is the stationary point given by

�

0

(x

0

) =

!

0

a

(63)

We assume that �

00

> 0 hence for each (b; a) there is a unique and �rst order stationary

point. Now the equation

x

0

(b; a) = b (64)

appears as another version of the ridge equation . It is easy to see that in the present

case of the Morlet wavelet x

0

depends only on a and therefore for �xed a

@

@b




0

(b; a) =

!

0

a

� (x

0

� b)

�

00

(x

0

)

1 + a

4

�

00

(x

0

)

2

(65)

and on the ridge

@

@b




0

(b; a) =

!

0

a

: (66)

This suggests to look for the ridge by solving for a the implicit equation

@

@b


(b; a) =

!

0

a

; (67)

where 
(b; a) is the phase of the wavelet coe�cient T

f

(b; a). This can be done in practice

by various �xed point methods , for example direct iterations or a Newton method.

For the sake of comparison, we show in Figure 3 the wavelet transform of a smaller part

of the same signal as before. Notice in particular the behavior of the phase of the wavelet

transform in the right hand image. At a given point on the ridge, the wavelet transform

has a tendancy to oscillate at the same frequency as the wavelet itself, as predicted

by (67). This is the property which is exploited by the ridge search algorithm.

Comments It is worth noticing that very little a priori information about the signal is

used , and this is a main interest of this method.This way of extracting the ridge gives

good results in the case of one signal of the form

f(x) = A(x) cos�(x) ;

provided that the stationary phase assumptions are full�lled and the additional noise is

not too strong . When the input signal-to-noise ratio is too bad (in practise say - 5 db)

the algorithm is unstable and fails to provide a reliable extraction of the ridge. This is

basically due to its local nature .
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4.3. Penalization Approaches In very noisy situations, the local approaches described

above may no longer be suitable, and it may be necessary to turn to global methods.

Such methods were introduced in [11, 12] and are developed in great details in [13]. They

are based on a di�erent setting of the problem, which makes use explicitely of the a priori

assumptions made on the signal. Let us give here an example of such methods.

We start with a function of two variables M (b; !) (where we consider for convenience

the variable ! = log(a)), supposed to be localized near a ridge '

0

. M (b; !) may be for

example a square modulus of wavelet transform, or some modi�ed version of it. We shall

be more speci�c later on. The starting point is the assumption that the ridge is a one-

dimensional object, i.e. a curve, and then has to be modeled in that form. Let us for

simplicity consider the case of parametric curves. A ridge is then modeled as a mapping

' : s 2 [0; 1]! '(s) 2 IR

2

; (68)

where the �rst component of '(s) is a time component b(s) and the second one is for

convenience taken to be the logarithm of the scale log a(s). Given a wavelet transform,

the problem is to �nd the optimal ridge, in a sense to be speci�ed. Following [11, 13] we

state the problem as a minimization problem, for a conveniently chosen penalty function

�('). A natural candidate for such a penalty function is the following

�(') = �

Z

jT

f

('(s))j

2

ds+

Z

j� � '

0

(s)j

2

ds (69)

Such a function is the sum of two terms. Let us consider them independently. The �rst

one involves only the \concentration" of M (b; !). However it cannot be utilized alone.

Indeed, minimizing only the �rst term would produce a curve trying to occupy densely

the domain of (b; !). Some rigidity constraints have to be imposed on the curve. This is

the purpose of the second term.

The penalty functional �(') is not quadratic, and then cannot be minimized explicitely.

The minimization has to be done numerically. In non-noisy situations, the task is easy and

may be achieved using one of the standard minimization techniques (see for example [41,

42]). However, in noisy situations, special care has to be paid to the problem of local

minima of �('). Indeed, the number of such minima turns out to increase with the noise

level, and standard minimization techniques fail in such situations.

A convenient alternative is provided by stochastic relaxation algorithms, for example sim-

ulated annealing. A method for solving numerically the minimization problem described

above is described in great details in [13] (see also [11]).

5. The GravitationalWave Detection Problem. Let us now turn to the problem of

gravity waves detection, and the corresponding parameter estimation problem. We shall

see that wavelet techniques are well adapted to such problems.

5.1. The Model Signal We shall focus on the case of the binary star coalescence signal,

since it is one for which time-frequency analysis may be expected to perform well. In the

Newtonian approximation, the model is the following:

f(x) = A�(x

0

� x)(x

0

� x)

�

cos

�

��

2�

� + 1

F (x

0

� x)

�+1

�

; (70)

(we recall that �(x) is the Heaviside step function) with

� = �

1

4

; � = �

3

8

: (71)
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Here, A (resp. F ) is generally interpreted as the numerical values of the signal's amplitude

(resp. frequency) one second before coalescence, and � as a global phase term.

In more general restricted post-Newtonian approximations, the signal is of the form

f(x) = A�(x)

2=3

cos �(x) ; (72)

where �(x) = �

0

(x)=2� is the local frequency, and the time-dependent phase �(x) is the

sum of several post-Newtonian terms

�(x) = �

0

(x) + �

1

(x) + �

1:5

(x) + �

2

(x) + : : : ; (73)

where �

0

(x) is the dominant Newtonian part. The correspondence between local fre-

quency and time is given by

x = 1 + �

0

 

1�

�

�(x)

F

�

�8=3

!

+ �

1

 

1�

�

�(x)

F

�

�2

!

+ �

1:5

 

1�

�

�(x)

F

�

�5=3

!

+ : : : ;

(74)

which provides an expression for the group delay, i.e. the time of appearance of a given

frequency:

x = � (�) = 1 + �

0

�

1�

�

�

F

�

�8=3

�

+ �

1

�

1�

�

�

F

�

�2

�

+ : : : :

Remark 5.1. In any case (Newtonian or post Newtonian), the signal is a locallymonochro-

matic one, in the sense that time and frequency are in one-to-one correspondence. This

fact will be of some importance in practice.

For the sake of simplicity, we shall restrict our investigations to the case of the Newtonian

approximation, i.e. we shall set �

1

; �

1:5

; �

2

: : : to zero. However, most of the techniques we

are about to discuss may be extended without di�culties to post-Newtonian situations.

To proceed, we need to analyze more carefully the Fourier transform and the analytic

signal of the model signals.

Using formal arguments, the Fourier transform of the signal in (70) may be evaluated

via the stationary phase approximation, which yields

^

f (�) �

A

p

2��F

�

�

2�F

�

(2���+1)=(2�)

exp

(

i

 

�+

��

� + 1

�

�

2�F

�

1=�

� �x

0

+

�

4

!)

(75)

Remark 5.2. Notice that the function given in (70) is neither integrable nor square in-

tegrable. Therefore, the meaning of the Fourier transform in (75) is very problematic.

However, this problem may be circumvented as follows. Let F be a band-pass �lter, such

that

^

F (0) = 0, and consider the �ltered signal F �f(x). The e�ect of such a �ltering is to

force to zero both very high and very low frequencies. However, since we are dealing with

a locally monochromatic signal, forcing to zero very high and very low frequency amounts

to enforcing the decay of F � f(x) at x ! �1 and forcing F � f(x) to zero as x! x

0

.

Then, if one works with such a �ltered signal instead of the original one, the Fourier

transform can be de�ned, and approximated as in (75). Again, let us stress that such an

approximation is acceptable only in a limited frequency range, excluding both very low

and very high frequencies, i.e. excluding values of the time variable close to or very far

away from the coalescence time.
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Remark 5.3. In practice, the experimental signal has to be "prewhitened" before sam-

pling, in order to reduce quantization noise. This means that the signal to be processed

by detection algorithms is of the form

C

�1=2

f(x) =

1

2�

Z

e

i�x

^

f(�)

p

E(�)

d�

where E(�) is the spectral density of the detector noise, or at least an approximation of it.

Note that the transfer function 1=

p

E(�) of the convolution operator C

�1=2

has precisely

the properties required for the �lter F .

At �rst sight, it is tempting to state the analytic signal of a real signal like A(x) cos(�(x))

equals A(x) expfi�(x)g. However, this is not true in general (for example, the Hilbert

transform of sin(1=x) is 1 � cos(1=x) and not � cos(1=x) as one would naively expect).

However we have the following

Lemma 5.1. Let � be a (large) positive number, and let f(x) = A(x) cos(��(x)) 2 L

1

(IR),

where A(x) and �(x) are twice and four times di�erentiable functions respectively. Then

Z

f

(x) = A(x)e

i��(x)

+O

�

�

�1

�

(76)

as �!1.

Such a result is not of direct application, since the limit �!1 is not suited for practical

situations. However, a \weak interpretation" of it would be the following. Suppose that

1) the variations of the amplitude are much slower than the variations coming from

the oscillations, and 2) the variations of thefrequency �

0

(x) are small enough. Then the

analytic signal of f(x) = A(x) cos �(x) is approximately equal to A(x) expfi�(x)g.

Let us come back to the binary coalescence signal. A naive calculation would erroneously

suggest that the analytic signal of (70) is of the form

Z

f

(x) = A�(x

0

� x)(x

0

� x)

�

exp

�

i

�

��

2�

� + 1

F (x

0

� x)

�+1

��

; (77)

and that the instantaneous frequency then reads

�(x) = F (x� x

0

)

�

(78)

Such a conclusion is only approximately true, for the same reasons as before, in particular

because of a possible correction a�ecting the low frequencies. However, within a limited

range of frequencies, such an approximation is de�nitely sensible.

A standard approach for detecting such signals amounts to use the matched �lter tech-

nique, which we outline here (see [5, 18, 44]) for a detailed analysis in the context of

binary coalescence detection). The basic situation is the following:a linear �lter of im-

pulse response k(x) (convolution by k(x) ) is applied to an input signal which is the sum

of a (deterministic) signal of interest f(x) and some noise modeled as a second order

stationary process n(x) with known spectral density E(�). See Figure 4 for the scheme.
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f(x)+n(x) f1(x)+n1(x)
* k

Figure 4: Filtering scheme.

f

1

(x) = (f � k)(x) =

Z

k(x� u)f(u)du (79)

n

1

(x) = (n � k)(x) =

Z

k(x� u)n(u)du (80)

Then n

1

is also a second order stochastic process with spectral density E

1

(x). The �ltering

formulas in the Fourier domain read:

^

f

1

(�) =

^

k(�)

^

f (�) (81)

E

1

(�) = j

^

k(�)j

2

E(�) (82)

It is the purpose of matched �ltering to maximize, at a given time x

0

the outpout signal

to noise ratio

outpout SNR =

jf

1

(x

0

)j

�

1

(83)

where �

1

is the standard deviation of the outpout noise n

1

(x). For this we assume that

f� s.t.

^

f (�) 6= 0 and E(�) = 0g is a zero-measure set.

Then it follows directly from the Cauchy-Schwarz inequality that in the class of all linear

�lters the optimal one is the so-called matched �lter given by its transfer function:

^

k

opt

(�) = Ce

�i�x

0

^

f (�)

E(�)

; (84)

with a non-zero arbitrary constant C. The maximum output SNR is hence given by

max(outpout SNR)

2

=

1

2�

Z

j

^

f (�)j

2

E(�)

d� : (85)

A detection is declared if the output of the matched �lter is beyond a given threshold

, based upon the statistics of the output noise. In realistic situations such as the GW

detection , the signal to be detected has several unknown parameters , then the problem

turns into an estimation/detection one (see e.g. [5, 9] for a review). The practical way

currently under study by many authors is the construction of a family of �lters (called

templates) which will form a net in the space of all �lters. Of course one looks for

a good compromise between accuracy and calculation cost (which is directly related

to the number and the sizes of the templates). We explore below some wavelet-based

alternatives.

5.2. Why Wavelets ? Let us now explain why wavelet analysis seems to be a good candi-

date for the detection problem described above. First, wavelets have a certain number of

intrinsic nice properties, such as the existence of fast algorithms (described in Appendix
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below). But in addition, a closer look at the signal model in (77) shows that wavelet

analysis turns out to be naturally adapted to the problem. Indeed, let's forget for a while

about the phase factor. What we see in Eq. (77) is actually (up to a normalization factor)

a shifted and scaled copy of a reference signal

f

�;�

(x) = �(�x)x

�

exp

�

ix

�+1

	

: (86)

(In the terminology of [30] f

�;�

(x) is called a chirp of type (�;���1); note however that

the numerical value of � is out of the range of the analysis of [30]; gravity waves are not

oscillatory enough to qualify as true trigonometric chirps.) Therefore, as a consequence of

the covariance properties of the wavelet transform, the transforms of the corresponding

signals are obtained from the transform of (86) by the action of the a�ne group. More

precisely, we have that

Z

f

(x) = AF

��=(�+1)

e

i�

f

�;�

�

F

1=(�+1)

(x

0

� x)

�

(87)

and then by Lemma 2.1

T

f

(b; a) = AF

��=(�+1)

e

i�

T

f

�;�

�

F

1=(�+1)

(x

0

� b); F

1=(�+1)

a

�

; (88)

and the detection problem may be reformulated as a detection problem in the time-scale

plane: �nd a translation parameter x

0

and a scale parameter a

0

= F

1=(�+1)

such that

T

f

(b; a) = T

f

�;�

((�x

0

; a

0

)

�1

� (�b; a)) where � is the product in the a�ne group given

above.

This actually opens the problem of developing a detection theory for functions de�ned on

the a�ne group, where translation is replaced with the group action. To our knowledge,

such a theory has not been developed so far.

Another reason for which it is natural to use wavelet-based techniques is the fact that

the expected signal is mainly characterized by a time-varying frequency. It turns out that

time-frequency representations of such signals have particular localization properties. We

describe below the behavior of the wavelet transform of such signals.

5.3. Behavior of Wavelet Transform. As we saw in the previous sections, the wavelet

transform has a tendancy to concentrate in the neighborhood of a ridge. In the case of

signals of the form (70), such ridges take the form

a

r

(b) =

!

0

2�F

(x

0

� b)

3=8

; (89)

or equivalently, if we consider the reciprocal function

b

r

(a) = x

0

�

�

2�aF

!

0

�

8=3

: (90)

The problem amounts to that of �nding an e�cient and robust algorithm for detecting

such ridge and estimating parameters. We now describe the application to this problem

of the methods alluded to above.
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Figure 5: Noisy binary coalescence signal, buried by shot and thermal noises, with � = :1.
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Figure 6: Comparison of ridges in pure and noisy situations.
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Figure 7: Noisy binary coalescence signal, buried by shot and thermal noises, with � = :5.

5.4. Looking for Ridges We now give examples of the behavior of the continuous wavelet

transform on simulated binary coalescence signals. We gave in Figure 2 the example

of the "pure signal", on which the localization of the wavelet transform near the ridge

(superimposed to the modulus) appears clearly. In that example, the ridge was estimated

by the method described in Section 4.2.

In Figure 5, we consider the same signal (we recall here that for that particular example,

we chose a simple Newtonian approximation, with A = 1 and F = 50) with an additive

stationary Gaussian noise, with spectral density modeling the thermal and shot noises

at interferometric detectors (the seismic noise has been replaced with a cuto� at low

frequencies, i.e. frequencies less than 10Hz in the signal have not been considered), of

the form

E(�) = �

�

S

s

+ S

t

�

�4

�

;

with S

s

= 1, S

t

= 10

8

, and � = :1 in this case.

The same localization properties may be observed (notice that in our graphical con-

ventions, the gray levels are automatically adjusted to the range of the transform; thus

eventhough the contribution of the frequency modulated signal seems weaker in Figure 5

than in Figure 2, this is just a graphical e�ect), but the localization is now somewhat

blurred by the presence of noise. As a consequence, the ridge estimate (again superim-

posed on the modulus plot) is not as good as before. The two estimates (pure and noisy)

are described in Figure 6.

Finally, we revisit the same signal in Figure 7, with now � = :5. As may be seen from the

wavelet transform, the signal is still visible at small scales, i.e. at high frequencies, but is

perturbed by noise at larger scales. The same algorithm as before did not produce correct

results in this case. Going to penalization algorithms, as described in Section 4.3 slightly

improves the situation, as may be seen on Figure 7. In that case, the ridge is correctly

estimated in the small scales domain, i.e. when its \energy" is at least comparable with

that of the noise. On the contrary, in the large scales, the estimated ridge is attracted by

the low-frequency part of the noise (in this case the thermal noise). This clearly shows

that the non-parametric methods such as the ones we have described here are limited to

a certain range of signal to noise ratio, i.e. in our case, to the detection of events close

enough to the detectors.
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5.5. Parametric Methods Up to now, we have only described a series of methods which do

not take into account the explicit model we have for the signal. Clearly, the performances

of the algorithms may be greatly enhanced by taking such information into account. We

describe here a couple of possible approaches based upon wavelet transform. For the sake

of simplicity, we stick to the case of the continuous wavelet transform as described above.

We refer to [28] for a precise description of related methods.

Time-Frequency Template Matching. This approach is a time-frequency version

of Wiener's �lter. The main idea here is to replace the classical analysis, which matches

phases, with a frequency matching. Similar ideas have been developed in a di�erent form

in [21, 47].

Let us start with the additive noise model

f(x) = Af

F

(x

0

� x) + n(x) :

We have

M (b; a) = jT

f

F

(x

0

� b; a)j

2

+N (b; a)

where N (b; a) is a noise term, whose statistics has been described above.

Fix a date � , and consider a domain 


�

= [� � T; � ] � [a

min

; a

max

] in the time-scale

domain. For simplicity, we shall denote by L

2

(


�

) the space L

2

(


�

; dadb=a). Let us now

consider the following time-scale templates

�

(�;)

(b; a) =

~

�

(�;)

(b; a)

jj�

(�;)

jj

L

2

(


�

)

(91)

where

~

�

(�;)

(b; a) = jT

f



(� � b; a)j

2

: (92)

Then, minimizing jjM � A�

(�;)

jj

L

2

(


�

)

with respect to A and  yields the following

maximization problems:

^

F (� ) = argmax



hM;�

(�;)

i

L

2

(


�

)

(93)

^

A(� ) = max



hM;�

(�;)

i

L

2

(


�

)

(94)

This leads to the following meta-algorithm for detection

� FOR � = �

min

TO � = �

max

DO

1. Solve the maximization problem in (93) with respect to .

2. Store the values

^

F (� ) and

^

A

2

(� ).

� Scan the local maxima

^

A(�

m

) of the function

^

A(� ).

� IF

^

A(�

m

) � THRESHOLD: mark �

m

as a possible date for an event.

Of course, the choice of the THRESHOLD depends on several parameters, and in particular

it relies on some a priori knowledge on the behavior of the algorithm when only noise is

present. Such a knowledge may easily be obtained through Monte-Carlo simulations.
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Figure 8: Line integral method for a pair of stars of 10 solar masses, at a distance of 100

Mpc; left plot: 20 seconds simulation, with a time step of 100 ms; right plot: 2 seconds

simulation, with a time step of 1 ms.

Line Integral Methods. As an alternative, let us simply discuss the line integral

approach, described in more details in [28]. The idea is there to exploit the expected

energy concentration of the wavelet transform by considering restrictions of it to speci�c

curves, in the same spirit as the algorithms described above and in [13]. Let us consider

for the sake of simplicity the Newtonian situation, and let M(b; a) denote the square

modulus of the wavelet transform of the signal.

Let (�; ) be a candidate for the pair (x

0

; F ), and let us consider the corresponding ridge,

expressed in terms of group delay

b

(�;)

(a) = � �

�

2�a

!

0

�

8=3

: (95)

Finally, consider the following line integral

L

f

(�; ) =

Z

M(b

(�;)

(a); a)

da

a

: (96)

Let us now consider the case of a gravitational wave generated by a binary system

collapsing at time x

0

, with chirp parameter F . Using the stationary phase approximation

derived above, we can see that in the non-noisy situation, we have that

L

f

(x

0

; F ) �

2�

�

0

 

(0)

j (0)j

2

jjf jj

2

= jjf jj

2

In addition,

L

f

(�; ) � L

f

(x

0

; F ) :

This suggests to use the line integral L

f

(�; ) instead of the quantity A(� ) in the previous

algorithm. More precisely, the algorithm is based on the following scheme: for any �xed

� , solve

max



L

f

(�; ) (97)
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and among the local extrema of the latter quantity, keep those which are above a certain

threshold.

The advantage of such an approach is that it can be made extremely fast, since any

computation of L

f

(�; ) requires the evaluation of a single integral instead of a double

one. In our implementation, the maximization is performed using an adapted version of

Brent's method, and the usual wavelet transform is replaced with a predenoised one. We

refer to [28] for more details on this method.

As an illustration, we show in Figure 8 the result of the method for the case of a binary

system made of 2 stars of 10 solar masses, at a distance of 100 Mpc. The signal was

simulated with the SIESTA software, and includes a Newtonian approximation for the

signal and the VIRGO detector noise (provided by the VIRGO collaboration), whose

spectral density is given in Figure 1.

Remark 5.4. Several variations around these two schemes are possible. For instance,

it is shown in [28] that it is convenient to replace the wavelet transform of the signal

with the so-called prewhitening wavelet transform, in which the spectral density of the

noise (which in that case has to be known in advance, from a model or from previous

experiments) is taken into account. It may be shown that in such a case, the output of

the algorithm is equal to that of the matched �lter. Other variations were given in [21].

6. Conclusions We have given in this paper a quick description of continuous wavelet

transform, focusing on some particular aspects which we believe relevant for gravitational

waves detection.

More precisely, we have described a set of methods for analyzing and detecting ampli-

tude and frequency modulated signals embedded in noise. Some of the signals which are

expected at the gravitational waves detectors, namely gravity waves generated by coa-

lescing binaries, fall into this class, and the techniques we described in this paper apply

to these.

The �rst type of methods we have described are non-parametric. They amount to search-

ing for the expected signal as a set of salient points or a curve in the time-scale plane.

We gave two di�erent formulations of this approach, based on local [19] or integral [13]

techniques. They may be used for low enough signal to noise ratios, for detection [29] as

well as parameter estimation [34].

The second methods are parametric methods. They also amount to searching for curves

in the time-scale plane, but the curves are now given a speci�c functional form, based

on Newtonian or post-Newtonian approximations [28]. They represent interesting alter-

natives to matched �lter techniques, and may easily be implemented on line.

In addition, we describe in the appendix below the main aspects of discrete wavelet

decompositions, from a subband coding perspective. Let us stress that subband coding

and quadrature mirror �lters were originally introduced in order to reduce quantization

noise in speech. Quantization noise seems to be a relevant issue for data aquisition at

interferometric detectors, since the detector noise has a wide dynamical bandwidth (which

will require a prewhitening prior to quantization). For this reason, discrete wavelets

should be considered as a serious candidate from the data aquisition point of view as

well.

J.M. Innocent is also ESM2, IMT-Technopole de Chateau-Gombert, 13451 Marseille,

Cedex 20, FRANCE , and the VIRGO group, Orsay.



24 J.M. INNOCENT AND B. TORRESANI

Acknowledgements.We are very indebted to A. Krolak, for inviting us to the Banach

Conference where these results were presented. We thank K. Blackburn, S. Dhurandhar,

R. Flaminio, A. Krolak, A. R�udiger and M. Tinto for stimulating discussions. Thanks

are also due to R. Carmona, A. Grossmann, M. Holschneider, W.L. Hwang, Y. Meyer,

Ph. Tchamitchian and J.Y. Vinet for discussions on related topics, and to F. Cavalier

and the VIRGO collaboration for providing us with simulated samples.

Dedication.This paper was written a few weeks after the ultimely departure of Bernard

Escudi�e. Bernard was a great source of inspiration, and a large part of the material

presented in this paper is based his ideas.

We dedicate this paper to his memory.

7. APPENDIX: Discrete Wavelet Decompositions from a Sub-Band Coding

Perspective and Fast Algorithms

In this appendix, we describe the main aspects of discrete wavelet decompositions, and

their connections to fast algorithms. Starting from the sampling theorem, we describe the

quadrature mirror �lters technique and the corresponding sub-band coding algorithms.

We then describe the construction of wavelet bases and show how they �t into the

sub-band coding schemes. Finally we turn to the algorithms for non-orthogonal wavelet

decompositions.

Our starting point will be the sampling theorem, which asserts that any band-limited

L

2

(IR) function whose Fourier transform's support is included in thye interval [���; ��]

may be sampled without information loss with a sampling frequency �

s

� �=2. We shall

see that pyramid algorithms for wavelet decompositions �t with this context.

7.1. Perfect Reconstruction Quadrature Mirror Filters Let us start with a discrete se-

quence ff

n

; n 2 ZZg, assumed for the sake of simplicity to consist of samples f

n

= f(n)

of a band limited continuous time function f(x) with unit sampling frequency. As a

consequence of Poisson's summation formula, the Fourier transform of the sequence

is the periodized of

^

f (�), and is then a 2�-periodic function, hereafter denoted by

F (�). Let us now consider the 2�-periodic functions H(�) and G(�) de�ned by H(�) =

P

k

�

[��=2;�=2]

(� + 2�k) and G(�) = H(� + �). Let

h

k

=

p

2

2�

Z

�

��

H(�)e

�ik�

d�

g

k

=

p

2

2�

Z

�

��

G(�)e

�ik�

d�

denote the (appropriately normalized) Fourier coe�cients of H(�) and G(�) respectively,

and introduce the sequences ~s

n

=

P

k

h

n�k

f

k

and

~

t

n

=

P

k

g

n�k

f

k

, with Fourier trans-

forms F (�)H(�) and F (�)G(�) respectively. Clearly, the bandwidthes of the sequences

f~s

k

g and f

~

t

k

g is half that of the sequence ff

k

g, so that these two sequences may be

subsampled by a factor two without loss of information. Since in addition we have
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H(�) + G(�) = 1 8�, we deduce that the sequence ff

k

g is completely characterized

by the two sequences

s

n

=

X

k

h

2n�k

f

k

(98)

t

n

=

X

k

g

2n�k

f

k

(99)

The sub-band coding technique (which was introduced in a signal processing context in

order to reduce quantization noise) is an extension of this simple calculation. The goal

is to replace the perfect �lters with smoother ones, in order to reduce the number of

operations in Eqs (98) and (99). By doing so, one introduces aliasing, which may be

cancelled by an appropriate choice of the �lters.

Let us then consider a pair of 2� periodic functions

H(�) =

1

p

2

X

k

h

k

e

ik�

G(�) =

1

p

2

X

k

g

k

e

ik�

;

and consider the sequences introduced in (98) and (99). Consider also the reconstructed

sequence

f

r

k

=

X

n

�

h

2n�k

s

n

+ g

2n�k

t

n

�

: (100)

Imposing the perfect reconstruction, i.e. f

r

n

= f

n

imposes constraints on the �lters H(�)

and G(�). The classical solution to these constraints yields the so-called Quadrature

Mirror Filters (QMF for short), for which

G(�) = e

i�

H(� + �) ; (101)

and

jH(�)j

2

+ jG(�)j

2

= 1 : (102)

The sub-band coding is based on a recursive implementation of the perfect reconstruction

"convolution-subsampling" scheme described above. More precisely, we start again with

a sequence ff

n

g and we set s

n

0

= f

n

. Then, de�ning

s

j

n

=

X

k

h

2n�k

s

j+1

k

(103)

t

j

n

=

X

k

g

2n�k

s

j+1

k

(104)

we know how to reobtain the sequence fs

j+1

k

g from the sequences fs

j

n

g and ft

j

n

g:

s

j�1

k

=

X

n

�

h

2n�k

s

j

n

+ g

2n�k

t

j

n

�

: (105)



26 J.M. INNOCENT AND B. TORRESANI

A sub-band coding of the sequence ff

n

= s

n

0

g amounts to representing it by the coe�-

cients fs

�J

n

; t

�J

n

; t

�J+1

n

; : : : ; t

�1

n

g instead of the original coe�cients ff

n

g. In the case of

a �nite sequence of length say N = 2

L

, we then have (because of the subsampling)

2

L�1

+ 2

L�2

+ : : :+ 2

L�J

+ 2

L�J

= N

coe�cients, i.e. the same number exactly.

The complexity of sub-band coding is remarkable too. Indeed, let us stress that the same

�lters are used throughout all the stages of the algorithm, i.e. for all values of j. It is

easy to see that to complete a decomposition at all scales of a �nite sequence of length

N , the computational cost goes as O(MN ), where M is the length of the sequences fh

k

g

and fg

k

g. It is then an extremely e�cient algorithm.

Remark 7.1. The original motivation for the introduction of sub-band coding was the

need of reducing quantization noise. Such a problem appears as soon as the dynamical

range of an (analog) signal is large. Then the dynamical range of the signal is generally

much smaller within each of the sub-bands, making the quantization task easier. Since

this seems to be the case with gravitational waves detector signals (where the spectral

density of the noise varies over several orders of magnitude), we believe that sub-band

coding could be an appropriate strategy.

We shall now see the close connection of sub-band coding with wavelets.

7.2. Multiresolution Analysis and its Connections to Sub-Band Coding. The construction

of orthonormal bases of wavelets relies on the concept of multiresolution analysis, which

we discuss here for the sake of completeness (see [17] for a self contained and pedagogical

introduction to the subject).

Definition 7.1. A multiresolution analysis of L

2

(IR) is a collection of nested closed sub-

spaces V

j

� L

2

(IR)

: : : � V

�1

� V

0

� V

1

� : : : (106)

such that the following properties hold

1. [V

j

= L

2

(IR) and \V

j

= f0g.

2. If f(x) 2 V

0

, then f(x � k) 2 V

0

for all k 2 ZZ; f(x) 2 V

j

if and only if f(x=2) 2

V

j�1

.

3. There exists a function �(x) 2 V

0

such that the collection of the integer translates

�(x� k); k 2 ZZ is an orthonormal basis of V

0

.

Many examples of MRAs have been proposed so far. We refer to [14, 17, 37] for reviews.

We won't go into mathematical details here and will rather focus on the implications of

the above de�nition.

It follows directly from the inclusion of the V

j

spaces that �(x) may be expressed as a

linear combination of the functions �(2x� k) (which form a basis of V

1

). This yields the

so-called two-scale di�erence equation (or re�nement equation)

�(x) =

p

2

X

k

h

k

�(2x+ k) : (107)
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The coe�cients h

k

are the Fourier coe�cients of a 2�-periodic function, denoted by

H(�) =

1

p

2

X

h

k

e

ik�

: (108)

Denote by W

j

the orthogonal complement of V

j

in V

j+1

. Then one may prove that there

exists a function  (x) 2 W

0

such that the collection f (x�k); k 2 ZZg is an orthonormal

basis of W

0

. More precisely, let m be an arbitrary integral number, and set

G(�) = e

i(2m+1)�

H(� + �) =

1

p

2

X

g

k

e

ik�

: (109)

The coe�cients g

k

are related to the coe�cients h

k

by

g

k

= �(�1)

k

h

2m+1�k

(110)

The function  (x), called the wavelet associated with the MRA, is de�ned by

 (x) =

p

2

X

k

g

k

�(2x+ k) : (111)

Remarkably enough, the functions H(�) and G(�) are quadrature mirror �lters, i.e. they

satisfy equations (101) and (102).

Let us introduce the following notation for the shifted and scaled wavelets and scaling

functions

�

 

jk

(x) = 2

j=2

 

�

2

j

x� k

�

;

�

jk

(x) = 2

j=2

�

�

2

j

x� k

�

;

(112)

and associate with any function f(x) 2 L

2

(IR) the following family of coe�cients

�

t

j

k

= hf;  

jk

i ;

s

j

k

= hf; �

jk

i :

(113)

Then the results outlined above may be summarized as follows

Theorem 7.1. Let fV

j

; j 2 ZZg be a MRA, with scaling function �(x) and wavelet  (x).

Then the family f 

jk

; j; k 2 ZZg is an orthonormal basis of L

2

(IR). More precisely, any

f(x) 2 L

2

(IR) may be decomposed as

f(x) =

X

j;k

t

j

k

 

jk

(x) =

X

k

s

j

0

k

 

j

0

k

(x) +

X

j�j

0

;k

t

j

k

 

jk

(x) : (114)

7.3. Fast Algorithms for Orthonormal Wavelet Decompositions Let us suppose now that

we are given a multiresolution analysis with scaling function �(x) and wavelet  (x), and

denote by H(�) and G(�) the associated QMFs as before. Then it is a direct consequence

of the re�nement equations that we have

Proposition 7.1. The coe�cients t

j

k

and s

j

k

are related by

8

>

>

<

>

>

:

t

j

k

=

X

`

g

`

s

j�1

2k�`

;

s

j

k

=

X

`

h

`

s

j�1

2k�`

:

(115)
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In other words, we are exactly in a sub-band coding situation. This result is remarkable

in many respects. Let us just mention that it provides for free a fast algorithm for

orthonormal wavelet decompositions (let us stress that even though the wavelets get

larger and larger as the scale grows, the computational cost itself does not depend on the

scale). The connection between wavelet bases and subband coding was established �rst

by S. Mallat [36], and clari�ed later on by A. Cohen and W. Lawton. For more details,

we refer to [17, 48].

7.4. Fast Algorithms for Non-Orthonormal Wavelet Decompositions Let us now consider

a slightly di�erent situation, closer to the continuous wavelet transform described in the

core of this paper.

To start with, we consider scales which are still restricted to be powers of 2, but we now

allow the values of the shift variable to belong to a given lattice, independent of the scale,

say ZZ. This leads to consider the following set of coe�cients

�

T

j

(k) = 2

j

R

f(x) 

�

2

j

(x� k)

�

;

S

j

(k) = 2

j

R

f(x)�

�

2

j

(x� k)

�

:

(116)

Again, it follows directly from the re�nement equations that such coe�cients may be

computed as follows

Proposition 7.2. The coe�cients T

j

(k) and S

j

(k) are related by

8

>

>

<

>

>

:

T

j

(k) =

X

`

g

`

S

j�1

(k � 2

j�1

`) ;

S

j

(k) =

X

`

h

`

S

j�1

(k � 2

j�1

`) :

(117)

The corresponding algorithm is as e�cient as the previous one. Indeed, assuming that

we have at hand N = 2

L

discrete values S

0

(k) to start with, it is easy to see that the

number of operations required to compute the wavelet coe�cients T

j

(k) for k = 1; : : :N

and j = �1; : : :� L goes as O(MN log(N )) (to compute N log(N ) coe�cients).

To deal with scales which are not restricted to powers of two, the situation is somewhat

more complicated, and one has to turn to approximate algorithms (if one wants to stick to

sub-band coding techniques; extremely e�cient alternatives relying on FFT-based imple-

mentations are also available). We refer to [2, 39] and references therein for a discussion

of such approaches.

7.5. Some Examples There exists simple and classical examples. The simplest one is

based on the following pair of �lters:

h

0

= h

�1

= g

�1

= �g

0

=

1

p

2

; h

k

= g

k

= 0 8k 6= 0;�1

Equivalently,

H(�) =

1

2

�

1 + e

�i�

�

:

The corresponding pyramid algorithm reads

8

<

:

s

j

k

=

1

p

2

�

s

j+1

2k

+ s

j+1

2k+1

�

;

t

j

k

=

1

p

2

�

s

j+1

2k+1

� s

j+1

2k

�

;
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i.e. may be expressed simply in terms of sums and di�erences.

It is easy to check that such a choice leads to

�(x) = �

[0;1]

(x) ;

and

 (x) = �

[

1

2

;1]

(x)� �

[0;

1

2

]

(x) :

The corresponding wavelet basis is known to as the Haar basis, and is made of compactly

supported functions, thus achieving optimal localization in the time domain. However,

Haar wavelets are poorly localized in the frequency domain (since both '̂(�) and

^

 (�)

decay as 1=� at in�nity). Let us quote for completeness the two \classical" families of

alternatives.

1. Spline wavelets: let V

0

= ff 2 C

r�1

; f(x) = polynomial of degree r on [k; k + 1]g,

and de�ne V

j

by scaling of V

0

. Let �(x) = �

[0;1]

��

[0;1]

� : : :��

[0;1]

(x) (r+1 times)

and set

'̂(�) =

�̂(�)

P

k

j�̂(� + 2�k)j

2

:

It may be checked that this yields a multiresolution analysis with scaling func-

tion �(x), from which the wavelet  (x) may be computed easily. The correspond-

ing wavelets are called spline wavelets, and have been described in great details

in [14](with several generalizations). Neither �(x) nor  (x) are compactly sup-

ported, but they have exponential decay. In addition,

^

�(�) decays as �

�r

at in�n-

ity. The wavelet has the same localization and regularity properties as the scaling

function. In addition,  (x) has r + 1 vanishing moments.

2. Daubechies' wavelets: Another classical strategy consists in looking for compactly

supported quadrature mirror �lters which would generate orthonormal wavelet

bases. This approach was developed by I. Daubechies [17], who proposed to look

for �lters of the form

H(�) =

�

1 + e

�i�

2

�

r

F(�) ;

and search for trigonometric polynonmials F(�) such that the resulting wavelet

 (x) is in L

2

(IR) and yields an orthonormal basis of L

2

(IR). This leads to compactly

supported wavelets, whose frequency localization is described by j

^

 (�)j � j�j

��r

as

j�j ! 1. Tables for the corresponding �lter coe�cients g

k

and h

k

are given in [17],

as well as precise estimates for the coe�cient �.

These two constructions have found a lot of generalizations in the literature. We have no

room here to give a precise account of these, and refer the reader to [14, 17, 37, 48, 50]

for example.



30 J.M. INNOCENT AND B. TORRESANI

References

[1] A. Abramovici at al. (1992): LIGO: the Laser Interferometer Gravitational-

Wave Observatory, Science, 256, p. 325-333.

[2] P. Abry and A. Aldroubi (1996): Designing Multiresolution Analysis Type

Wavelets and their Fast Algorithms, Int. J. of Fourier Anal. and Appl., to

appear.

[3] A. Antoniadis & G. Oppenheim Eds (1994): proceedings of the conference

Wavelets and Statistics, Villard de Lans, France, Lecture Notes in Statistics.

[4] F. Auger and P. Flandrin (1993): Improving the Readability of Time-Frequency

and Time-Scale Representations by the Reassignment Method, Technical Re-

port 93.05, Laboratoire d'automatique, Ecole Centrale de Nantes.

[5] R. Balasubramanian, B.S. Sathyaprakash and S.V. Dhurhandar (1995): Gravi-

tational Waves fromCoalescing Binaries: Detection Strategies and Monte Carlo

Estimation of Parameters, Phys. Rev. D 53, vol. 6 pp. 3033-3055.

[6] L. Blanchet, T. Damour and B.R. Iyer (1995): Phys. Rev. D 51, p. 5360.

[7] B. Boashash (1992): Estimating and Interpreting the Instantaneous Frequency

of a Signal, Part I: Fundamentals. Proc. IEEE 80, pp. 520{538. Part II: Ap-

plications and Algorithms. Proc. IEEE 80, pp. 540{568.

[8] C. Bradaschia et al. (1990): Nucl. Instrum. Methods Phys. Res. A 518.

[9] D.R. Brillinger (1981): Time Series; Data Analysis and Theory, Holden Day

Inc.

[10] R. Carmona (1993): Wavelet Identi�cation of Transients in Noisy Signals. in

Mathematical Imaging: Wavelet Applications in Signal and Image Processing

pp. 392-400.

[11] R. Carmona, W.L. Hwang, B. Torr�esani (1995): Characterization of signals

by the ridges of their wavelet transform, preprint, submitted to IEEE Trans.

Signal Processing.

[12] R. Carmona,W.L. Hwang, B. Torr�esani (1995):Multiridge Detection and Time-

Frequency Reconstruction, preprint, submitted to IEEE Trans. Signal Process-

ing.

[13] R. Carmona, W.L. Hwang, B. Torr�esani, Practical Time-Frequency Analysis,

monograph, to appear.

[14] C.K. Chui (1992): An Introduction to Wavelets. Academic Press.

[15] J.M. Combes, A. Grossmann, Ph. Tchamitchian Eds. (1989): Wavelets, Time-

Frequency Methods and Phase Space, Springer Verlag.

[16] E. Copson (1965): Asymptotic expansions, Cambridge University Press.



BINARY COALESCENCE DETECTION 31

[17] I. Daubechies (1992): Ten Lectures on Wavelets. CBMS-NFS Regional Series

in Applied Mathematics 61.

[18] M.H.A. Davis (1989): A review of the statistical theory of signal detection in

Gravitational Wave Data Analysis, B.F.Schutz Ed., Kluwer Academic Publish-

ers.

[19] N. Delprat, B. Escudi�e, P. Guillemain, R. Kronland-Martinet, Ph.

Tchamitchian, B. Torr�esani (1992): Asymptotic wavelet and Gabor analysis:

extraction of instantaneous frequencies. IEEE Trans. Inf. Th. 38, special issue

on Wavelet and Multiresolution Analysis 644-664.

[20] R.B. Dingle, Asymptotic expansions, their derivation and interpretation, Aca-

demic Press (1973).

[21] R. Flaminio, L. Massonnet, B. Mours, S. Tissot, D. Verkindt and M. Yvert

(1994): Fast Trigger Algorithms for Binary Coalescences, Astroparticle Physics

2, pp. 235-248.

[22] P. Flandrin (1993): Temps-Fr�equence. Trait�e des Nouvelles Technologies, s�erie

Traitement du Signal, Hermes.

[23] D. Gabor (1946): Theory of communication, J. Inst. Elec. Eng. 903, 429.

[24] A. Grossmann, R. Kronland-Martinet, J. Morlet (1989): Reading and under-

standing the continuous wavelet transform, in [15].

[25] A. Grossmann, J. Morlet (1984): Decomposition of Hardy functions into square

integrable wavelets of constant shape. SIAM J. of Math. An. 15 ,723.

[26] P. Hall, W. Qian and D.M. Titterington (1992): Ridge Finding from Noisy

Data. J. Comput. and Graph. Statist. 1, 197-211.

[27] J.M. Innocent (1994): Remarks about the Detection of Coalescent Binaries,

VIRGO technical report.

[28] J.M. Innocent and B. Torr�esani (1996):A Multiresolution Strategy for Detecting

Gravitational Waves Generated by Binary Collapses, Preprint.

[29] J.M. Innocent, J.Y. Vinet (1992): Time-Frequency Analysis of Gravitational

Signals from Coalescing Binaries, VIRGO technical Report.

[30] S. Ja�ard and Y. Meyer (1995): Pointwise Behavior of Functions.

[31] M. Kass, A. Witkin and D.Terzopoulos (1988): Snakes: Active Contour Models,

Int. J. of Computer Vision, 321-331.

[32] K. Kodera, R. Gendrin, C. de Villedary (1978): Analysis of time-varying signals

with small BT values, IEEE Trans. ASSP 26, 64.

[33] L.H. Koopmans (1995): The spectral Analysis of Time Series. Probability and

Mathematical Statistics 22, Academic Press.



32 J.M. INNOCENT AND B. TORRESANI

[34] A. Kr�olak, P. Trzaskoma (1996): Application of the Wavelet Analysis to Estima-

tion of Parameter of the Gravitational-Wave Signal from a Coalescing Binary,

Classical and Quantum Gravity 13, pp. 813-830.

[35] P.J.M. van Laarhoven and E.H.L. Aarts (1987): Simulated Annealing: Theory

and Applications. Reidel Pub. Co.

[36] S. Mallat (1989): Multiresolution Approximation and Wavelets, Trans. AMS

615, 69-88.

[37] Y. Meyer (1989): Ondelettes et op�erateurs (1989), Hermann.

[38] Y. Meyer Ed. (1989): Wavelets and applications, Proceedings of the second

wavelet conference, Marseille (1989), Masson.

[39] M.A. Muschietti and B. Torr�esani (1995): Pyramidal Algorithms for

Littlewood-Paley Decompositions. SIAM J. Math. Anal. 26 925-943.

[40] B. Picinbono, W. Martin (1983): Repr�esentation des signaux par amplitude et

phase instantan�ees, Annales des T�el�ecommunications 38 (1983), 179-190.

[41] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992): Nu-

merical Recipes: the Art of Scienti�c Computing, Second Edition, Cambridge

University Press.

[42] J. Stoer and R. Bulirsch (1991): Introduction to Numerical Analysis, Texts in

Applied Mathematics 12, Springer Verlag.

[43] Ph. Tchamitchian, B. Torr�esani (1991): Ridge and Skeleton extraction from

wavelet transform, in Wavelets and their Applications, M.B. Ruskai & Al Eds,

Jones&Bartlett, Boston.

[44] K.S.Thorne (1987): Gravitational Radiation, in 300 Years of Gravitation,

Hawking & Israel Eds, Cambridge University Press.

[45] K.S. Thorne (1996): Gravitational Waves from Compact Objects, proceedings

of the IAU Symposium 165, J. van Paradijs, E. van der Heuvel and E. Kuulkers

Eds, Kluwer.

[46] B. Torr�esani (1995): Analyse Continue par Ondelettes, Coll. Savoirs Actuels,

InterEditions/Editions du CNRS (in French, to be translated into English).

[47] D. Verkindt (1993): PhD Thesis.

[48] M. Vetterli and J. Kovacevic (1995): Wavelets and Sub Band Coding, Prentice

Hall Signal Processing Series.

[49] J. Ville: Th�eorie et Applications, de la Notion de Signal Analytique, Cables et

Transmissions 2 (1948) 61-74.

[50] M.V. Wickerhauser (1994): Adapted Wavelet Analysis, from Theory to Soft-

ware. A.K. Peters Publ.

[51] E.P.Wigner: On the Quantum Corrections for theThermodynamic Equilibrium.

Phys. Rev. 40 (1932) 749-759


