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WAVELET TRANSFORM AND BINARY COALESCENCE DETECTION

We give a short account of some time-frequency methods which are relevant in the context of gravity waves detection. We focus particularly on the case of wavelet analysis which we believe particularly appropriate. We show how wavelet transforms can lead to e cient algorithms for detection and parameter estimation of binary coalescence signals. In addition, we give in an appendix some of the ingredients needed for the construction of discrete wavelet decompositions and corresponding fast algorithms.

Introduction and Notations.

1.1. Generalities. It has been recognized for a long time that a wide class of signals are e ciently described by means of so-called Time-Frequency representations, i.e. representations in which time (or position) and frequency variables appear simultaneously. The prototype of such transforms is the so-called Gabor transform:

f(x) 2 L 2 (IR) , ! G f (b; !) 2 L 2 (IR 2 ) ;
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where the function of the two variables b (time) and ! (frequency) is de ned as G f (b; !) = Z IR f(x)e i!(x b) g(x b)dx :

(1)

Here, g(x) is a window, generally chosen in such a way that g(x) (resp. ĝ( )) is well localized near the origin of times x = 0 (resp. the origin of frequencies = 0). Under these assumptions, one may think of the coe cient G f (b; !) as describing the \content of the signal f(x) near time x = b and frequency = !". Of course, the localization with respect to time and frequency variables simultaneously has to be understood in a \fuzzy sense", because of Heisenberg's uncertainty principle. By improving precision in time, we lose precision in frequency.

It is a standard result that the set of coe cients G f (b; !) characterize the signal f(x), in the sense that f(x) may be \reconstructed" from its Gabor transform as

f(x) = 1 2 jjgjj 2 Z IR 2 G f (b; !)e i!(x b) g(x b)dbd! : (2) 
The inversion formula (2) has to be understood in the weak L 2 (IR) sense, i.e. in the sense of \energy conservation": 1 2 jjgjj 2 Z IR 2 jG f (b; !)j 2 dbd! = Z IR jf(x)j 2 dx :

(

As we said, the Gabor representation is one among many other time-frequency representations. Several examples may be found in monographs such as [START_REF] Carmona | Practical Time-Frequency Analysis[END_REF][START_REF] Flaminio | Fast Trigger Algorithms for Binary Coalescences[END_REF][START_REF] Mallat | Multiresolution Approximation and Wavelets[END_REF]46] or papers [START_REF]proceedings of the conference Wavelets and Statistics[END_REF]7,[START_REF] Grossmann | Reading and understanding the continuous wavelet transform[END_REF]. Throughout this paper, we shall concentrate on the wavelet transform, which seems to be particularly well adapted to binary coalescence signals, and more particularly on continuous wavelet transform. The paper is organized as follows. The rest of the current section is devoted to some generalities and notations. In Section 2 we recall the basic de nitions and properties of continuous wavelet transform. We describe in Section 3 some elementary facts on the wavelet analysis of stationary stochastic processes. Section 4 is devoted to a description of wavelet-based methods for detecting amplitude and frequency modulated signals in noisy environment, and we address the problem of detection of binary coalescence signals in Section 5. Section 6 is devoted to conclusions. Finally, we give in the Appendix some aspects of discrete wavelet transforms and their numerical implementation. 1.2. Fourier Analysis. Let us start with some notions of Fourier analysis. We shall work in the framework of the space of complex valued square-integrable functions, denoted by L 2 (IR), equipped with a natural inner product which turns it into a Hilbert space. We shall use the following convention for the inner product. For any two functions f(x) and g(x) in L 2 (IR), we denote:

hf; gi = Z f(x)g(x) dx: (4)

Our convention for the Fourier transform is the following: for f(x) 2 L 1 (IR), its Fourier transform f( ) is de ned as:

f( ) = Z f(x)e i x dx: [START_REF] Auger | Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method[END_REF] In fact one shows that: Z jf(x)j 2 dx = 1 2 Z j f( )j 2 d [START_REF] Balasubramanian | Gravitational Waves from Coalescing Binaries: Detection Strategies and Monte Carlo Estimation of Parameters[END_REF] whenever f(x) is a smooth function decaying rapidly at in nity. Relation [START_REF] Balasubramanian | Gravitational Waves from Coalescing Binaries: Detection Strategies and Monte Carlo Estimation of Parameters[END_REF] (the socalled Plancherel formula) expresses the fact that the Fourier transform can be extended to the whole space L 2 (IR) as an isometry and more precisely as a Hilbert space unitary equivalence between L 2 (IR; dx) and L 2 (IR; d =2 ). The inverse transform is given by: f(x) = 1 2 Z f( )e i x dx: (7) 1.3. Hilbert Transform, Analytic Signal. In addition to L 2 (IR), we shall often make use of the complex Hardy space sometimes called the space of analytic signals:

H 2 (IR) = n f(x) 2 L 2 (IR); f( ) = 0 8 0 o : (8) 
H 2 (IR) is intimately related to the Hilbert transform H, de ned by: H f(x) = 1 P:V: Z f(x y) dy y ;

(where P:V: denotes principal value) and conveniently expressed in the Fourier domain as d H f( ) = i sgn( ) f( ) : [START_REF] Brillinger | Time Series; Data Analysis and Theory[END_REF] Notice that it transforms sine waves into cosine waves, and vice versa. Given a real valued function f(x), the associated analytic signal is de ned as (up to a factor 2) its orthogonal projection Z f (x) onto H 2 (IR). It is given by the formula: Z f (x) = Id + iH]f(x) ; [START_REF] Carmona | Wavelet Identi cation of Transients in Noisy Signals[END_REF] where Id denotes the identity operator. Equivalently, its Fourier transform is given by: c Z f ( ) = 2 ( ) f( ) ; (12) where ( ) denotes the Heaviside step function which is equal to 1 when 0 and to 0 otherwise. The analytic signal representation has been proven to be useful in many applications. In particular, the notion of time-dependent frequency, or instantaneous frequency, makes sense as the derivative of the instantaneous phase of the analytic signal:

(x) = 1 2 d arg Z f (x) dx (13) 
1. [START_REF]proceedings of the conference Wavelets and Statistics[END_REF]. Stationary Processes and their Spectral Representation. We give here the basic properties of stationary processes, without going into sophisticated mathematical details. Our goal is rather to provide the reader with the main expressions which are needed in order to follow the discussion below, at least with formal calculations. The interested reader may want to consult 33] for more details.

Let us consider a real-valued stationary stochastic process n(x) = n ! (x) of mean zero (for convenience, we suppress the explicit dependence on the random parameter ! throughout this paper). Then the autocovariance function C( ) = IEfn(x + )n(x)g is non-negative de nite and by Bochner's theorem, there exists a non-decreasing function F( ) such that

C( ) = IEfn(x + )n(x)g = 1 2 Z e i F(d ) : (14) 
For the sake of simplicity, we shall stick to the case where the measure F(d ) is absolutely continuous with respect to the Lebesgue measure d , so that we may write F(d ) = E( )d , and we write

C( ) = 1 2 Z e i E( )d : (15) 
Here, E( ) is the spectral density of the process.

The Cram er representation states that n(x) may be obtained through linear ltering of white noise. More precisely, the Cram er representation of the stochastic process n(x) is given by n(x) = 1 2

Z p E( )e i x dW ;

(16) where dW is a (real) white noise measure, such that IEfdW g = 0 8 ; [START_REF] Copson | Asymptotic expansions[END_REF] and IEfdW dW g = 2 ( )d : [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] We will not go into further details on this point. 1.5. Spectral Estimation It is a standard problem in signal analysis to estimate the spectral density from a unique (discrete) realization of nite length. Spectral estimation is a technical subject, often involving subtle choices. To start with let us assume that we are given a discrete stationary time series, consisting of a nite number of samples X i = f(x i ); i = 0; : : :N 1 of a continuous time function f(x). Then the spectral density E(k) is usually estimated from the sample periodogram

Ê(`) = 1 N N 1 X k=0
X k e ik ` 2 `= 0; 1; : : :N 1 [START_REF] Davis | A review of the statistical theory of signal detection in Gravitational Wave Data Analysis[END_REF] where `= 2 `=N. However, it may be shown that such an estomator is 1) biased and 2) unconsistent. The situation is usually improved by considering tapered sample periodograms of the form

Ê(`) = 1 N N 1 X k=0 w k X k e ik ` 2 `= 0; 1; : : :N 1 ( 20 
)
with a well chosen weighting sequence w k . Several choices are possible. Ours consists in the sequence

w k = 8 < : j sin(k =L)j n if 0 k L 1 if L k N L j sin((N k) =L)j n if N L k N 1 (21) 
for suitably chosen integers L < N=2 and n.

As an example we display in Figure 1 the spectral density of the simulated VIRGO detector noise, estimated from a sample size of 2 15 . 

(x) = X k A k (x) cos k (x) ; ( 22 
)
where the functions A k (x) (termed local amplitudes) are assumed to be slowly varying compared with the oscillations corresponding to k (x) (local phases).

Of course, the notion of \time-frequency content" of a signal cannot make sense in an in nitely precise way. For example, Heisenberg's inequality prevents us from localizing perfectly functions simultaneously in time and frequency. As a result, some arbitrariness is necessarily introduced into time-frequency representations. Let us simply stress some of the main consequences.

First, time-frequency representations are not unique: there are many di erent ways of describing the \time-frequency content" of a signal. Second, for a given time-frequency representation, it is impossible to achieve perfect time-frequency localization, because of the Heisenberg uncertainty principle. This means that we shall always have to look for a compromise between time localization and frequency localization.

There exists now a large class of time-frequency representations enjoying di erent properties. It is not the purpose of this paper to review them (for this we refer to 22] for example), and we shall stick to the particular case of the continuous wavelet transform.

2.1. The Continuous Wavelet Transform. Let us start by introducing the continuous wavelet transform (CWT for short). Let (x) 2 L 1 (IR) \ L 2 (IR) be a xed function, called the analyzing wavelet, or mother wavelet. The corresponding family of wavelets is the family of shifted and scaled copies of (x) de ned by:

(b;a) (x) = 1 a x b a : (23) 
Given an analyzing wavelet (x), the associated continuous wavelet transform is de ned as follows Definition 2.1. Let (x) 2 L 1 (IR) \ L 2 (IR) be an analyzing wavelet. The continuous wavelet transform of f(x) 2 L 2 (IR) is de ned by the integral transform

T f (b; a) = hf; (b;a) i = 1 a Z f(x) x b a dx (24) 
The (real or complex) number T f (b; a) carries information concerning the signal f(x) at scale a around the point b. 

If c is nite, nonzero and independent of 2 IR (resp. nite and nonzero), every f(x) 2 L 2 (IR) (resp. f(x) 2 H 2 (IR)) may be decomposed as

f(x) = 1 c Z 1 1 Z 1 0 T f (b; a) (b;a) (x) da a db ; (26) 
with strong convergence in L 2 (IR). Assuming that c is independent of actually amounts to assume independence with respect to sgn( ). Obviously, such an assumption is not needed anymore in the H 2 (IR) context. Concerning the niteness of c it implies the vanishing of the integral of the wavelet (x):

Z (x)dx = ^ (0) = 0 :
An admissible wavelet is then essentially a band pass lter (we shall come back to this comment later on). Such a condition may be enforced by assuming vanishing moments for the wavelet: for example Z x m (x)dx = 0 ; 8m = 0; 1; :::M 1 :

In the Fourier domain, the vanishing moments essentially control the behaviour of the Fourier transform of the wavelet at the origin. Such a property turns out to be essential for the analysis of singularities and transients in signals.

As a consequence, we have the following partial isometry between L 2 (IR) and the target space of the transform, namely H = L 2 (IR IR + ; a 1 dadb):

jjfjj 2 = 1 c Z 1 1 Z 1 0 jT f (b; a)j 2 da a db (27) 
for all f(x) 2 L 2 (IR). This allows for the interpretation of the squared-modulus of the wavelet transform (suitably normalized) as a time-frequency or more precisely a timescale energy density. 2.2. Redundancy and Reproducing Kernels. For a given admissible wavelet (x) ful lling the admissibility condition, the image of L 2 (IR) by the wavelet transform is a closed subspace H of L 2 (IR IR + ; a 1 dadb). This space is called the reproducing kernel Hilbert space. It is the space of solutions F(b; a) of the integral equation

F(b 0 ; a 0 ) = P F(b 0 ; a 0 ) = Z 1 1 Z 1 0 K (b 0 ; a 0 ; b; a)F(b; a) da a db ; (28) 
where the reproducing kernel K is given by: K (b 0 ; a 0 ; b; a) = 1 c h (b;a) ; (b 0 ;a 0 ) i :

This fact is readily proved by taking the inner product of both sides of equation [START_REF] Grossmann | Decomposition of Hardy functions into square integrable wavelets of constant shape[END_REF] with the wavelet (b 0 ;a 0 ) (x). The corresponding integral operator P is easily shown to be an orthogonal projection on the H space (i.e. P = P 2 = P ).

Remark 2.2. Equation [START_REF] Innocent | Remarks about the Detection of Coalescent Binaries[END_REF] expresses the redundancy of the CWT. As before, a consequence of this redundancy is the existence of many di erent inversion formulas for the CWT, or otherwise stated the possibility of using in the inversion formula (26) a reconstruction wavelet di erent form the analysis (x) wavelet: if the function (

x) 2 L 1 (IR) \ L 2 (IR) is such that the number c = Z 1 0 ^ (a )^ (a ) da a ( 30 
)
is nite, nonzero and independent of , then equation ( 26) may be replaced with:

f(x) = 1 c Z 1 1 Z 1 0 T f (b; a) (b;a) (x) da a db ; (31) 
where the wavelet coe cients T f (b; a) are still de ned by [START_REF] Gabor | Theory of communication[END_REF]. 

f(x) = f x x 0 : Then T f (b; a) = T f b x 0 ; a : (34) 
Remark 2.4. Lemma 2.1 may be given an instructive geometric interpretation, which we sketch here. The space of scale and translation variables may be endowed with a (Lie) group structure, with product given by (b; a) (b 0 ; a 0 ) = (b + ab 0 ; aa 0 ) and inverse (b; a) 1 = ( b=a; 1=a). This group is termed the a ne group and denoted by G aff . The natural action of G aff on L 2 (IR) given by 

Back to Lemma 2.1, we have that f(x) = p (x 0 ; )f(x), and T f (b; a) = p a hf; ((x 0 ; ) 1 (b; a)) i = p a hf; b x0 ; a i, which yields the lemma. The invariance properties of the wavelet transform then have a deeper geometric interpretation in terms of the action of the a ne group. We shall come back to that point in Section 5.2.

Such properties have found a lot of applications, for example for the study of fractal and multifractal functions and measures. We shall see below their implications for the particular case of binary coalescence detection. 2.4. The Case of (Complex) Progressive Wavelets. A wavelet (x) is said to be progressive if it is admissible and belongs to H 2 (IR). If (x) is a progressive wavelet, Eq. ( 26)

holds for functions f(x) 2 H 2 (IR). Progressive wavelets are also well suited for L 2 (IR) real signals. Indeed, if (f(x) is a real valued function, then its Fourier transform possesses Hermitian symmetry (i.e. f( ) = f( )) and is completely characterized by its projection on H 2 (IR). Then the H 2 (IR) version of wavelet analysis may be used as well, and is particularly convenient as we shall see.

The wavelet transform of real signals with respect to progressive wavelets is a complexvalued function, and is also progressive with respect to the variable b. As such, it may be uniquely written (as long as a determination has been speci ed for the logarithm) in the form 

and R f and I f (resp. Rf and Ĩf ) are the real and imaginary parts of T f (resp. Tf ). Note that Tf (b; a) is a wavelet transform of f(x) as well, the wavelet being the derivative of (x). 

Wavelet Transform of Stationary Processes

4. Assume now that (x) 2 H 2 (IR). Then for xed a and b, the real and imaginary parts of T n (b; a) are independent Gaussian random variables. Let us consider as an example the case of a white noise process n(x). In this case, Eq. ( 41) becomes 

4. Ridge Detection Methods for Time-Varying Frequencies. We now address the problem of characterizing time and amplitude modulated signals from the behavior of a given time-frequency representation. Such a problem has been addressed by several authors in various contexts. We just give here a few methods that seem to us well suited to the gravitational waves detection problem, and we focus to the wavelet transform case. 4.1. Generalities Let us consider as toy model a signal of the form f(x) = A(x) cos (x) [START_REF] Verkindt | [END_REF] and assume that the amplitude A(x) is slowly varying compared to the oscillations. Let (x) 2 H 2 (IR) be a progressive wavelet, and assume that j ^ ( )j has a (unique) maximum at = ! 0 . Then we have As an illustration of this fact, we display in Figure 2 the modulus of the wavelet transform of a (newtonian) gravitational wave signal generated (or at least expected to be generated) by a coalescing binary system (the model for such signals is given in Eq. (70) below). More precisely, we computed a (complex, progressive) wavelet transform with Morlet's wavelet (x) = e x 2 =2 e i!0x with ! 0 = 2 , and scales of the form 2 a n 0 , with a 0 = 2 1=8 and n = 1; 2; : : :40. With such a choice, it may be veri ed that the scale variable is equivalent to a period (at least when the sampling frequency is set to 1). The wavelet transform square modulus is represented with gray levels: in our convention, the gray level at point (b; a) is directly proportional to the value jT f (b; a)j 2 . We can clearly see the localization properties of the wavelet transform. The transform is localized in a neighborhood of a ridge (superimposed to the gure). The algorithm used to estimate the ridge is described in Section 4.2 below. It is possible to derive a more precise approximation, using stationary phase approximations. For this, let us suppose that the wavelet (x) is progressive, and may be written in its canonical form as (x) = A (x)e i (x) : (51) Then we may write We now show how such a remark may be used for the analysis of such components, in several di erent ways. For the sake of comparison, we show in Figure 3 the wavelet transform of a smaller part of the same signal as before. Notice in particular the behavior of the phase of the wavelet transform in the right hand image. At a given point on the ridge, the wavelet transform has a tendancy to oscillate at the same frequency as the wavelet itself, as predicted by (67). This is the property which is exploited by the ridge search algorithm.

Comments It is worth noticing that very little a priori information about the signal is used , and this is a main interest of this method.This way of extracting the ridge gives good results in the case of one signal of the form

f(x) = A(x) cos (x) ;
provided that the stationary phase assumptions are full lled and the additional noise is not too strong . When the input signal-to-noise ratio is too bad (in practise say -5 db) the algorithm is unstable and fails to provide a reliable extraction of the ridge. This is basically due to its local nature .

4.3. Penalization Approaches In very noisy situations, the local approaches described above may no longer be suitable, and it may be necessary to turn to global methods. Such methods were introduced in 11, 12] and are developed in great details in 13]. They are based on a di erent setting of the problem, which makes use explicitely of the a priori assumptions made on the signal. Let us give here an example of such methods.

We start with a function of two variables M(b; !) (where we consider for convenience the variable ! = log(a)), supposed to be localized near a ridge ' 0 . M(b; !) may be for example a square modulus of wavelet transform, or some modi ed version of it. We shall be more speci c later on. The starting point is the assumption that the ridge is a onedimensional object, i.e. a curve, and then has to be modeled in that form. Let us for simplicity consider the case of parametric curves. A ridge is then modeled as a mapping ' : s 2 0; 1] ! '(s) 2 IR 2 ;

(68) where the rst component of '(s) is a time component b(s) and the second one is for convenience taken to be the logarithm of the scale log a(s). Given a wavelet transform, the problem is to nd the optimal ridge, in a sense to be speci ed. Following 11,[START_REF] Carmona | Multiridge Detection and Time-Frequency Reconstruction[END_REF] we state the problem as a minimization problem, for a conveniently chosen penalty function ('). A natural candidate for such a penalty function is the following

(') = Z jT f ('(s))j 2 ds + Z j ' 0 (s)j 2 ds (69)
Such a function is the sum of two terms. Let us consider them independently. The rst one involves only the \concentration" of M(b; !). However it cannot be utilized alone. Indeed, minimizing only the rst term would produce a curve trying to occupy densely the domain of (b; !). Some rigidity constraints have to be imposed on the curve. This is the purpose of the second term.

The penalty functional (') is not quadratic, and then cannot be minimized explicitely.

The minimization has to be done numerically. In non-noisy situations, the task is easy and may be achieved using one of the standard minimization techniques (see for example [START_REF] Picinbono | Repr esentation des signaux par amplitude et phase instantan ees[END_REF][START_REF] Press | Numerical Recipes: the Art of Scienti c Computing[END_REF]). However, in noisy situations, special care has to be paid to the problem of local minima of ('). Indeed, the number of such minima turns out to increase with the noise level, and standard minimization techniques fail in such situations. A convenient alternative is provided by stochastic relaxation algorithms, for example simulated annealing. A method for solving numerically the minimization problem described above is described in great details in 13] (see also 11]).

5. The Gravitational Wave Detection Problem. Let us now turn to the problem of gravity waves detection, and the corresponding parameter estimation problem. We shall see that wavelet techniques are well adapted to such problems. 5.1. The Model Signal We shall focus on the case of the binary star coalescence signal, since it is one for which time-frequency analysis may be expected to perform well. In the Newtonian approximation, the model is the following: 

f(x) = A (x 0 x)(x 0 x) cos 2 + 1 F(x 0 x) +1 ; (70) 
Here, A (resp. F) is generally interpreted as the numerical values of the signal's amplitude (resp. frequency) one second before coalescence, and as a global phase term.

In more general restricted post-Newtonian approximations, the signal is of the form f(x) = A (x) 2=3 cos (x) ;

(72) where (x) = 0 (x)=2 is the local frequency, and the time-dependent phase (x) is the sum of several post-Newtonian terms (x) = 0 (x) + 1 (x) + 1:5 (x) + 2 (x) + : : : ;

(73) where 0 (x) is the dominant Newtonian part. The correspondence between local frequency and time is given by

x = 1 + 0 1 (x) F 8=3 ! + 1 1 (x) F 2 ! + 1:5 1 (x) F 5=3 !
+ : : :; (74) which provides an expression for the group delay, i.e. the time of appearance of a given frequency:

x = ( ) = 1 + 0 1 F 8=3 + 1 1 F 2 + : : : :

Remark 5.1. In any case (Newtonian or post Newtonian), the signal is a locally monochromatic one, in the sense that time and frequency are in one-to-one correspondence. This fact will be of some importance in practice.

For the sake of simplicity, we shall restrict our investigations to the case of the Newtonian approximation, i.e. we shall set 1 ; 1:5 ; 2 : : : to zero. However, most of the techniques we are about to discuss may be extended without di culties to post-Newtonian situations.

To proceed, we need to analyze more carefully the Fourier transform and the analytic signal of the model signals.

Using formal arguments, the Fourier transform of the signal in (70) may be evaluated via the stationary phase approximation, which yields

f( ) A p 2 F 2 F (2 +1)=(2 ) exp ( i + + 1 2 F 1= x 0 + 4 !) ( 75 
)
Remark 5.2. Notice that the function given in (70) is neither integrable nor square integrable. Therefore, the meaning of the Fourier transform in (75) is very problematic.

However, this problem may be circumvented as follows. Let F be a band-pass lter, such that F(0) = 0, and consider the ltered signal F f(x). The e ect of such a ltering is to force to zero both very high and very low frequencies. However, since we are dealing with a locally monochromatic signal, forcing to zero very high and very low frequency amounts to enforcing the decay of F f(x) at x ! 1 and forcing F f(x) to zero as x ! x 0 .

Then, if one works with such a ltered signal instead of the original one, the Fourier transform can be de ned, and approximated as in (75). Again, let us stress that such an approximation is acceptable only in a limited frequency range, excluding both very low and very high frequencies, i.e. excluding values of the time variable close to or very far away from the coalescence time.

Remark 5.3. In practice, the experimental signal has to be "prewhitened" before sampling, in order to reduce quantization noise. This means that the signal to be processed by detection algorithms is of the form

C 1=2 f(x) = 1 2 Z e i x f( ) p E( ) d
where E( ) is the spectral density of the detector noise, or at least an approximation of it.

Note that the transfer function 1= p E( ) of the convolution operator C 1=2 has precisely the properties required for the lter F.

At rst sight, it is tempting to state the analytic signal of a real signal like A(x) cos( (x)) equals A(x) expfi (x)g. However, this is not true in general (for example, the Hilbert transform of sin(1=x) is 1 cos(1=x) and not cos(1=x) as one would naively expect). However we have the following Lemma 5.1. Let be a (large) positive number, and let f(x) = A(x) cos( (x)) 2 L 1 (IR),

where A(x) and (x) are twice and four times di erentiable functions respectively. Then Z f (x) = A(x)e i (x) + O 1 (76)

as ! 1. Such a result is not of direct application, since the limit ! 1 is not suited for practical situations. However, a \weak interpretation" of it would be the following. Suppose that 1) the variations of the amplitude are much slower than the variations coming from the oscillations, and 2) the variations of thefrequency 0 (x) are small enough. Then the analytic signal of f(x) = A(x) cos (x) is approximately equal to A(x) expfi (x)g. Let us come back to the binary coalescence signal. A naive calculation would erroneously suggest that the analytic signal of (70) is of the form

Z f (x) = A (x 0 x)(x 0 x) exp i 2 + 1 F(x 0 x) +1 ; (77) 
and that the instantaneous frequency then reads

(x) = F(x x 0 ) (78)
Such a conclusion is only approximately true, for the same reasons as before, in particular because of a possible correction a ecting the low frequencies. However, within a limited range of frequencies, such an approximation is de nitely sensible.

A standard approach for detecting such signals amounts to use the matched lter technique, which we outline here (see [START_REF] Auger | Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method[END_REF][START_REF] Daubechies | Ten Lectures on Wavelets[END_REF][START_REF] Ph | Ridge and Skeleton extraction from wavelet transform[END_REF]) for a detailed analysis in the context of binary coalescence detection). The basic situation is the following:a linear lter of impulse response k(x) (convolution by k(x) ) is applied to an input signal which is the sum of a (deterministic) signal of interest f(x) and some noise modeled as a second order stationary process n(x) with known spectral density E( ). See Figure 4 for the scheme.

f(x)+n(x) f 1 (x)+n 1 (x) * k Figure 4: Filtering scheme. f 1 (x) = (f k)(x) = Z k(x u)f(u)du (79) n 1 (x) = (n k)(x) = Z k(x u)n(u)du (80)
Then n 1 is also a second order stochastic process with spectral density E 1 (x). The ltering formulas in the Fourier domain read:

f1 ( ) = k( ) f( ) (81) E 1 ( ) = j k( )j 2 E( ) (82) 
It is the purpose of matched ltering to maximize, at a given time x 0 the outpout signal to noise ratio outpout SNR = jf 1 (x 0 )j 1 (83) where 1 is the standard deviation of the outpout noise n 1 (x). For this we assume that f s.t. f( ) 6 = 0 and E( ) = 0g is a zero-measure set.

Then it follows directly from the Cauchy-Schwarz inequality that in the class of all linear lters the optimal one is the so-called matched lter given by its transfer function:

kopt ( ) = Ce i x0 f( ) E( ) ; (84) 
with a non-zero arbitrary constant C. The maximum output SNR is hence given by max(outpout SNR) 2 = 1 2

Z j f( )j 2 E( ) d : (85) 
A detection is declared if the output of the matched lter is beyond a given threshold , based upon the statistics of the output noise. In realistic situations such as the GW detection , the signal to be detected has several unknown parameters , then the problem turns into an estimation/detection one (see e.g. 5, 9] for a review). The practical way currently under study by many authors is the construction of a family of lters (called templates) which will form a net in the space of all lters. Of course one looks for a good compromise between accuracy and calculation cost (which is directly related to the number and the sizes of the templates). We explore below some wavelet-based alternatives. 5.2. Why Wavelets ? Let us now explain why wavelet analysis seems to be a good candidate for the detection problem described above. First, wavelets have a certain number of intrinsic nice properties, such as the existence of fast algorithms (described in Appendix below). But in addition, a closer look at the signal model in (77) shows that wavelet analysis turns out to be naturally adapted to the problem. Indeed, let's forget for a while about the phase factor. What we see in Eq. ( 77) is actually (up to a normalization factor) a shifted and scaled copy of a reference signal f ; (x) = ( x)x exp ix +1 : (86) (In the terminology of 30] f ; (x) is called a chirp of type ( ; 1); note however that the numerical value of is out of the range of the analysis of 30]; gravity waves are not oscillatory enough to qualify as true trigonometric chirps.) Therefore, as a consequence of the covariance properties of the wavelet transform, the transforms of the corresponding signals are obtained from the transform of (86) by the action of the a ne group. More precisely, we have that

Z f (x) = AF =( +1) e i f ; F 1=( +1) (x 0 x) (87)
and then by Lemma 2.1

T f (b; a) = AF =( +1) e i T f ; F 1=( +1) (x 0 b); F 1=( +1) a ; (88) 
and the detection problem may be reformulated as a detection problem in the time-scale plane: nd a translation parameter x 0 and a scale parameter a 0 = F 1=( +1) such that T f (b; a) = T f ; (( x 0 ; a 0 ) 1 ( b; a)) where is the product in the a ne group given above. This actually opens the problem of developing a detection theory for functions de ned on the a ne group, where translation is replaced with the group action. To our knowledge, such a theory has not been developed so far.

Another reason for which it is natural to use wavelet-based techniques is the fact that the expected signal is mainly characterized by a time-varying frequency. It turns out that time-frequency representations of such signals have particular localization properties. We describe below the behavior of the wavelet transform of such signals. The problem amounts to that of nding an e cient and robust algorithm for detecting such ridge and estimating parameters. We now describe the application to this problem of the methods alluded to above. We gave in Figure 2 the example of the "pure signal", on which the localization of the wavelet transform near the ridge (superimposed to the modulus) appears clearly. In that example, the ridge was estimated by the method described in Section 4.2.

In Figure 5, we consider the same signal (we recall here that for that particular example, we chose a simple Newtonian approximation, with A = 1 and F = 50) with an additive stationary Gaussian noise, with spectral density modeling the thermal and shot noises at interferometric detectors (the seismic noise has been replaced with a cuto at low frequencies, i.e. frequencies less than 10Hz in the signal have not been considered), of the form E( ) = S s + S t 4 ;

with S s = 1, S t = 10 8 , and = :1 in this case. The same localization properties may be observed (notice that in our graphical conventions, the gray levels are automatically adjusted to the range of the transform; thus eventhough the contribution of the frequency modulated signal seems weaker in Figure 5 than in Figure 2, this is just a graphical e ect), but the localization is now somewhat blurred by the presence of noise. As a consequence, the ridge estimate (again superimposed on the modulus plot) is not as good as before. The two estimates (pure and noisy) are described in Figure 6. Finally, we revisit the same signal in Figure 7, with now = :5. As may be seen from the wavelet transform, the signal is still visible at small scales, i.e. at high frequencies, but is perturbed by noise at larger scales. The same algorithm as before did not produce correct results in this case. Going to penalization algorithms, as described in Section 4.3 slightly improves the situation, as may be seen on Figure 7. In that case, the ridge is correctly estimated in the small scales domain, i.e. when its \energy" is at least comparable with that of the noise. On the contrary, in the large scales, the estimated ridge is attracted by the low-frequency part of the noise (in this case the thermal noise). This clearly shows that the non-parametric methods such as the ones we have described here are limited to a certain range of signal to noise ratio, i.e. in our case, to the detection of events close enough to the detectors.

5.5. Parametric Methods Up to now, we have only described a series of methods which do not take into account the explicit model we have for the signal. Clearly, the performances of the algorithms may be greatly enhanced by taking such information into account. We describe here a couple of possible approaches based upon wavelet transform. For the sake of simplicity, we stick to the case of the continuous wavelet transform as described above.

We refer to 28] for a precise description of related methods.

Time-Frequency Template Matching. This approach is a time-frequency version of Wiener's lter. The main idea here is to replace the classical analysis, which matches phases, with a frequency matching. Similar ideas have been developed in a di erent form in [START_REF] Dingle | Asymptotic expansions, their derivation and interpretation[END_REF][START_REF] Torr | Analyse Continue par Ondelettes[END_REF].

Let us start with the additive noise model

f(x) = Af F (x 0 x) + n(x) :
We have M(b; a) = jT fF (x 0 b; a)j 2 + N(b; a)

where N(b; a) is a noise term, whose statistics has been described above. Fix a date , and consider a domain = T; ] a min ; a max ] in the time-scale domain. For simplicity, we shall denote by L 2 ( ) the space L 2 ( ; dadb=a). Let us now consider the following time-scale templates (92)

Then, minimizing jjM A ( ; ) jj L 2 ( ) with respect to A and yields the following maximization problems:

F( ) = arg max hM; ( ; ) i L 2 ( ) (93) 
Â( ) = max hM;

( ; ) i L 2 ( ) (94) 
This leads to the following meta-algorithm for detection FOR = min TO = max DO 1. Solve the maximization problem in (93) with respect to .

Store the values F( ) and Â2 ( ). Scan the local maxima Â( m ) of the function Â( ).

IF Â( m ) THRESHOLD: mark m as a possible date for an event. Of course, the choice of the THRESHOLD depends on several parameters, and in particular it relies on some a priori knowledge on the behavior of the algorithm when only noise is present. Such a knowledge may easily be obtained through Monte-Carlo simulations. 

Let us now consider the case of a gravitational wave generated by a binary system collapsing at time x 0 , with chirp parameter F. Using the stationary phase approximation derived above, we can see that in the non-noisy situation, we have that L f (x 0 ; F) 2 0 (0) j (0)j 2 jjfjj 2 = jjfjj 2

In addition, L f ( ; ) L f (x 0 ; F) : This suggests to use the line integral L f ( ; ) instead of the quantity A( ) in the previous algorithm. More precisely, the algorithm is based on the following scheme: for any xed , solve max L f ( ; )

and among the local extrema of the latter quantity, keep those which are above a certain threshold.

The advantage of such an approach is that it can be made extremely fast, since any computation of L f ( ; ) requires the evaluation of a single integral instead of a double one. In our implementation, the maximization is performed using an adapted version of Brent's method, and the usual wavelet transform is replaced with a predenoised one. We refer to 28] for more details on this method.

As an illustration, we show in Figure 8 the result of the method for the case of a binary system made of 2 stars of 10 solar masses, at a distance of 100 Mpc. The signal was simulated with the SIESTA software, and includes a Newtonian approximation for the signal and the VIRGO detector noise (provided by the VIRGO collaboration), whose spectral density is given in Figure 1.

Remark 5.4. Several variations around these two schemes are possible. For instance, it is shown in 28] that it is convenient to replace the wavelet transform of the signal with the so-called prewhitening wavelet transform, in which the spectral density of the noise (which in that case has to be known in advance, from a model or from previous experiments) is taken into account. It may be shown that in such a case, the output of the algorithm is equal to that of the matched lter. Other variations were given in 21].

Conclusions

We have given in this paper a quick description of continuous wavelet transform, focusing on some particular aspects which we believe relevant for gravitational waves detection.

More precisely, we have described a set of methods for analyzing and detecting amplitude and frequency modulated signals embedded in noise. Some of the signals which are expected at the gravitational waves detectors, namely gravity waves generated by coalescing binaries, fall into this class, and the techniques we described in this paper apply to these. The rst type of methods we have described are non-parametric. They amount to searching for the expected signal as a set of salient points or a curve in the time-scale plane. We gave two di erent formulations of this approach, based on local 19] or integral 13] techniques. They may be used for low enough signal to noise ratios, for detection 29] as well as parameter estimation 34].

The second methods are parametric methods. They also amount to searching for curves in the time-scale plane, but the curves are now given a speci c functional form, based on Newtonian or post-Newtonian approximations 28]. They represent interesting alternatives to matched lter techniques, and may easily be implemented on line.

In addition, we describe in the appendix below the main aspects of discrete wavelet decompositions, from a subband coding perspective. Let us stress that subband coding and quadrature mirror lters were originally introduced in order to reduce quantization noise in speech. Quantization noise seems to be a relevant issue for data aquisition at interferometric detectors, since the detector noise has a wide dynamical bandwidth (which will require a prewhitening prior to quantization). For this reason, discrete wavelets should be considered as a serious candidate from the data aquisition point of view as well.

J.M. Innocent is also ESM2, IMT-Technopole de Chateau-Gombert, 13451 Marseille, Cedex 20, FRANCE , and the VIRGO group, Orsay.
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We dedicate this paper to his memory.

APPENDIX: Discrete Wavelet Decompositions from a Sub-Band Coding Perspective and Fast Algorithms

In this appendix, we describe the main aspects of discrete wavelet decompositions, and their connections to fast algorithms. Starting from the sampling theorem, we describe the quadrature mirror lters technique and the corresponding sub-band coding algorithms.

We then describe the construction of wavelet bases and show how they t into the sub-band coding schemes. Finally we turn to the algorithms for non-orthogonal wavelet decompositions.

Our starting point will be the sampling theorem, which asserts that any band-limited L 2 (IR) function whose Fourier transform's support is included in thye interval ; ] may be sampled without information loss with a sampling frequency s =2. We shall see that pyramid algorithms for wavelet decompositions t with this context. fs k g and f tk g is half that of the sequence ff k g, so that these two sequences may be subsampled by a factor two without loss of information. Since in addition we have H( ) + G( ) = 1 8 , we deduce that the sequence ff k g is completely characterized by the two sequences

s n = X k h 2n k f k (98) t n = X k g 2n k f k (99)
The sub-band coding technique (which was introduced in a signal processing context in order to reduce quantization noise) is an extension of this simple calculation. The goal is to replace the perfect lters with smoother ones, in order to reduce the number of operations in Eqs ( 98) and (99). By doing so, one introduces aliasing, which may be cancelled by an appropriate choice of the lters.

Let us then consider a pair of 2 periodic functions

H( ) = 1 p 2 X k h k e ik G( ) = 1 p 2 X k g k e ik ;
and consider the sequences introduced in (98) and (99). Consider also the reconstructed sequence

f r k = X n h 2n k s n + g 2n k t n : (100) 
Imposing the perfect reconstruction, i.e. f r n = f n imposes constraints on the lters H( ) and G( ). The classical solution to these constraints yields the so-called Quadrature Mirror Filters (QMF for short), for which G( ) = e i H( + ) ; (101) and jH( )j 2 + jG( )j 2 = 1 :

The sub-band coding is based on a recursive implementation of the perfect reconstruction "convolution-subsampling" scheme described above. More precisely, we start again with a sequence ff n g and we set s n 0 = f n . Then, de ning

s j n = X k h 2n k s j+1 k (103) t j n = X k g 2n k s j+1 k ( 104 
)
we know how to reobtain the sequence fs j+1 k g from the sequences fs j n g and ft j n g:

s j 1 k = X n h 2n k s j n + g 2n k t j n : (105) 
A sub-band coding of the sequence ff n = s n 0 g amounts to representing it by the coecients fs J n ; t J n ; t J+1 n ; : : :; t 1 n g instead of the original coe cients ff n g. In the case of a nite sequence of length say N = 2 L , we then have (because of the subsampling) 2 L 1 + 2 L 2 + : : : + 2 L J + 2 L J = N coe cients, i.e. the same number exactly. The complexity of sub-band coding is remarkable too. Indeed, let us stress that the same lters are used throughout all the stages of the algorithm, i.e. for all values of j. It is easy to see that to complete a decomposition at all scales of a nite sequence of length N, the computational cost goes as O(MN), where M is the length of the sequences fh k g and fg k g. It is then an extremely e cient algorithm.

Remark 7.1. The original motivation for the introduction of sub-band coding was the need of reducing quantization noise. Such a problem appears as soon as the dynamical range of an (analog) signal is large. Then the dynamical range of the signal is generally much smaller within each of the sub-bands, making the quantization task easier. Since this seems to be the case with gravitational waves detector signals (where the spectral density of the noise varies over several orders of magnitude), we believe that sub-band coding could be an appropriate strategy.

We shall now see the close connection of sub-band coding with wavelets. 7.2. Multiresolution Analysis and its Connections to Sub-Band Coding. The construction of orthonormal bases of wavelets relies on the concept of multiresolution analysis, which we discuss here for the sake of completeness (see 17] for a self contained and pedagogical introduction to the subject). Definition 7.1. A multiresolution analysis of L 2 (IR) is a collection of nested closed subspaces V j L 2 (IR) : : :

V 1 V 0 V 1 : : : (106) 
such that the following properties hold 1. V j = L 2 (IR) and \V j = f0g. 2. If f(x) 2 V 0 , then f(x k) 2 V 0 for all k 2 Z Z; f(x) 2 V j if and only if f(x=2) 2

V j 1 .

3. There exists a function (x) 2 V 0 such that the collection of the integer translates (x k); k 2 Z Z is an orthonormal basis of V 0 .

Many examples of MRAs have been proposed so far. We refer to 14, 17, 37] for reviews. We won't go into mathematical details here and will rather focus on the implications of the above de nition. It follows directly from the inclusion of the V j spaces that (x) may be expressed as a linear combination of the functions (2x k) (which form a basis of V 1 ). This yields the so-called two-scale di erence equation (or re nement equation)

(x) = p 2 X k h k (2x + k) : (107) 
The coe cients h k are the Fourier coe cients of a 2 -periodic function, denoted by

H( ) = 1 p 2 X h k e ik : (108) 
Denote by W j the orthogonal complement of V j in V j+1 . Then one may prove that there exists a function (x) 2 W 0 such that the collection f (x k); k 2 ZZg is an orthonormal basis of W 0 . More precisely, let m be an arbitrary integral number, and set

G( ) = e i(2m+1) H( + ) = 1 p 2 X g k e ik : (109) 
The coe cients g k are related to the coe cients h k by g k = ( 1) k h 2m+1 k (110) The function (x), called the wavelet associated with the MRA, is de ned by

(x) = p 2 X k g k (2x + k) : (111) 
Remarkably enough, the functions H( ) and G( ) are quadrature mirror lters, i.e. they satisfy equations ( 101) and (102). Let us introduce the following notation for the shifted and scaled wavelets and scaling functions jk (x) = 2 j=2 2 j x k ; jk (x) = 2 j=2 2 j x k ;

(112) and associate with any function f(x) 2 L 2 (IR) the following family of coe cients t j k = hf; jk i ; s j k = hf; jk i :

Then the results outlined above may be summarized as follows 

In other words, we are exactly in a sub-band coding situation. This result is remarkable in many respects. Let us just mention that it provides for free a fast algorithm for orthonormal wavelet decompositions (let us stress that even though the wavelets get larger and larger as the scale grows, the computational cost itself does not depend on the scale). The connection between wavelet bases and subband coding was established rst by S. Mallat 36], and clari ed later on by A. Cohen and W. Lawton. For more details, we refer to 17, 48]. 7.4. Fast Algorithms for Non-Orthonormal Wavelet Decompositions Let us now consider a slightly di erent situation, closer to the continuous wavelet transform described in the core of this paper.

To start with, we consider scales which are still restricted to be powers of 2, but we now allow the values of the shift variable to belong to a given lattice, independent of the scale, say ZZ. This leads to consider the following set of coe cients T j (k) = 2 j R f(x) 2 j (x k) ; S j (k) = 2 j R f(x) 2 j (x k) :

Again, it follows directly from the re nement equations that such coe cients may be computed as follows Proposition 7.2. The coe cients T j (k) and S j (k) are related by 8 > > < > > :

T j (k) = X `g`S j 1 (k 2 j 1 `) ; S j (k) = X `h`S j 1 (k 2 j 1 `) :

(117)

The corresponding algorithm is as e cient as the previous one. Indeed, assuming that we have at hand N = 2 L discrete values S 0 (k) to start with, it is easy to see that the number of operations required to compute the wavelet coe cients T j (k) for k = 1; : : :N and j = 1; : : : L goes as O(MN log(N)) (to compute N log(N) coe cients).

To deal with scales which are not restricted to powers of two, the situation is somewhat more complicated, and one has to turn to approximate algorithms (if one wants to stick to sub-band coding techniques; extremely e cient alternatives relying on FFT-based implementations are also available). We refer to 2, 39] and references therein for a discussion of such approaches. 7.5. Some Examples There exists simple and classical examples. The simplest one is based on the following pair of lters: h 0 = h 1 = g 1 = g 0 = 1 p 2 ; h k = g k = 0 8k 6 = 0; 1 Equivalently, H( ) = 1 2 1 + e i : The corresponding pyramid algorithm reads 8 < : s j k = 1 p 2 s j+1 2k + s j+1 2k+1 ; t j k = 1 p 2 s j+1 2k+1 s j+1 2k ;

i.e. may be expressed simply in terms of sums and di erences.

It is easy to check that such a choice leads to (x) = 0;1] (x) ; and (x) = 1 2 ;1] (x) 0; 1 2 ] (x) : The corresponding wavelet basis is known to as the Haar basis, and is made of compactly supported functions, thus achieving optimal localization in the time domain. However, Haar wavelets are poorly localized in the frequency domain (since both '( ) and ^ ( ) decay as 1= at in nity). Let us quote for completeness the two \classical" families of alternatives.

1. Spline wavelets: let V 0 = ff 2 C r 1 ; f(x) = polynomial of degree r on k; k + 1]g, and de ne V j by scaling of V 0 . Let (x) = 0;1] 0;1] : : : 0;1] (x) (r + 1 times) and set '( ) = ^ ( ) P k j^ ( + 2 k)j 2 :

It may be checked that this yields a multiresolution analysis with scaling function (x), from which the wavelet (x) may be computed easily. The corresponding wavelets are called spline wavelets, and have been described in great details in 14](with several generalizations). Neither (x) nor (x) are compactly supported, but they have exponential decay. In addition, ^ ( ) decays as r at in nity. The wavelet has the same localization and regularity properties as the scaling function. In addition, (x) has r + 1 vanishing moments. 2. Daubechies' wavelets: Another classical strategy consists in looking for compactly supported quadrature mirror lters which would generate orthonormal wavelet bases. This approach was developed by I. Daubechies 17], who proposed to look for lters of the form H( ) = 1 + e i 2 r F( ) ; and search for trigonometric polynonmials F( ) such that the resulting wavelet (x) is in L 2 (IR) and yields an orthonormal basis of L 2 (IR). This leads to compactly supported wavelets, whose frequency localization is described by j ^ ( )j j j r as j j ! 1. Tables for the corresponding lter coe cients g k and h k are given in 17],

as well as precise estimates for the coe cient . These two constructions have found a lot of generalizations in the literature. We have no room here to give a precise account of these, and refer the reader to [START_REF] Carmona | Practical Time-Frequency Analysis[END_REF][START_REF] Copson | Asymptotic expansions[END_REF][START_REF] Mallat | Multiresolution Approximation and Wavelets[END_REF][START_REF] Verkindt | [END_REF][START_REF] Ville | Th eorie et Applications[END_REF] for example.
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 1 Figure 1: Power spectrum of the VIRGO detector noise.
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 1 If the wavelet (x) is progressive, i.e. if (x) 2 H 2 (IR), then the CWT of a signal f(x) reads T f (b; a) = hf; (b;a) i = 1 2 hZ f ; (b;a) i :A crucial property of the continuous wavelet transform is that, under a mild condition on the analyzing wavelet (see equation (25) below), the transform is invertible on its range (see e.g. 25] for a proof):Theorem 2.1. Let (x) 2 L 1 (IR) \ L 2 (IR),

  unitary representation of G aff , in the sense that (b; a) is a unitary operator for all (b; a) 2 G aff , and that (b; a) (b 0 ; a 0 ) = ((b; a) (b 0 ; a 0 )), and the connection to the wavelet transform is as follows: if f(x) 2 L 2 (IR) T f (b; a) = 1 p a hf; (b; a) i ; (b; a) 2 G aff :

;

  T f (b; a) = jT f (b; a)je i (b;a) ; (37) where (b; a) = arg T f (b; a). Let us denote by !(b; a) the local frequency of T f (b; a), i.e. !(b; a) = @ b (b; a) : (38) Then it is easy to see that !(b; a) = 1 a Rf (b; a)I f (b; a) Ĩf (b; a)R f (b; a) jT f (b; a)j 2
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 433 We now turn to the description of the CWT of stochastic processes. Let us consider rst a stochastic process, and denote by C its covariance operator. Then if (x) 2 \L 2 (IR) we have IEfT n (b; a)T n (b 0 ; a 0 )g = hC (b 0 ;a 0 ) ; (b;a) i 8(b; a); (b 0 ; a 0 ) :(41) In the case of stationary time series the covariance operator is a convolution operator, with the spectral density E( ) as multiplier. Let n(x) be such a time series, and consider its Cram er representation given in Eq. (16). Then, its CWT takes the form of a stochastic integral T n (b; a) the following Proposition 3.1. Let n(x) be a Gaussian stationary time series, with spectral density denoted by E( ), and let T n (b; a) denote its CWT, with respect to the progressive wavelet (x) 2 L 1 (IR) \ L 2 (IR). Then 1. T n (b; a) is a Gaussian process. 2. For xed scale a, T n (b; a) is a stationary time series, with mean zero and power density E a ( ) = E( )j ^ (a )j 2 In particular, one has IEfjT n (b; a)j 2 g = 1 2 Z E( )j ^ (a )j 2 d :

  IEfT n (b; a)T n (b 0 ; a 0 )g = h (b;a) ; (b 0 ;a 0 ) i = c K (b; a; b 0 ; a 0 ) 8(b; a); (b 0 ; a 0 ) : and we have in particular IEfjT n (b; a)j 2 g = jj jj 2 =a : Let us now consider the \signal + noise" case, i.e. f(x) = f 0 (x) + n(x) ; where f 0 (x) is a deterministic signal, and n(x) is a weakly stationary process with mean . Then clearly T f (b; a) = T f0 (b; a) + T n (b; a) : In addition, we may write jT f (b; a)j 2 = jT f0 (b; a)j 2 + N(b; a) ; (45) where N(b; a) = 2< T f0 (b; a)T n (b; a) + jT n (b; a)j 2 : (46) Since wavelets are functions of vanishing integral, we have in addition IEfN(b; a)g = 1 2 Z E( )j ^ (a )j 2 d :

  Figure 2: Square modulus of the wavelet transform of a binary coalescence signal.

  x 0 (b; a) is a stationary point of the integrand, i.e. a time such that 0 (b;a) (x 0 ) = 0 :(54) In addition, it is assumed that for any (b; a) under consideration, there exists only one such point, and that 00 (b;a) (x 0 ) 6 = 0. We refer to 19] for a more detailed analysis.
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 3 Figure 3: Wavelet transform of a smaller part of the binary coalescence signal; left: square modulus; right: phase.

  4.2. Local Analysis of the Wavelet TransformThe basic formulae[START_REF] Vetterli | Wavelets and Sub Band Coding[END_REF] and[START_REF] Ville | Th eorie et Applications[END_REF] have two immediate and important consequences. First,if the ridge equation a = a r (b) is known, then equation (50) yields the local frequency of the signal: local amplitude of the signal is obtained by putting a = a r (b) into equation (49) : A(x) = 2 jT f (x; a r (x))j j ^ (! 0 )j (56) This stresses the interest of the ridge extraction. More precise estimates of the wavelet coe cients, such as the stationary phase approximation described above, lead to e cient methods using the phase of the wavelet transform. The general framework is given in 19]. Let us just show how it works with the above mentioned Morlet wavelet, (x) = e x 2 =2 e i!0x ; (57) with Fourier transform ^ ( ) = p 2 e ( !0) 2 =2 : (58) For ! 0 large enough (say ! 0 > 5) is (at least numerically) admissible and progressive . The wavelets coe cients of the signal f(x) T f (b; a) = 1 2a Z A(x)e 1 2 ( x b a ) 2 e i (x) !0 x b a ] dx (59) are approximately equal to the leading term in the stationary phase expansion of this oscillatory integral T f (b; a) jT 0 (b; a)je i 0(b;a) ]) In these formulas x 0 = x 0 (b; a) is the stationary point given by 0 (x 0 ) = ! 0 a (63) We assume that 00 > 0 hence for each (b; a) there is a unique and rst order stationary point. Now the equation x 0 (b; a) = b (64) appears as another version of the ridge equation . It is easy to see that in the present case of the Morlet wavelet x 0 depends only on a and therefore for xed a @ @b 0 (b; a) = ! 0 a (x 0 b) 00 (x 0 ) 1 + a 4 00 (x 0 ) 2 (65) and on the ridge @ @b 0 (b; a) = ! 0 a : (66) This suggests to look for the ridge by solving for a the implicit equation @ @b (b; a) = ! 0 a ; (67) where (b; a) is the phase of the wavelet coe cient T f (b; a). This can be done in practice by various xed point methods , for example direct iterations or a Newton method.
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  we recall that (x) is the Heaviside step function) with = 1 4 ; = 3 8 :
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 53 Behavior of Wavelet Transform. As we saw in the previous sections, the wavelet transform has a tendancy to concentrate in the neighborhood of a ridge. In the case of signals of the form (70), such ridges take the form a r (b)
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 56 Figure 5: Noisy binary coalescence signal, buried by shot and thermal noises, with = :1.

Figure 7 :

 7 Figure 7: Noisy binary coalescence signal, buried by shot and thermal noises, with = :5.

  ) (b; a) = jT f ( b; a)j 2 :

Figure 8 :

 8 Figure 8: Line integral method for a pair of stars of 10 solar masses, at a distance of 100 Mpc; left plot: 20 seconds simulation, with a time step of 100 ms; right plot: 2 seconds simulation, with a time step of 1 ms.

  7.1. Perfect Reconstruction Quadrature Mirror Filters Let us start with a discrete sequence ff n ; n 2 ZZg, assumed for the sake of simplicity to consist of samples f n = f(n) of a band limited continuous time function f(x) with unit sampling frequency. As a consequence of Poisson's summation formula, the Fourier transform of the sequence is the periodized of f( ), and is then a 2 -periodic function, hereafter denoted by F( ). Let us now consider the 2 -periodic functions H( ) and G( ) de ned by H( appropriately normalized) Fourier coe cients of H( ) and G( ) respectively, and introduce the sequences sn = P k h n k f k and tn = P k g n k f k , with Fourier transforms F( )H( ) and F( )G( ) respectively. Clearly, the bandwidthes of the sequences

  .3. Fast Algorithms for Orthonormal Wavelet Decompositions Let us suppose now that we are given a multiresolution analysis with scaling function (x) and wavelet (x), and denote by H( ) and G( ) the associated QMFs as before. Then it is a direct consequence of the re nement equations that we have

	Theorem 7.1. Let fV j ; j 2 Z Zg be a MRA, with scaling function (x) and wavelet (x). Then the family f jk ; j; k 2 Z Zg is an orthonormal basis of L 2 (IR). More precisely, any f(x) 2 L 2 (IR) may be decomposed as
	f(x) =	X j;k	t j k jk (x) =	X k	s j0 k j0k (x) +	X j j0;k	t j k jk (x) :	(114)
	Proposition 7.1. The coe cients t j k and s j k are related by 8 > > < > > : t j k = X j 1 2k `; `g`s s j k = X `h`s j 1 2k `:		
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