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first jet (or Leibniz) extensions Gk
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neighborhood of the trivial representation.
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a Riemannian manifold into Gk
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I - Introduction

Since the early seventies, a great attention has been paid to the representation theory

of a special class of infinite-dimensional Lie groups, called gauge groups, i.e. groups of the

form Map (M,G), M being a Riemannian manifold and G a locally compact Lie group.

Here, ”Map” stands for any functional setting of interest, but we will restrict ourselves

throughout this paper to the groups GM = Ck
0 (M,G) of smooth compactly supported

mappings, for the sake of simplicity.

One of the main motivations for the study of these groups is that they play an impor-

tant role in the context of gauge theories, and the understanding of their representation

theory would make easier the construction of quantum theories. Another main motivation

was the generalisation of distribution theory to a non-commutative setting. Indeed, I.M.

Gelfand and his collaborators remarked that irreducible unitary representations of GM

give natural non-commutative generalisations of the unitary characters of CM , that are

nothing but complex exponentials of distributions on M . Finally, the discovery of affine

Kac-Moody algebras and groups (loop groups), special cases of gauge algebras and groups

for which M = T 1, has generated an important activity in the field. There is now a quite

well understood highest weight representation theory for affine Kac-Moody algebras, that

integrates to a unitary representation theory for the corresponding Kac-Moody groups [1]

[2].

Unfortunately, such algebraic techniques fail to generalize to higher-dimensional M

manifolds [3], [4], except in some particular cases [2], [5], [6].

In this paper, we will be concerned with the non-commutative distributions point of

view (see e.g. [7], [8], [9], [10], [11]; see also [12], [13] for topological background). In [14],

the authors constructed an irreducible unitary representation of SL(2,R)M , realised in six

different ways. It was in particular realised as a continuous tensor product [15], [16],[17],

and generalised later to any locally compact group with a non-trivial representation-valued

first cohomology group (notice that such an assumption excludes all the simple groups,

except SO0(n, 1) and SU(n, 1)). The construction was modified later, to apply to compact

groups, yielding the so-called energy representations [18] [19] [20]. Such representations

have been widely discussed in the literature (see [7] and references therein). They are

essentially based on an extension of the compact group by a nilpotent group, yielding

the first order Leibniz group of G, to which the previous construction can be applied.

The use of Leibniz groups has also been proposed in [17]. We study here the three first
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Leibniz extensions of a compact group G, to investigate the possibility of constructing

associated continuous tensor product representations of GM . Using Mackey’s induced

representations theory, we classify their irreducible unitary representations, and study the

neighborhood of the trivial representation (which is closely connected to the representation-

valued cohomology groups of order 1).

In particular, we show that the Leibniz extensions of order 2, G2
m, do not yield non

trivial continuous tensor product representations of GM . In the case of the Leibniz exten-

sions of order 3, G3
m, we show that the trivial representation is not isolated in Ĝ3

m (where

Ĝ stands for the unitary dual of G). Unfortunately, we do not have for the moment any

example of associated representation of GM . Finally, returning to the case of the first

order Leibniz extension, we describe some associated energy representations.

Dedication :

This paper was written after the untimely departure of our dearest friend Raphael

Høegh-Krohn, early 88. It is based on discussions we had with him in Oslo, Bochum and

Marseille, in the two last years of his life as part of a general project on the study of

non-commutative distributions, in which Raphael had been a most inspiring force.

In fact, in the last years of his life he was deeply concerned with noncommutative

distributions which he considered as basic structures of universal relevance, natural infinite-

dimensional extensions of Lie groups. The present study, to which he also provided the

basic ideas, was for him just a component in a greater design. It was extremely sad to

carry through this work without him and we missed very much his deep insight.

We dedicate this paper to his beloved memory.

II - Non-commutative distributions and the Vershik-Gel-

fand-Graev construction :

Let us start with a short description of the basic concepts of representations of gauge

groups. Let G be a locally compact Lie group, and let M be a Riemannian manifold.

Consider the group (gauge group)

GM = D(M,G) = C∞
0 (M,G)

with pointwise group multiplication :
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(ϕ · ψ)(x) = ϕ(x) ψ(x) ϕ,ψ ∈ GM , x ∈M

Such an infinite-dimensional group can be provided with a Schwartz topology (see

[7]). We will be interested in (strongly) continuous unitary representations

U : GM → GL(H)

of GM in a Hilbert space H, which provide non-commutative distributions on M , as ex-

plained in the introduction.

The simplest example is a non-commutative version of the delta distribution : pick

x0 ∈M , and let π be a unitary representation of G. Then

U : f ∈ C∞
0 (M,G) → U(f) = π[f(x0)]

is a non-commutative distribution on M , located at x0. The first non-located G-valued

distribution was constructed in [14], [15] as follows. Let π be an orthogonal representation

of G in the Hilbert space K, and let β ∈ Z1(G,K) be a continuous K-valued 1-cocycle (i.e.

β : G→ K is such that β(gg′) = β(g)+π(g) ·β(g′)) for all g, g′ ∈ G). Let µ be a positive

non-atomic Radon measure on M , and introduce the Hilbert integral :

K̃ =

∫ ⊕

M

dµ(x) Kx (II.1)

where Kx
∼= K , x ∈M .

One then has an action of C∞
0 (M,G) on K̃ :

π̃(f) =

∫ ⊕

M

dµ(x)π[f(x)] ∈ GL(K) (II.2)

and an associated one-cocycle :

β̃(f) =

∫

M

dµ(x)β[f(x)] ∈ K̃ (II.3)

Let now H̃ = SKC be the symmetric Hilbert space of KC, the complexification of the

closure K of K̃ w.r.t. the norm ‖ · ‖ =< ·, · > 1

2

H̃ =

⊕∑
SnKC =

⊕∑
K⊕n

C , (II.4)
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spanned by the coherent vectors

Exp[k] = 1⊕ k ⊕ k ⊗ k√
2!

⊕ ..... k ∈ KC . (II.5)

From π̃ and β̃ one can build a unitary (projective) representation of C∞
0 (M,G) on H̃, as

follows :

U [f ] · Exp[h] = e−
1

2
‖β̃(f)‖2

e−<π̃(f)·h,β̃(f)> Exp[π̃(f) · h+ β̃(f)] , (II.6)

the projective factor (or 2-cocycle) being given by

ω(f, g) = Im < β̃(f), π̃(f) · β̃(g) > (II.7)

Moreover, this projective representation can be turned into a true representation if

one can find some function γ : GM → R such that :

ω(f, g) = γ(f · g)− γ(f)− γ(g) . (II.8)

Then Uγ = e−iγ · U is a true representation of G.

Remark : If one chooses to work with real Hilbert spaces only, then the 2-cocycle vanishes

identically, and U = U0 is a true representation.

The starting point of the above construction was a unitary representation π of G, and

a continuous 1-cocycle β. It has been shown in [14] and [21] that a necessary condition

for U to be irreducible is that β /∈ B1(G,K). However, the groups H1(G,K) are closely

connected to the neighborhood of the trivial representation in the unitary dual Ĝ of G.

G is said to satisfy the Γ property if the trivial representation is not isolated in Ĝ

[22], (we recall that the canonical topology in Ĝ is not Hausdorff separated). In [23] and

[21], it was shown that if G has the Γ property, then H1(G,H) 6= {0} for some irreducible

unitary representation π : G→ U(H).

Moreover, if the irreducible unitary representation π : G → U(H) is such that

H1(G,H 6= {0}, then π is non separated from the trivial representation 11G in Ĝ, [24] :

(π is called in [24] an infinitely small representation of G). The neighborhood of 11G in Ĝ

is then an interesting object to study. Notice that in [15], the continuous tensor product

representation is also realised as an inductive limit of finite tensor products fo ”smaller
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and smaller” representations of G (in that case in the supplementary series of SL(2,R)),

converging to the trivial one.

III - The jet groups Gk
m and their representations :

In the case of compact groups, all unitary irreducible representations are square-

integrable, and form a discrete series. The trivial representation is then isolated, and the

previous construction fails. However, such a disease can be cured by the following trick :

it is sufficient to find an embedding :

j : G →֒ G′ (III.1)

into a bigger group G′, such that H ′(G1,H) is non trivial for some irreducible unitary

representation in H. Then one can build continuous tensor product representations of

G′M , and use the j embedding to get a representation of GM . The irreducibility of such

representations must be studied separately. In [18], and in [20], [25], the authors considered

the first jet groups G1
m of G to start with, mentioning the possibility of using higher order

extensions. We consider here jet groups of order 1, 2 and 3.

III - 1 Structure of jet groups :

Let G be a locally compact Lie group, andM a Riemannian manifold of dimension m.

With G and M are canonically associated the corresponding jet extensions Gk
m, defined as

follows. Consider the current group Ck
0 (M,G), and the subgroup

GM
x0,k

= {ϕ ∈ Ck
0 (M,G) , ϕ(x0) = e, (Dαϕ)(x0) = 0 ∀ α ∈ Nm , 1 ≤| α |≤ k} (III.2)

for some x0 ∈M . It follows from Leibniz’s derivation rule that GM
x0,k

is a normal subgroup

of the current group Ck
0 (M,G), so that the coset space

Gk
m = Ck

0 (M,G)/GM
x0,k

(III.3)

inherits a group structure(1). Let [ϕ] ∈ Gk
m denote the equivalence class of ϕ ∈ Ck

0 (M,G).

Then if ϕ,ψ ∈ Ck
0 (M,G) :

(1) It is easy to see that Gk
m does not depend on x0, which justifies our notation.
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[ϕ][ψ] = [ϕ · ψ] (III.4)

Moreover, if ϕ ∈ Ck
0 (M,G), and modulo a right-trivialization, [ϕ] is in a bijective

correspondence with

[ϕ] ∼= (ϕ(x0), (dϕ · ϕ−1)(x0), . . . [d
k−1(dϕ · ϕ−1)](x0)) (III.5)

where (dϕ · ϕ−1)(x0) denotes as usual the value obtained by right-translation by ϕ−1(x0)

of dϕ−1(x0) ∈ Tϕ−1(x0)M . To simplify the notations, we shall omit the x0 - argument from

now on.

To specify a bit more the structure of Gk
m, it is necessary to introduce some more

ingredients.

Denote by G = Lie (G) the Lie algebra of G, and let A(n) denote the following abelian

group :

A(n) = Gn = G × G × . . .× G (n times) , (III.6)

the direct product of n copies of G, considered as an abelian group. On A(n) one has an

action of G, as the direct product of n adjoint actions of G on G :

ad(g) · (x1, . . . xn) = ((ad(g) · x1, . . . ad(g) · xn) g ∈ G (III.7)

In what follows, we will need two composition laws, denoted by [ , ]⊗ and [ , ]⊗

respectively, and defined by :

[ , ]⊗ : x, y ∈ A(n) → [x, y]⊗ ∈ A(n2) (III.8)

{[x, y]⊗}i,j = [xi, yj ] (III.9)

and

[ , ]⊗ : (x, y) ∈ A(n)×A(n) → [x, y]⊗ ∈ A(n2) (III.10)

by duality, using the (positive-definite) killing form :

< [x, y]⊗, z >=< x, [y, z]⊗ > ∀ z ∈ A(m2) (III.11)

7



We will also make use of the following property, the proof of which follows from simple

computations:

Lemma 2 :

Let ϕ ∈ Ck
0 (M,G), and X ∈ A(m). Then

d[ad(ϕ) ·X] = [dϕ · ϕ−1, ad(ϕ) ·X]⊗ + ad(ϕ) · dX (III.12)

We are now in position to show :

Proposition 3 :

i)

Gk
m

∼= G|×Nk
m , (III.13)

where Nk
m is topologically isomorphic to

Nk
m

∼= A(m)×A(m2)× . . .×A(mk) (III.14)

and the action of G on Nk
m is the adjoint action.

ii) N1
m is the abelian group A(m).

iii) N2
m is a central extension of A(m) by A(m2).

(x1, y1)(x2, y2) = (x1 + x2, y1 + y2 + [x1, x2]⊗) (x1, y1)(x2, y2) ∈ N2
m (III.15)

iv) N3
m is the semi-direct product of A(m) by the (non-abelian) group A(m2)×A(m3)

N3
m

∼= A(m)|×[A(m2)×A(m3)] (III.16)

(x1, y1, z1)(x2, y2, z2) =(x1 + x2, y1 + y2 + [x1, x2]⊗, z1 + z2 + 2[x1, y2]⊗

+ [y1, x2]⊗ + [x1, [x1, x2]⊗]⊗

(x1, y1, z1), (x2, y2, z2) ∈ N3
m (III.17)

Proof : The proof follows from explicit computations
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i) is a direct consequence of (III.5).

ii) Using (III.4) and (III.5), we have :

(ϕ, dϕ · ϕ−1)(ψ, dψ · ψ−1) =
(
ϕψ, d(ϕψ)(ϕψ)−1)

)

=
(
ϕψ, dϕ · ϕ−1 + ad(ϕ) · (dψ · ψ−1)

)
(III.18)

iii) We restrict to the third argument of (ϕ, (dϕ · ϕ−1), d(dϕ · ϕ−1)) ∈ N2
m, and use

Lemma 2. Then

d[dϕ · ϕ−1 + ad(ϕ) · (dψ · ψ−1)] = d(dϕ · ϕ−1)

+
[
dϕ · ϕ−1, ad(ϕ) · (dψ · ψ−1)

]
⊗
+ ad(ϕ) · [d(dψ · ψ−1)] (III.19)

which yields (III.15).

iv) We now focus on the fourth component of the product

(ϕ, dϕ · ϕ−1, d(dϕ · ϕ−1), d2(dϕ · ϕ−1)) · (ψ, dψ · ψ−1, d(dψ · ψ−1), d2(dψ · ψ−1))

that reads

d[d(dϕ · ϕ−1) + [(dϕ · ϕ−1), ad(ϕ) · (dψ · ψ−1)]⊗ + ad(ϕ) · d(dψ · ψ−1)]

= d2(dϕ · ϕ−1) + [d(dϕ · ϕ−1), ad(ϕ) · (dψ · ψ−1)]⊗

+ 2[(dϕ · ϕ−1), ad(ϕ) · [d(dψ · ψ−1)]]⊗ + ad(ϕ) · d2(dψ · ψ−1)

+ [(dϕ · ϕ−1), [dϕ · ϕ−1, ad(ϕ) · (dψ · ψ−1)]⊗]⊗ (III.20)

and this proves (III.17) and completes the proof of the proposition.

In the next section, we will also use the following properties of N3
m, that are direct

consequences of proposition 3 :

Lemma 4 :

i) Let (x, y, z) ∈ N3
m. Then

(x, y, z)−1 =(−x,−y + [x, x]⊗,−z + 2[x, y]⊗ + [y, x]⊗

−[x, [x, x]⊗]⊗) (III.21)

ii) A(m2)×A(m3) is an abelian normal subgroup of N3
m : if (b, c) ∈ A(m2)×A(m3) :

9



ad(x, y, z) · (0, b, c) = (0, b, c+ 2[x, b]⊗ − [b, x]⊗) (III.22)

∀ (x, y, z) ∈ N3
m.

III - 2 Representation theory

We will now make use of the assumption that G is compact simple. We discuss in this

section the representation theory of the previously considered jet groups. More precisely,

we will focus on the neighborhood of the trivial representation in their unitary dual Ĝk
m.

In all cases, we will use Mackey’s induction theory (see [26] for a review).

a) First order group :

The case of the first order Leibniz group is fairly simple, and the result is already well

known (see e.g. [26]). We sketch the construction here. Let

χT = ei<T,·> (III.23)

be a multiplicative character of A(m), and let OT be the G-orbit through χT (here

T ∈ G⋆ ⊕ . . .⊕ G⋆, where G∗ is the dual of G). Let GT ⊂ G be the stability group of χT :

GT = {g ∈ G1
m, ad

⋆(g) · χT = χT } (III.24)

As usual, A(m) is a normal subgroup of GT , and

GT = HT |×A(m) (III.25)

(|× standing for semidirect product) where

HT = GT /A(m)

Let

T = (t1, . . . tm) ∈ A(m)⋆ = G⋆ ⊕ . . .⊕ G⋆

Since we will focus on the neighborhood of the trivial representation, we can restrict

ourselves to the case of regular ti’s. Then HT is a torus of G, of dimension say n. It is

easy to see that χT can be extended to a character of GT , denoted by χe
T :

10



χe
T (h, x) = χT (x) (h, x) ∈ GT . (III.26)

Let χα : HT → C

χα(ξ) = ξα ξ ∈ HT (III.27)

be an arbitrary character of the compact abelian group HT and let χe
α be its extension to

GT . Let finally

χ = χe
α ⊗ χe

T (III.28)

denote the Kronecker product of χe
α and χe

T . Then, since N1
m is of type I, the correspon-

dence

χα ↔ U = IndGGT
(χ) (III.29)

is a one-to-one correspondence between

- The characters of HT

- The unitary irreducible representations of G1
m whose quasi-orbits are concentrated

on OT .

Let us now study the limit T → 0 (i.e. ti → 0, i = 1, . . .m). U acts on the Hilbert space

H ∼= L2
(
GT

\G1

m

)
∼= L2

(
HT

\G
)

(III.30)

Let u, v ∈ H. A simple calculation shows that

< u, U(g, x) · v > −→
T→0

u(e)v(e) (III.31)

so that U → 11 weakly. We have then exhibited a sequence of non-trivial irreducible unitary

representations converging to the trivial one. Thus the trivial representation is not isolated

in Ĝ1
m.

Remark : Set directly T = 0 ; then χT extends to the trivial representation of G1
m, and

then any representation of G1
m that is trivial on N1

m is an extension πe of an irreducible

unitary representation π of G on H. Let β be a continuous 1-cocycle associated with πe.

It then follows from the cocycle property that

11



(e, x) = π(g) · β(e, ad(g)−1 · x) ∀ (g, x) ∈ G1
m (III.32)

This implies that the linear operator U : x ∈ g → U · x = β(e, x) ∈ H intertwines

π and the adjoint representation, if β is non-trivial. Then the non-triviality of β implies

that π is unitarily equivalent to the adjoint representation. An example of a non-trivial

1-cocycle is well known : the so-called Maurer-Cartan cocycle β(g, x) = x.

b) Second order group :

As stressed in Proposition 3, N2
m is a central extension of A(m) by A(m2). We shall

now study the representations of N2
m. Let

χT = ei<T,·> (III.33)

be a multiplicative character of A(m2). Here T ∈ A(m2)⋆.

Denote by NT = {n ∈ N2
m, Ad

⋆(n) · T = 0} the stability group T . NT is a normal

subgroup. Set

HT = NT /A(m
2) (III.34)

We set H0 = A(m)/HT . Let BT be the skew 2-form on A(m), defined by

BT (x, x
′) =< T, [x, x′]⊗ > x, x′ ∈ A(m) (III.35)

BT is clearly non-degenerate on H0. It is then possible to find a maximal isotropic

H0-subgroup, denoted by H2 :

H0 = H1 ×H2 (III.36)

Let χα = ei<α,·> and χβ = ei<β,·> be two characters of H2 and HT respectively and

let

χαβ = χe
α ⊗ χe

β (III.37)

where χe
α and χe

β are the extensions of χα and χβ to H0. Finally, if χe
αβ and χe

T are the

extensions of χαβ and χT to NT , the correspondence

χαβ → χ = χe
αβ ⊗ χe

T (III.38)
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is a one-to-one correspondence between the characters of H2 and the characters of NT

whose restriction to A(m2) is χT .

To proceed further, let us induce from NT to N2
m. Let

χ(h2 + z, y) = ei<α,h2> ei<β,z> ei<T,y>, h2 ∈ H2, z ∈ HT , y ∈ A(m2) (III.39)

Let H = H2 ×HT ×A(m2)

H =
{
f : N2

m → C, measurable, f ∈ L2
(
H\N2

m , µ
)
,

f(hn) = χ(h)f(n) ∀ h ∈ H, n ∈ N2
m

}
(III.40)

for some quasi-invariant measure µ on H\N2

m , and let U = Ind
N2

m

H (χ). Then

[U(h1, h2, z, y) · f ](x, 0, 0, 0) = ei<α,h2> ei<β,z>

ei<T,y+z[x,h2]⊗+[x,h1]⊗+[h1,h2]⊗> f(x+ h1, 0, 0, 0) (III.41)

Let us now look for representations of G2
m. Starting from the previous representation

U , one looks for its stability G2
m-subgroup :

GU = {(g, x, y) ∈ G2
m, U (g,x,y) ∼= U} (III.42)

where

U (g,x,y)(n) = U [ad(g, x, y) · n] n ∈ N2
m, (g, x, y) ∈ G2

m (III.43)

Then, with ∼= denoting isomorphism:

GU
∼= {g ∈ G, ad⋆(g) · α = α, ad⋆(g) · β = β, ad⋆(g) · T = T}|×N2

m (III.44)

and if α, β, T are regular elements of A(m2), GU is a torus of G, times N2
m.

In general, U does not extend to a representation of GU . However, by general

results [26], there exists a (unique up to equivalence) 2-cocycle σ of GU/N
2
m and a
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σ-representation Ue of GU that extends U to GU . Let V be a 1
σ
-representation of GU/N

2
m,

let Ve the representation of GU defined by

Ve(ng) = Ve(g) ∀ n ∈ N2
m, g ∈ G (III.45)

and define

Γ = Ve ⊗ Ue

Γ is a unitary representation of GU on some Hilbert space K, and all the representa-

tions of G2
m are obtained as

Π = IndG
2

m

GU
(Γ) (III.46)

The representation space of Π is

HΠ = {f : G2
m → K,measurable;

f ∈ L2
(
GU

\G2

m

)
; f(hg) = Γ(h) · f(g) ∀ h ∈ GU} (III.47)

and Π acts on f ∈ HΠ as

[Π(g, x, y) · f ](h, x′, y′) = f(h, x′, y′)(g, x, y) (III.48)

Setting α = β = 0, and letting T → 0, one can see that such a sequence of irreducible

unitary representation converges to the extension of U to G2
m, which is nontrivial.

Thus the trivial representation is an isolated point in Ĝ2
m, and

H1(G2
m,H) = {0} (III.49)

for any irreducible unitary G2
m-module H.

Remark : J. Pichaud [27] has proved that if H is a closed cocompact subgroup of a locally

compact locally connected separable group G, then

H1(G,H′) ∼= H1(H,H)
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for any separable irreducible unitary H-module H, and with H′ the G-module induced

from H in the sense of Mackey. In the case of G2
m, it is easy to see from (III.41) - (III.46)

that the trivial representation is isolated in ĜU , which in turn implies (III.49).

c) Third order group :

Since N3
m is connected and nilpotent one knows that H1(N3

m,H) = {0} for any irre-

ducible unitary N3
m-module H. However, it is not possible to use directly such a result for

the representations of G3
m.

We first look at the representations of N3
m. It follows from section III.1 that

N3
m = A(m)×A (III.50)

where A = A(m2)×A(m3) is an abelian group.

Let T = (τy, τz) ∈ A(m2)⋆ ⊕A(m3)⋆, and let

χT (y, z) = ei<τy,y> ei<τz,z>, (y, z) ∈ A (III.51)

be the corresponding character of A. Let n = (x, y, z) ∈ N3
m, and set

χn
T (u, v) = χT (ad(x, y, z) · (u, v))

= χT (u, v + 3[x, u]⊗) (III.52)

Then χn
T
∼= χT if and only if [x, τz]⊗ = 0. Let NT = {n ∈ N3

m, χ
n
T
∼= χT }, and assume

that all the components of τz are regular elements of G. Then NT /A is an intersection of

Cartan subalgebras of G, and is thus abelian. Extend χT to NT by

χe
T (x, y, z) = χT (y, z) (x, y, z) ∈ NT (III.53)

A simple calculation shows that χe
T is indeed a representation of NT . Now let χα be

a character of NT (A), χ
e
α its extension to NT , and set :

χ = χα ⊗ χT (III.54)

Let U = IndN
3

m

NT
(χ). U acts on
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H =
{
f : N3

m → C, measurable,

∫

NT
\N3

m

| f |2 dµ <∞,

f(hn) = χ(h)f(n) ∀ h ∈ NT } (III.55)

as :

[U(n+ ξ, y, z) · f ](u) = χα(ξ) e
i<τy,y+2[u,ξ]⊗+[u,n]⊗−[ξ,n]⊗>

ei<τz,z+3[u,y]⊗+[n,y]⊗+2[u[u,n+ξ]⊗]⊗+[n,[u,n+ξ]⊗]⊗−[ξ,[ξ,u+n]⊗]⊗>

f(u+ n) (III.56)

Let GT = HT |×A be the stability group of U . Then HT is a torus in G, and U
extends to a σ-representation Ue of GT (for some σ ∈ H2(HT , S

1)). Let τ ∈ H2(HT , S
1),

cohomologous to σ−1. Then if V is any irreducible τ -representation of HT and Ve its

extension to GT , the correspondence

V ↔ Π = IndGGT
(Ve ⊗ Ue) (III.57)

is a one-to-one correspondence [26].

The same arguments as in section III.2.a permit to exhibit generalized sequences

of nontrivial unitary irreducible representations that converge weakly to the trivial one.

Nevertheless, it is not possible to deduce the triviality or non-triviality of the H1(G3
m,H)

cohomology groups from such a result alone, and we have to leave open this problem for

the time being.

d) Summary :

The results of the current section can be summarized as follows :

Theorem 5 :

Let Gk
m be the Leibniz extension of order m and degree k of a compact simple group

G.

i) There exist irreducible unitary G1
m-modules H such that H1(G1

m,H) is non-trivial.

ii) H1(G2
m,H) is trivial for any irreducible unitary G2

m-module H.

iii) The trivial representation is not isolated in Ĝ3
m.
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IV - Conclusion

We have investigated in this paper the irreducible unitary representations of the three

first Leibniz extensions Gk
m of a compact simple Lie group G, focusing on the neighborhood

of the trivial representation.

The motivation was the generalization of the energy representation of D(M,G) to

such contexts. By known results, such a generalization is only possible when there exists

an irreducible unitary representation π : Gk
m → U(H) such that H1(Gk

m,H) is nontrivial.

Moreover the continuous cohomology groupsH1(Gk
m,H) are closely related to the structure

of Ĝk
m, and more precisely to that of the neighborhood of the trivial representation.

We have shown that the trivial representation is isolated in Ĝ2
m, while it is not isolated

in Ĝ1
m and Ĝ3

m. This implies that all the unitary representation valued cohomology groups

of G2
m are trivial, and that there does not exist a second-order generalization of the energy

representation. The order one case was already studied before, and leads to the standard

energy representation and some generalizations [7]. In the case of third order Leibniz

group, our result, that the trivial representation is not isolated in Ĝ3
m, does not permit

by itself to deduce the triviality or nontriviality of the H1 groups. This shows the limits

of the approach we have taken. The trival representation can be non-isolated in Ĝk
m,

without being able to deduce relevant informations about triviality or non-triviality of

the corresponding H1 groups. Another limit of our approach is that the structure of the

nilpotent groups is too complex to allow explicit computations at any order. N1
m is quite

simple, N2
m a bit more complex, and N3

m much more difficult.

It would be much better to try to compute directly the H1 groups, using spectral

sequences, but at present this has not been done.
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