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Abstract

We consider various approximations of artificial boundary conditions for linearized Benjamin-Bona-
Mahoney equation. Continuous (respectively discrete ) artificial boundary conditions involve non local
operators in time which in turn requires to compute time convolutions and invert the Laplace transform
of an analytic function (respectively the Z-transform of an holomorphic function). In this paper, we
derive explicit transparent boundary conditions both continuous and discrete for the linearized BBM
equation. The equation is discretized with the Crank Nicolson time discretization scheme and we
focus on the difference between the upwind and the centered discretization of the convection term.
We use these boundary conditions to compute solutions with compact support in the computational
domain and also in the case of an incoming plane wave which is an exact solution of the linearized
BBM equation. We prove consistency, stability and convergence of the numerical scheme and provide
many numerical experiments to show the efficiency of our tranparent boundary conditions.

1 Introduction

The Benjamin-Bona-Mahony (BBM) equation is a classical nonlinear, dispersive equation which model
the unidirectional propagation of weakly nonlinear, long waves in the presence of dispersion. It is written
as

(1)
(

1− µ

6
∂2x

)
∂tu+ ∂xu+

3ε

2
u∂xu = 0, ∀t > 0, ∀x ∈ R.

where ε > 0 is the nonlinearity parameter, µ the shallowness/dispersion parameter and ε, µ have the same
order (see [L] for more details on the derivation of this particular equation). It is usually proposed as an
analytically advantageous alternative to the well-known Korteweg-de Vries equation

(2) ∂tu+ ∂xu+
3ε

2
u∂xu+

µ

6
∂xxxu = 0, ∀t > 0, ∀x ∈ R.

Note that these two equations are asymptotically equivalent in the limit ε = µ → 0 since, ∂3xxxu =
∂3txxu+O(µ) but enjoy different properties. Moreover, they both possess solitary waves and cnoidal waves
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solutions. The most striking difference lies in the dispersive properties of each equation. Indeed, the
dispersion relation for plane wave solutions of the linearized (ε = 0) (KdV) and (BBM) equations of the
form u(x, t) = ei(kx−ωt) are given by

ωkdv(k) = k − µ

6
k3, ωbbm(k) =

k

1 +
µ

6
k2
.

Hence, the sign of the phase speed depends on the wave number and is unbounded in the case of the
Korteweg-de Vries equation whereas the phase speed is always non negative and bounded for the Benjamin-
Bona-Mahony equation which is more consistent with the full water wave problem. The difference between
the two equations is also seen regarding the regularizing effect of the dispersive terms on the solutions of
the Burgers equation

∂tu+ ∂xu+ u∂xu = 0.

Dispersive regularization of hyperbolic conservation laws is known to generate so-called dispersive shock
waves. In contrast to their diffusive counterparts, dispersive shocks have an oscillatory structure and
expand with time so that the Rankine-Hugoniot jump conditions are not satisfied. There is a huge
literature on these particular patterns for the Korteweg-de Vries equation whereas less is known for
the Benjamin-Bona-Mahony equation. In the case of the BBM equation, shock type solutions without
oscillations can be constructed whereas they do not exist for the KdV equation: see [EHS] for more details.

The numerical simulation of such patterns is a hard task: usually, such equations are solved by using
spectral techniques which are particularly suitable to describe oscillatory phenomena but suppose that
periodic boundary conditions are imposed to the edge of the computational domains. Moreover, due to
the fact that the oscillatory part of the dispersive shock wave expands in time, one has to take larger and
larger computational domain which, in turn, imply high computational costs [K]. In addition, one should
mention that the dynamic of dispersive equations is dramatically changed depending they are set on the
whole space or in a periodic domain: in the latter case, small amplitude waves cannot scatter to infinity
and stay in the computational domain forever.

Instead, one can imagine a more appropriate strategy based on the transparent boundary conditions
(TBC): this consists in deriving suitable boundary conditions so that the solution calculated in the
computational domain is an approximation of the exact solution restricted to the computational domain.
These artificial boundary conditions are called absorbing boundary conditions (ABC) if they lead to a
well-posed initial boundary value problem where some energy is absorbed at the boundary. See [AABES]
for a review on the techniques used to construct such transparent or artificial boundary conditions for the
Schrödinger equation.

In this paper, we focus on the linearized BBM equation

(3) ∂t (u− ε∂xxu) + c∂xu = 0 ∀t > 0, ∀x ∈ R,

where ε is the dispersion parameter and c > 0 is a velocity. We complement this equation with an initial
datum u(0, x) which has compact support in [x`, xr].

The aim of this paper is to derive transparent boundary conditions for (3),to give consistency error
estimates and to prove convergence of the numerical approximation and to implement these boundary
conditions numerically. At this stage, there are two distinct strategies. The first strategy consists in
computing the continuous transparent boundary conditions and then implement these conditions numer-
ically. Though, there is no clear strategy about how to discretize these boundary conditions which may
lead to ill-posed numerical problem (see [H] for more details in the case of the wave equation). A more
robust strategy consists in discretizing the equations both in time and space and then deriving the suitable
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artificial boundary conditions for the fully discrete problem by using the Z-transformation: see [BEL-V]
for an application in the case of the linearized KdV equation. This is the strategy we will follow in this
paper. We shall mention here that in contrast to [BEL-V], we can compute these discrete transparent
boundary conditions explicitly.

The paper is organized as follow. In section 2, we apply the ideas found in [ZWH] to obtain the con-
tinuous transparent boundary conditions for the linearized BBM equation (3). In section 3, we present
two appropriate space and time discretization of (3) and explain the procedure to derive discrete trans-
parent boundary conditions. We focused on and compare two spatial discretizations of the convection
term which are the upwind scheme and the centered scheme. The first scheme is of particular importance
when we will later have to deal with the nonlinear hyperbolic term. The centered scheme is higher order
but one has to be careful in a nonlinear setting where it can generate numerical dispersion and instability.
In both cases, we prove the stability, the consistence of the discrete transparent boundary conditions
with the continuous ones and the convergence of the numerical scheme. Note that this latter point was
already carried out (even at the non linear level) in [AKO] but with simpler Dirichlet boundary conditions
which are not suitable to deal with travelling wave solutions (wave packets, solitons, dispersive shocks).
Finally, in section 4, we present some numerical simulation to illustrate our findings: we performed three
types of simulation. The two first numerical exemples are directly inspired by the theory: we consider a
Gaussian and a wave packet initial data. The last exemple is inspired by problem of wave generation in a
computational domain. Here, we show how to inject a travelling wave solution of the linear BBM in the
computational domain.

2 Transparent boundary conditions in the continuous case

In this section, we show how to derive transparent boundary conditions in the continuous case and show
their stability: this will be a guideline in the construction of discrete transparent boundary conditions.
The construction of continuous artificial boundary conditions associated equation (3) is established by
considering the problem on the complementary of [x`, xr],

∂t (u− ε∂xxu) + c∂xu = 0, ∀t > 0, ∀x < x` or ∀x > xr,

u(0, x) = 0, ∀x < x` or ∀x > xr,

u(·, x)→ 0, x→ ±∞.

The Laplace transform of u with respect to time, defined for all s ∈ C such that <(s) > 0 by

L(u(., x))(s) =

∫ ∞
0

exp(−s t)u(t, x)dt

satisfies

s
(
L (u(., x))− ε∂2xL (u(., x))

)
+ c ∂xL (u(x, .)) = 0, ∀x < x` or ∀x > xr,

L (u(., x))→ 0, x→ ±∞.

Then L(u(., x)) is given by

L (u(., x)) (s) = A+
r exp (ξ+(s)(x− xr)) +A−r exp (ξ−(s)(x− xr)) , ∀x > xr,

L (u(., x)) (s) = A+
` exp (ξ+(s)(x− x`)) +A−` exp (ξ−(s)(x− x`)) , ∀x < x`,
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with ξ±(s) =
1

2ε

(
c

s
± c

s

√
1 +

4ε

c2
s2

)
, where the branch of the complex square root is taken such that its

real part is positive. We assume that c > 0: then , for all s ∈ C such that <(s) > 0, one has <(ξ+(s)) > 0
and <(ξ−(s)) < 0. As a consequence, the condition L (u(., x)) as x → ±∞ implies A−l = 0 and A+

r = 0
so that one has the boundary conditions:

(4) ∂xL (u(., xr)) (s) = ξ−(s)L(u(., xr))(s), ∂xL (u(., x`)) (s) = ξ+(s)L (u(., x`)) (s).

Back to the original coordinates, one finds

(5)
∂2txu(t, xr) =

1

2ε

(
c u(t, xr)−

1

2
√
ε

∫ t

0
J0(

c s

2
√
ε

)(c2 + 4ε∂2t )u(t− s, xr)ds
)
,

∂2txu(t, x`) =
1

2ε

(
c u(t, x`) +

1

2
√
ε

∫ t

0
J0(

s c

2
√
ε

)(c2 + 4ε∂2t )u(t− s, x`)ds
)
,

where J0 is the Bessel function of the first kind defined for all t ∈ R by J0(t) =
1

2π

∫ π

−π
exp(−i t sin(θ))dθ.

We prove that these boundary conditions satisfy the following property:

Proposition 2.1. The linearized BBM equation (3) with the boundary conditions (5) is L∞t (L2
x([x`;xr]))

stable:∫ xr

x`

(
u2 + ε(∂xu)2

)
(t, y)dy −

∫ xr

x`

(
u2 + ε(∂xu)2

)
(0, y)dy

+
c

4π

∫
R
<

(√
1− 4ε

c2
ξ2

)(
|L(U(., x`))(ξ)|2 + |L(U(., xr))(ξ)|2

)
dξ = 0,

with U(t, x) = u(t, x)1[0,T ](t) for T > 0 sufficiently large.

Proof. We multiply equation (3) by u and integrate on the interval [x`, xr]:

d

dt

∫ xr

x`

u2(t, y)

2
dy − ε

∫ xr

x`

∂3txxuu(t, y)dy + c

[
u2

2

]xr
x`

= 0.

Then, by integrating by parts, one finds

(6)
d

dt

∫ xr

x`

u2(t, y)

2
+ ε

(∂xu)2(t, y)

2
dy +

[
c
u2

2
− ε∂2xtuu

]xr
x`

= 0.

Let us denote E(t) =

∫ xr

x`

u2(t, y)

2
+ ε

(∂xu)2(t, y)

2
dy. Then, by integrating (6) with respect to time, one

finds

E(t)− E(0) +

∫ t

0

[
c
u2

2
− ε∂2xtuu

]xr
x`

dt = 0.

Set J` =

∫ t

0
c
u(x`, s)

2

2
− ε∂2xtu(x`, s)u(x`, s)ds and U(t) = u(t, x`)1[0,T ], V (t) = ∂xu(t, x`)1[0,T ] with T
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sufficiently large: one has

J` =

∫ t

0
c
U(t)2

2
− εU(t)V ′(t)dt =

∫
R
c
U(t)2

2
− εU(t)V ′(t)dt

=
1

2π

∫
R
c
|L(U)(ξ)|2

2
− iξεL(U)(ξ)L(V )(ξ)dξ

=
1

2π

∫
R
c
|L(U)(ξ)|2

2
− iξεL(U)(ξ)

1

2ε

(
c

iξ
+

c

iξ

√
1− 4ε

c2
ξ2

)
L(U)(ξ)dξ

=− c

4π

∫
R
<

(√
1− 4ε

c2
ξ2

)
|L(U)(ξ)|2dξ.

Similarly, if one denotes U(t) = u(t, xr)1[0,T ], V (t) = ∂xu(t, xr)1[0,T ] with T sufficiently large: one has

Jr =

∫ t

0
c
u2

2
− ε∂2xtu(xr, s)u(xr, s)ds =

c

4π

∫
R
<

(√
1− 4ε

c2
ξ2

)
|L(U)(ξ)|2dξ,

which completes the proof of the proposition.

Though being completely explicit, the transparent boundary conditions (5) are hardly implemented nu-
merically. A major issue is to make the discretization of those boundary conditions with the numerical
scheme used to discretize the BBM equation. An alternative approach consists in deriving directly discrete
transparent boundary conditions. For that purpose, we mimic the previous analysis at the discretized
level: the analogous of the Laplace transform is the Z-transform whereas the ODE problem is transformed
into a linear recurrence problem.

3 Discrete Artificial boundary conditions

In this section, we present two different Crank Nicolson type space-time discretizations of the linear BBM
equation (3) on the bounded space domain [x`;xr] and we implement discrete boundary conditions for
the two schemes. The first discretization leads to an upwind transport and centered dispersion scheme
and the second one to a centered transport and dispersion scheme. These two schemes preserve the L2

stability of the equation (see later Proposition 3.6 and 3.11) which is essential for this kind of hyperbolic
structure.

As one shall see in Section 4, the numerical implementation of the second scheme gives a better
approximation of the exact solution than the first one. In particular, the convergence rate with respect to
the space step is only of order 1 in the first case compared to an order 2 in the second case. However, the
centered dispersion/upwind transport scheme is more adapted to deal with a non-linearity of the form
u∂xu and thus in view of working with the fully non-linear BBM equation (1), we choose to present both
schemes in this paper.

Let us now introduce some notations that will be used throughout the paper. We choose a time step
δt > 0 and a space step δx > 0. We set:

J + 1 =
xr − x`
δx

.
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The goal is to compute an approximation unj of the exact solution u of the linear BBM equation (3) on
the finite domain [x`;xr] at points jδx and instants nδt with 0 ≤ j ≤ J + 1 and n ∈ N:

∀n ∈ N,∀j ∈ [0; J + 1], unj ≈ u(nδt, x` + jδx).

Note that the choice of J + 1 instead of J is made to have J "interior points" and two "exterior points"
corresponding to x = x` and x = xr. This latter two points play an important role in the derivation of
the discrete transparent boundary conditions.

3.1 Centered dispersion/Upwind transport

In this section, we consider the following Crank Nicolson discretization of the linear BBM equation (3):(
un+1
j − ε

δx2
(un+1
j+1 − 2un+1

j + un+1
j−1 )

)
−
(
unj −

ε

δx2
(unj+1 − 2unj + unj−1

)
+
cδt

2δx

(
(un+1
j − un+1

j−1 ) + (unj − unj−1)
)

= 0, ∀ j ∈ N.(7)

For the sake of clarity, one sets:

α =
ε

δx2
, λ =

cδt

2δx
.

The numerical scheme then reads for j ∈ N:

−(α+ λ)un+1
j−1 + (1 + 2α+ λ)un+1

j − αun+1
j+1 = −(α− λ)unj−1 + (1 + 2α− λ)unj − αunj+1.

In view of a numerical approximation of the solutions of the linear BBM equation on the bounded space
domain [x`;xr], one looks for the computation of ujn for all n ∈ N and all j ∈ [0; J + 1]. The equations for
j = 1 and j = J involve the values uk0 and ukJ+1 for k = n and k = n + 1 which corresponds to discrete
boundary conditions. The goal of this section is to derive transparent boundary conditions for the upwind
Crank Nicolson scheme (7).

We first compute these boundary conditions in terms of Z-transforms of the sequences (unj )n∈N for
j = 0 and j = J+1. We then give an explicit formulation of these boundary conditions. Finally, we prove
that this scheme coupled with the derived discrete boundary conditions is convergent to the solution of
the continuous boundary problem with continuous transparent boundary conditions (5).

3.1.1 Discrete transparent boundary conditions for the upwind Crank Nicolson scheme

The discrete equivalent of the Laplace transform of the continuous case (see Section 2) is the Z-transform.
We denote ûj(z) the Z-transform of (unj )n∈N:

ûj(z) = Z{(unj )n∈N}(z) =
∞∑
k=0

ukj z
−k, |z| ≥ R > 0

(see also Definition A.1). In order to derive the discrete boundary conditions, we apply the Z-transform
to the numerical scheme (7) and we obtain, using the shift result of Theorem A.2:

(8) 2αûj+1 − 2(1 + 2α+ λδ(z))ûj + 2(α+ λδ(z))ûj−1 = 0,

with

(9) δ(z) =
z + 1

z − 1
.
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Note that the initial value does not enter into account here since u0j = 0 for all j ≤ 0 and j ≥ J+1 (recall
that the initial data is compactly supported in [xr, x`]). From now on we choose R > 1 in the definition
of the Z-transform û given by Definition A.1. The solutions of the second order linear recursion (8) are
written as

(10) ûj(z) = A+ r+(z)j +A− r−(z)j , ∀j ≤ 0, ∀j ≥ J + 1,

where the roots r±(z) are given by

(11) r±(z) =
1 + 2α+ λδ(z)±

√
1 + 4α+ 2λδ(z) + λ2δ(z)2

2α
.

In order to describe the transparent boundary conditions, we first need to determine the modulus of r±(z)
for all z such that |z| > ∆ > 1. Note that r±(z) are smooth functions of λδ(z). In what follows, we set
p = λδ(z) ∈ C+ = {z̃ ∈ C, | <(z̃) > 0} (notice that the function δ defined by (3.1.1) maps the disc
D(0, R) into C+).

Proposition 3.1. For all p ∈ C+, the functions r+(p) and r−(p) defined as

r+(p) =
1 + 2α+ p+

√
1 + 4α+ 2p+ p2

2α
, r−(p) =

1 + 2α+ p−
√

1 + 4α+ 2p+ p2

2α

satisfy |r−(p)| < 1 < |r+(p)|.

Proof. In order to simplify notations, we set a = 2α > 0. First, let us show that |r±(p)| 6= 1 for all
p ∈ C+. Assume that r±(p) = eiθ. Then, the following equation is satisfied

ae2iθ − 2(1 + a+ p)eiθ + (a+ 2p) = 0.

Necessarily, one has p =
a+ 1− a cos(θ)

(cos(θ)− 1)− i sin(θ)
. By introducing g(θ) = cos(θ)− 1, we obtain

p = g(θ)
1− ag(θ)

g2(θ) + sin2(θ)
.

We have 1 ≤ 1− ag(θ) ≤ 1 + 2a and −2 ≤ g(θ) ≤ 0. This implies that <(p) ≤ 0 which is in contradiction

with <(p) > 0. As p → 1, one has |r+(p)| → ∞ and |r−(p)| → 1

2
< 1. Then, by using the continuity

of p 7→ |r+(p)| and p 7→ |r−(p)| on C+, one finds |r−(p)| < 1 < |r+(p)|. This completes the proof of the
proposition.

Since |r+(z)| > 1 and |r−(z)| < 1, the discrete transparent boundary conditions are written as

(12) û1(z) = r+(z)û0(z), ûJ+1(z) = r−(z)ûJ(z).

The product of the two roots is 2αr−r+ = 2(α+ λδ(z)) which gives

r−(z) =
2(α+ λδ(z))

1 + 2α+ p+
√

1 + 4α+ 2λδ(x) + λ2δ(z)2
.

Next, defining

α̃ = 1 + 4α, ξ2 = λ2 + 2λ+ α̃, η2 = λ2 − 2λ+ α̃, Λ =
ξ

η
, µ =

α̃− λ2

ξη
,
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we have

1 + 4α+ 2λδ(x) + λ2δ(z)2 =
η2

(z − 1)2
(Λ2z2 − 2Λµz + 1).

The expression for µ is given by

µ =
α̃− λ2√

α̃2 + 2(α̃− 2)λ2 + λ4
.

Since α̃ = 1 + 4α > 1, one has |µ| < 1. The new expressions of the boundary conditions are

(13) 2α(z − 1)û1 = (1 + 2α+ λ)zû0 + (λ− 1− 2α)û0 + η
√

Λ2z2 − 2Λµz + 1û0

and

(14) (2(α+ λ)z + 2(λ− α))ûJ = (1 + 2α+ λ)zûJ+1 + (λ− 1− 2α)ûJ+1 + η
√

Λ2z2 − 2Λµz + 1ûJ+1.

3.1.2 Explicit transparent boundary conditions

In this section, we write the boundary conditions (13) and (14) with original coordinates. This is done
by inverting explicitly the expression (13) and (14) via the Z-transform. Let us write:√

Λ2z2 − 2Λµz + 1 = (Λz − 2µz + Λ−1z−1)
Λz√

Λ2z2 − 2Λµz + 1

and using the fact that (see Appendix A for more details)

Z−1
{

Λz√
Λ2z2 − 2Λµz + 1

}
= Λ−nPn(µ), |z| > R = max{|Λ−1z1|, |Λ−1z2|}

where z1,2 are the roots of Λ2z2 − 2Λµz + 1, we have

(15) (1 + 2α+ λ+ ηΛ)un+1
0 − 2αun+1

1 = (1 + 2α− λ)un0 − 2αun1 − η
n∑
p=0

spu
n−p
0

and

(16) −2(α+ λ)un+1
J + (1 + 2α+ λ+ ηΛ)un+1

J+2 = −2(α− λ)unJ + (1 + 2α− λ)unJ+1 − η
n∑
p=0

spu
n−p
J+1

where:

(17) ∀p ∈ N, sp(µ) = Λ−p(Pp+1(µ)− 2µPp(u) + Pp−1(µ))

with the convention P−1(µ) = 0. For a numerical implementation of the discrete boundary conditions
(15) and (16), one must check that the coefficients sp in the convolution products are bounded uniformly
with respect to p ∈ N. One can use the following decay property of the Legendre polynomials [ET]:

Lemma 3.2. Set µ = cos(θ) ∈]− 1, 1[ with θ ∈]0, π[, then

Pn(µ) =

√
2

√
π
√

sin(θ)

cos ((n+ 1/2)θ − π/4)√
n

+O(n−3/2).

The bound for the error terms holds uniformly in the interval η ≤ θ ≤ π − η with η > 0.
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As a result, one obtains that (sn(µ))n∈N satisfy

sn(µ) = O(Λ−nn−3/2) with Λ > 1

which is a really fast decay. However, one can derive a recursion formula for the coefficients sn. For that
purpose, one recalls the recursion formula satisfied by the Legendre’s polynomials:

Proposition 3.3. For all n ∈ N, let Pn be the n-th Legendre’s polynomial. Then, the following recursion
formula stands:

∀n ∈ N∗, (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

Using the recursion formula given by Proposition 3.3, it is possible to compute the terms of the
sequence (sn)n∈N by recursion. More precisely, one gets the following result:

Proposition 3.4. One has, for all n ≥ 3:

sn =
µ

Λ

2n− 1

n+ 1
sn−1 −

1

Λ2

n− 2

n+ 1
sn−2.

Proof. Using the recursion formula given by Proposition 3.3 and the definition of sn given by (17), one
gets, for all n ≥ 3:

sn = Λ−n(
Pn+1(µ)− Pn−1(µ)

2n+ 1
).

One can check using Proposition 3.3 that the following recursion formula stands:

∀n ≥ 3,
Pn+1(µ)− Pn−1(µ)

2n+ 1
= µ

Pn(µ)− Pn−2(µ)

n+ 1
− n− 2

(n+ 1)(2n− 3)
(Pn−1(µ)− Pn−3(µ)

)
and the result follows.

The recursion formula given by Proposition 3.4 avoid the computation of Λ−n for large values of n.
Thus, the numerical computation of the sn is simplified by using this recursion, since it is necessary to
use at least one recursion to compute the Legendre polynomials.

Now let us discuss the numerical implementation of the upwind Crank Nicolson scheme with trans-
parent boundary conditions (15) and (16). Defining a0 = 1 + 2α + λ, a− = α + λ, b0 = 1 + 2α − λ and
b− = α− λ, the linear system we have to solve is
(18)
a0 + ηΛ−2α
−a− a0 −α

. . . . . . . . .
−a− a0 −α

−2a− a0 + ηΛ




un+1
0

un+1
1
...

un+1
J

un+1
J+1

 =


b0 −2α
−b− b0 −α

. . . . . . . . .
−b− b0 −α

−2b− b0




un0
un1
...
unJ
unJ+1

−

η
∑n

p=0 σpu
n−p
0

0
...
0

η
∑n

p=0 σpu
n−p
J+1

 .

3.1.3 Convergence results

In this section, we prove stability and convergence result for the upwind Crank Nicolson scheme (7) with
boundary conditions (13) and (14). It is very important to note that throughout this section, we do
not need the explicit expression of the discrete boundary conditions, but only their expression in term
of Z-transform. Thus, the methods used in this section can be adapted to cases where the explicit
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inversion via the Z-transform of the transparent boundary conditions is not possible, as for instance in
the Korteweg-de-Vries case (see [BEL-V]).

We first prove a stability result for the upwind Crank Nicolson scheme (7) with boundary conditions
(13) and (14). For the linear BBM equation set on Rt × [x`;xr], multiplying the equation by u and
integrating by parts on [x`;xr] gives

∂t(
1

2
|u|2L2

x([x`;xr])
+
ε

2
|∂xu|2L2

x([x`;xr])
) = − c

2
[u(x)2]xrx` + ε[∂2txuu]xrx` .

This suggests that a natural energy for the linear BBM equation is given by 1
2 |u|

2
L2
x([x`;xr])

+ ε
2 |∂xu|

2
L2
x([x`;xr])

.
One can derive a similar discrete energy estimate for the fully discrete equation, by using analogous
derivatives operators. To this purpose, we define the following discrete operators:

Definition 3.5. For all sequences (unj )(j,n)∈[0;J+1]×N we set, for all n ∈ N, all j ∈ [1, J ]:

D+
t u

n
j =

un+1
j − unj
δt

, D+
x u

n
j =

unj+1 − unj
δx

, D−x u
n
j =

unj − unj−1
δx

.

Inspired by the continuous case, one can define an "energy" for the solutions of the fully discrete problem:

(19) ∀n ∈ N, En(u) =
J∑
j=1

(unj )2 + ε
J+1∑
j=1

(D−x uj)
2.

We also define the following "discrete Sobolev space"

H1(0; J + 1) = {(w0, ..., wJ+1) ∈ R[0;J+1]}

endowed with the norm | · |H1(0;J+1) defined by

|(w0, ..., wJ+1)|H1(0;J+1) = (EN ((w2
j )j))

1/2.

We now prove the following stability result:

Theorem 3.6. The upwind Crank-Nicolson scheme for the linearized BBM equation (7) with transparent
boundary conditions (12) is H1 stable in the following sense:

∀N ≥ 1, EN (u) ≤ E0(u).

Proof. Inspired by [AES], and as in the continuous case, we compute a discrete "time derivative" of the
energy for all n ∈ N:

D+
t (En)(u) = D+

t (

J∑
j=1

(unj )2 + ε

J+1∑
j=1

(D−x u
n
j )2)

=
J∑
j=1

(un+1
j )2 − (unj )2

δt
+ ε

J+1∑
j=1

(D−x u
n+1
j )2 − (D−x u

n
j )2

δt

=
J∑
j=1

un+1
j − unj
δt

(un+1
j + unj ) + ε

J+1∑
j=1

D−x (un+1
j − unj )

δt
(D−x (un+1

j + unj )).(20)

10



We set, for all j ∈ [0; J + 1], all n ∈ N :

u
n+1/2
j = un+1

j + unj .

We now use a discrete integration by part type result, which can be easily proved, for all sequences
(uj), (vj) ∈ R[0;J+1]:

J∑
j=1

ujD
−
x vj = −

J∑
j=1

(D+
x uj)vj +

uJ+1vJ − u1v0
δx

.

By using this result in equation (20), one gets:

(21)
D+
t (En)(u) =

J∑
j=1

(D+
t u

n
j )u

n+1/2
j − ε

J∑
j=1

(D+
t D

+
xD
−
x u

n
j )u

n+1/2
j

+
ε

δx
(D+

t D
−
x u

n
J+1))u

n+1/2
J+1 − ε

δx
(D+

t D
−
x (un1 ))u

n+1/2
0 .

Recall that (unj )(j,n) is a solution of the upwind Crank Nicolson scheme (7) which can be written as:

D+
t (unj − εD+

xD
−
x u

n
j ) +

c

2
D−x u

n+1/2
j = 0.

We then obtain:

D+
t (En)(u) = − c

2

J∑
j=1

(D−x u
n+1/2
j )u

n+1/2
j

+
ε

δx
(D+

t D
−
x u

n
J+1))u

n+1/2
J+1 − ε

δx
(D+

t D
−
x (un1 ))u

n+1/2
0 .

The term c
2

∑J
j=1(D

−
x u

n+1/2
j )u

n+1/2
j is the discrete equivalent of the term c

∫ xr
x`
u∂xudx in the continuous

case of the energy estimate. This latter term is c
2 [u2(x)]xrx` . In the discrete case, we express the discrete

space derivative operator as follow, for all sequence (vj) ∈ R[0;J+1]:

D−x (vj) = −(vj−1 + 2vj − vj−1)
δx

+D+
x (vj)

= −δxD−xD+
x (vj) +D+

x (vj).

Note that we wrote the discrete upwind derivative as a viscosity term plus the discrete downwind deriva-
tive. The aim is to obtain a symmetric expression by discrete integration by parts. Thus, by using as
before a discrete integration by parts, one can prove by an easy computation that:

c

2

J∑
j=1

(D−x u
n+1/2
j )u

n+1/2
j =

cδx

4

J−1∑
j=0

(D+
x u

n+1/2
j )2

+
c

4δx
((u

n+1/2
J )2 + (u

n+1/2
0 )2).

We now take the summation of D+
t (En)(u) for n from 0 to N . One obtains:

EN − E0

δt
= A+B + C

11



with

A = −
N∑
n=0

cδx

4

J−1∑
j=0

(D+
x u

n+1/2
j )2,

B =
N∑
n=0

ε

δx
(D+

t D
−
x u

n
J+1))u

n+1/2
J+1 − c

4
(u
n+1/2
J )2,

C =

N∑
n=0

− ε

δx
(D+

t D
−
x (un1 ))u

n+1/2
0 − c

4
(u
n+1/2
0 )2.

We now prove that EN − E0 ≤ 0. One has obviously that A ≤ 0. To prove that B ≤ 0, we need to
use precisely the relation between uJ+1 and uJ , given by the transparent boundary condition. For this
purpose, we recall the Plancherel formula (see also Theorem A.4):

∞∑
n=0

unvn =
1

2π

∫ 2π

0
(ûv̂)(eiϕ)dϕ.

In order to apply this formula to the finite sum, we define

ûNj =
N∑
n=0

uj
zn
.

We now write:

N∑
n=0

ε

δ
(D+

t D
−
x u

n
J+1))u

n+1/2
J − c

4
(u
n+1/2
J )2 =

1

2π

∫ π

−π

ε

δx2
eiϕ − 1

δt
(ûNJ+1 − ûNJ )(eiϕ)ûNJ (eiϕ)eiϕ + 1dϕ

− c

4δx

1

2π

∫ π

−π
ûNJ (eiϕ)ûNJ (eiϕ)(eiϕ + 1)eiϕ + 1)dϕ.

We now use the discrete boundary condition (12) satisfied by ûJ , to rewrite this latter term under the
form:

N∑
n=0

ε

δx
(D+

t D
−
x u

n
J+1))u

n+1/2
J − c

4
(u
n+1/2
J )2 =

− α

2πδt

∫ π

−π
|ûNJ+1(e

iϕ)|22i sin(ϕ)
(
1− 1

r−(eiϕ)
− λ

2α
δ(eiϕ)

1

|r−(eiϕ)|2
)
dϕ

(just notice that replacing ûNJ+1 by ûJ+1 in the integral does not change anything, since the integral of
the extra terms vanishes). This integral is real, so one only has to check that the real part is negative.
One recalls that:

∀z 6= 1, r−(z) = 1 +
1

2α
+

λ

2α
δ(z)− 1

2α

√
1 + 4α+ 2λδ(z) + λ2δ(z)2.

By noticing that δ(z) =
1

i tan(ϕ/2)
for z = eiϕ, one gets that B is of the sign of

(22) sin(ϕ)Im(
1

2α

√
1 + 4α+ 2

λ

i tan(ϕ/2)
− λ2

tan(ϕ/2)2
).
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Now recall that
√
· denotes here the square root with positive real part. Therefore, the imaginary part of

the square root of (22) is of the sign of − 1
tan(ϕ/2) . Finally, B is of the sign of − sin(ϕ)

tan(ϕ/2) which is negative
on ]− π;π[. The same technique applies to prove that C ≤ 0, by using this time the relation between u1
and u0 given by (12).

Let us now state a consistency result. For the sake of clarity, in the following result, [x`;xr] = [0; 1].

Proposition 3.7. Let δt, δx > 0. Let u be a smooth function such that u satisfies the transparent boundary
condition (4). We define the Z-transform of u(·, x), for all x ∈ [0; 1] by:

∀z 6= 0, û(z, x) =
∞∑
n=0

u(nδt, x)

zn
.

One has, for all compact K ⊂ C+, all s ∈ K:

(esδ − 1)û(esδt, δx)− (esδt − 1)r+(esδt)û(esδt, 0) = δx(O(δx2 + δt2))

(esδt − 1)û(esδt, 1)− (esδt − 1)r−(esδt)û(esδt, Jδx) = δx(O(δx2 + δt2))

where r± is defined by (11), and O(δx2) +O(δt2) is a term bounded in absolute value by a constant of the
form M(δt2 + δx2), where M only depends on u,K.

Remark 3.8. - Proposition 3.7 states that the discrete boundary conditions are consistent with the
continuous boundary conditions, up to a O(δt2) + O(δx2) term. Moreover, the error made by re-
placing u(nδt, 0) and u(nδt, (J + 1)δx) by their expressions given by the discrete boundary condition
(12) is of size δx2 + δt2.

- The consistency result of the proposition is expressed with the (z − 1) factor as in (13) and (14)
since these two expressions are the ones which are actually implemented numerically.

- A remarkable result is that the upwind transport/centered dispersion Crank Nicolson scheme (7) is
only consistent at order O(δt2 + δx) with the linear BBM equation whereas the discrete transparent
boundary conditions for this scheme are consistent at a higher order with the continuous transparent
boundary conditions for the BBM equation (5).

Proof. First of all, we prove that the Z- transform is an approximation of the Laplace transform. More
precisely, one has, for all smooth function f such that f(0) = 0, and all δt > 0:

(23) L(f)(s) = δtf̂(esδt) +O(δt2)

Indeed, by setting g(t, s) = e−stf(t), one finds

L(f)(s) =

∫
R
e−stf(t)dt =

∞∑
n=0

∫ (n+1)δt

nδt
e−stf(t)dt

= δt
∞∑
n=0

g(nδt) + g((n+ 1)δt)

2
−
∞∑
n=0

∫ (n+1)δt

nδt

((n+ 1)δt− t)(t− nδt)
2

g′′(t)dt

= δt
∞∑
n=1

g(nδt)− δt2
∫ 1

0

u(1− u)

2

∞∑
n=0

δtg′′((n+ u)δt)) du

= δtf̂(esδt) +O(δt2),
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where for all n ∈ N, tn ∈]nδt, (n+ 1)δt[ and O(δt2) denotes any term bounded in absolute value by Mδt2

where M only depends on f . Now, one computes, recalling the expression of r+ given by (11):

û(z, δx)− r+(z)û(z, 0) = û(z, δx)−
( 1

2α
+ 1 +

λδ(z)

2α
+

1

2α

√
(1 + λδ(z))2 + 4α

)
û(z, 0)

= û(z, δx)− û(z, 0)− 1

2α

(
1 + λδ(z) +

√
(1 + λδ(z))2 + 4α

)
û(z, 0).

We now replace z by esδt. We notice that:

δ(z) =
2 +O(δt)

sδt
, α =

ε

δx2
, λ =

cδt

2δx

and therefore, one gets by using a Taylor expansion of u(z, δx) with respect to δx→ 0:

(24)
û(z, δx)− r+(z)û(z, 0) =

δx

δt
δt(∂xû(esδt, 0)− (

c

2εs
+

c

2εs

√
1 +

4εs2

c2
û(esδt, 0))

− δx2

δt
δt(û(esδt, 0)− ε∂2xû(esδt, 0) +

c

s
∂xû(esδt, 0)) +

δx

δt
O(δx2 + δt2)

We now use the relation (23) to get that the first line of (24) is the Laplace transform of the continuous
transparent boundary condition satisfied by u up to a O(δt2) term, and the second line is the Laplace
transform of the linear BBM equation satisfied by u up to the same precision. Therefore, one gets the
desired result by noticing that z − 1 = δt+O(δt2). The analysis about the right end points j = J, J + 1
is similar.

We can now prove the following convergence theorem:

Theorem 3.9. Let u be the solution of the linearized BBM equation (3) with boundary conditions (5).
We define the sequence (vn0 , ..., v

n
J+1)n∈N by:

∀k ∈ [0; J + 1], ∀n ∈ N, vnk = u(nδt, kδx).

We define the sequence (un0 , ..., u
n
J+1)n∈N built by induction by the Crank-Nicolson scheme (7) with trans-

parent boundary conditions (12) initialized with (u(0, 0), ...u(0, (J + 1)δx)). Then, one has:

∀T > 0,∃CT ,
√
δx sup

n,nδt<T
|(un0 , ..., unJ+1)− (vn0 , ...v

n
J+1)|H1(0;J+1) ≤ CT (δx+ δt2)

where |(w0, ..., wJ+1)|H1(0;J+1) = (EN ((w2
j )j))

1/2 and EN is defined by (19).

Proof. The proof is an easy adaptation of the proof of Theorem 3.6 with a use of the consistency result
of Proposition 3.7. We fix a T > 0. We define wn = un − vn for all n such that nδt ≤ T . It is easy to
check, by using a Taylor expansion of the solution u of (3) on tn, xj that:

∀1 ≤ j ≤ J, ∀0 ≤ nδt ≤ T, D+
t (wnj − εD+

xD
−
x w

n
j ) +

c

2
D−x w

n+1/2
j = εnj

with

(25) ∀1 ≤ j ≤ J ∀0 ≤ nδt ≤ T, |εnj | ≤ CT (δt2 + δx2)
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where CT only depends on T and u. Then, using the same computation as in the proof of Theorem 3.6,
one can obtain:

D+
t (En)(w) = − c

2

J∑
j=1

(D−x w
n+1/2
j )w

n+1/2
j

+
ε

δx
(D+

t D
−
x w

n
J+1))w

n+1/2
J+1 − ε

δx
(D+

t D
−
x (wn1 ))w

n+1/2
0

+
J∑
j=1

εnjw
n+1/2
j .

Still adapting the proof of Theorem 3.6, one finds, taking the summation for n = 0, N with (N+1)δt ≤ T :

EN+1 − E0

δt
= A+B + C +D

with

A = −
N∑
n=0

cδx

4

J−1∑
j=0

(D+
x w

n+1/2
j )2,

B =

N∑
n=0

ε

δx
(D+

t D
−
x w

n
J+1))w

n+1/2
J+1 − c

4
(w

n+1/2
J )2,

C =

N∑
n=0

− ε

δx
(D+

t D
−
x (wn1 ))w

n+1/2
0 − c

4
(w

n+1/2
0 )2

and

D =

N∑
n=0

J∑
j=1

εnjw
n
j .

One has obviously A ≤ 0. We control B and C using the same technique as in Theorem 3.6. For instance,
for C, one writes, with the same notations as in the proof of Theorem 3.6:

−
N∑
n=0

ε

δx
(D+

t D
−
x w

n
1 ))w

n+1/2
0 − c

4
(w

n+1/2
0 )2 = − 1

2π

∫ π

−π

ε

δx2
eiϕ − 1

δt
(ŵN1 − ŵN0 )(eiϕ)ŵN0 (eiϕ)eiϕ + 1dϕ

− c

4δx

1

2π

∫ π

−π
ŵN0 (eiϕ)ŵN0 (eiϕ)(eiϕ + 1)eiϕ + 1dϕ.

Now, one writes
ŵ1(z)− ŵ0(z) = (r+(z)− 1)ŵ0(z) + v̂1(z)− r+(z)v̂0(z)

and thus C can be written as:

C = − α

2πδt

∫ π

−π
|ûNJ+1(e

iϕ)|22i sin(ϕ)
(
r+(eiϕ)− 1 +

λ

2α
δ(eiϕ)

)
|ûN0 (eiϕ)|2dϕ

− 1

2π

∫ π

−π

ε

δx2δt
(eiϕ − 1)(v̂1 − r+v̂0)(eiϕ)ŵN0 (eiϕ)eiϕ + 1dϕ.

Therefore, the first term of C is negative as in the proof of Theorem 3.6, and the second one is, according
to Proposition 3.7, bounded by C

δxδt(δx
2 + δt2)

√
EN (w). The same estimates goes for B. The term D is

bounded, using a convexity identity by CTN
δx (δt+ δx2)2 + 1

2

∑N
n=0 En(w) + En+1(w) (the 1

δx factor comes

15



from the summation for j = 1 to J of the estimate (25), with J + 1 = 1
δx). Finally, one obtained (recall

that Nδt ≤ T ):

δxEN+1 ≤ δxE0 + CT (δt+ δx2)2 + δxδt
1

2

N∑
n=0

En(w) + En+1(w)

and thus one gets the Theorem by finite induction for Nδt ≤ T , noticing that E0 = 0.

3.2 Centered dispersion and advection

In this section, we consider the case of a centered space discretization and Crank Nicolson time dis-
cretization and derive exact discrete transparent boundary conditions. First, the Crank-Nicolson time
discretization of (3) reads

(26)
un+1 − un

δt
− ε∂

2
xu

n+1 − ∂2xun

δt
+ c∂x

(
un+1 + un

2

)
= 0.

3.2.1 Discrete transparent boundary conditions for the centered Crank Nicolson scheme

We perform the Z-transform of (26), using she shift result of Theorem A.2:

(27) û− ε∂xxû+
cδt

2

z + 1

z − 1
∂xû = 0.

Now we discretize in space by a centered finite difference scheme

(28) ûi − ε
ûi+1 − 2ûi + ûi−1

δx2
+
cδt

δx

z + 1

4(z − 1)
(ûi+1 − ûi−1) = 0.

In order to simplify notations, we set α =
ε

δx2
, λ =

cδt

2δx
, δ(z) =

z + 1

z − 1
. Then, equation (28) reads

(29) (2α− λδ(z)) ûi+1 − 2(1 + 2α)ûi + (2α+ λδ(z)) ûi−1 = 0.

The solutions of (29) are written as

(30) ûj(z) = A+ r+(z)j +A− r−(z)j , ∀j ≤ 1, ∀j ≥ J, r±(z) =
1 + 2α±

√
1 + 4α+ λ2δ(z)2

2α− λδ(z)
.

In order to describe the transparent boundary conditions, we first need to determine the modulus of r±(z)
for all z such that |z| > ∆ > 1. Note that r±(z) are smooth functions of λδ(z). In what follows, we set
p = λδ(z) ∈ C+ = {z̃ ∈ C, | <(z̃) > 0}.

Proposition 3.10. For all p ∈ C+, the functions r+(p) and r−(p) defined as

r+(p) =
1 + 2α+

√
1 + 4α+ p2

2α− p
, r−(p) =

1 + 2α−
√

1 + 4α+ p2

2α− p
.

satisfy |r−(p)| < 1 < |r+(p)|.
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Proof. In order to simplify notations, we set a = 2α > 0. First, let us show that |r±(p)| 6= 1 for all
p ∈ C+. Assume that r±(p) = eiθ. Then, the following equation is satisfied

(a− p)e2iθ − 2(1 + a)eiθ + (a+ p) = 0.

Then, necessarily, one has p = i
a+ 1− a cos(θ)

sin(θ)
which is in contradiction with <(p) > 0. As p→ a, one

has |r+(p)| → ∞ and |r−(p)| → a

a+ 1
< 1. Then, by using the continuity of p 7→ |r+(p)| and p 7→ |r−(p)|

on C+ \ {a}, one finds |r−(p)| < 1 < |r+(p)|. This completes the proof of the proposition.

Since |r+(z)| > 1 and |r−(z)| < 1, the discrete transparent boundary conditions are written as

(31) û1(z) = r+(z)û0(z), ûJ+1(z) = r−(z)ûJ(z).

3.2.2 Explicit transparent boundary conditions

In order to write discrete transparent boundary conditions for the numerical scheme, we have to invert
the conditions (31) and boundary conditions are written with the help of discrete convolution that involve
boundary terms. For that purpose, we write the boundary conditions (31) as

(32) (2α− p(z))û1(z) = (1 + 2α)û0(z) +
√

1 + 4α+ p(z)2 û0(z),

(2α+ p(z))ûJ(z) = (1 + 2α)ûJ+1(z) +
√

1 + 4α+ p(z)2 ûJ+1(z).

We multiply both equations by z − 1 so that (32) now read

(33)
((2α− λ)z − (λ+ 2α)) û1(z) = (1 + 2α)(z − 1)û0(z) + Λ

z√
z2 − 2µz + 1

(z − 2µ+ z−1)û0(z),

((λ+ 2α)z + λ− 2α) ûJ(z) = (1 + 2α)(z − 1)ûJ+1(z) + Λ
z√

z2 − 2µz + 1
(z − 2µ+ z−1)ûJ+1(z),

where, in order to simplify notations, we set Λ =
√

1 + 4α+ λ2, µ =
1 + 4α− λ2

1 + 4α+ λ2
.

Now, since |µ| < 1, one can use the definition of Legendre polynomials (see Appendix A) to get

z√
z2 − 2µz + 1

=

∞∑
n=0

Pn(µ) z−n.

As a result, by using the convolution result of Theorem A.3, the boundary conditions (33) are written as:

(34)

(1 + 2α+ Λ)un+1
0 + (λ− 2α)un+1

1 = (1 + 2α)un0 − (λ+ 2α)un1 − Λ
n∑
p=0

sp(µ)un−p0 ,

(1 + 2α+ Λ)un+1
J+1 − (λ+ 2α)un+1

J = (1 + 2α)unJ+1 + (λ− 2α)unJ − Λ
n∑
p=0

sp(µ)un−pJ+1,

where sp(µ) = Pp+1(µ) − 2µPp(u) + Pp−1(µ) for all p ∈ N with the convention P−1(µ) = 0. Note that
we can also write the boundary conditions (34) as a directe discretization of the continuous transparent
boundary conditions (5):
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(35)

(un+1
1 − un1 )− (un+1

0 − un0 )

δxδt
=

1

2ε

cun+1
1 + un1

2
+
δx

δt

(un+1
0 − un0 ) + Λ(un+1

0 +

n∑
p=0

sp(µ)un−p0 )

 ,

(un+1
J+1 − unJ+1)− (un+1

J − unJ)

δxδt
=

1

2ε

cun+1
J + unJ

2
+
δx

δt

(un+1
J+1 − u

n
J+1)− Λ(un+1

J+1 +
n∑
p=0

sp(µ)un−pJ+1)

 .

By using the recurrence relation satisfied by the Legendre polynomials, one finds that sp(µ) is written as

sp(µ) =
Pp+1(µ)− µPp(µ)

p
, ∀p ∈ N∗.

As a result, one obtains that (sp(µ))p∈N satisfy sp(µ) = O(p−3/2). For a numerical implementation of
such boundary conditions, we define a0 = 1 + 2α, a− = λ − 2α, a+ = λ + 2α, so that the linear system
we have to solve is

(36)


a0 + Λ a+
−a− 2a0 a+

. . . . . . . . .
−a− 2a0 a+

−a− a0 + Λ




un+1
0

un+1
1
...

un+1
J

un+1
J+1

 =


a0 −a−
a+ 2a0 −a−

. . . . . . . . .
a+ 2a0−a−

a+ a0




un0
un1
...
unJ
unJ+1

−


Λ
∑n

p=0 σpu
n−p
0

0
...
0

Λ
∑n

p=0 σpu
n−p
J+1

 .

3.2.3 Convergence results

We prove in this section some convergence results for the centered Crank Nicolson scheme (26) with
transparent boundary conditions (31). All these results do not need the explicit expression of these
transparent boundary conditions, but only their expressions in term of Z-transform. Let us check the
stability of the discrete transparent boundary conditions. In order to simplify notations, we set vnj =

(unj + un+1
j )/2. We prove the following H1-stability result:

Proposition 3.11. Let us set

En = δx
(un0 )2 + (unJ+1)

2

4
+ δx

J∑
j=1

(unj )2

2
+ δx

ε

2

J∑
j=0

(
unj+1 − unj

δx

)2

∀n ∈ N.

Then any sequence (unj )j∈{0,...,J+1},n∈N satisfying the Crank Nicolson scheme (37) and together with the
boundary conditions (35) satisfies the energy estimate EN ≤ E0 for all N ∈ N∗.

Proof. Recall that the Crank Nicolson scheme reads

(37)
(
un+1
j − ε

δx2
(un+1
j+1 − 2un+1

j + un+1
j−1 )

)
−
(
unj −

ε

δx2
(unj+1 − 2unj + unj−1)

)
+
cδt

2δx

(
vnj+1 − vnj−1

)
= 0,

for all j = 1, . . . , J . We multiply equation (37) by vnj and sum over all j = 1, . . . , J . By using the discrete
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transparent boundary conditions (35), one finds

J∑
j=1

(un+1
j )2

2
−

J∑
j=1

(unj )2

2
+
ε

2

 J∑
j=0

(
un+1
j+1 − u

n+1
j

δx

)2

−
J∑
j=0

(
unj+1 − unj

δx

)2


+ vn0

un+1
0 − un0

2
+

Λ

2

un+1
0 +

n∑
p=0

sp(µ)un−p0

(38)

+ vnJ+1

un+1
J+1 − unJ+1

2
+

Λ

2

un+1
J+1 +

n∑
p=0

sp(µ)un−pJ+1

 = 0.

In order to simplify notations, we set

En = δx
(un0 )2 + (unJ+1)

2

4
+ δx

J∑
j=1

(unj )2

2
+ δx

ε

2

J∑
j=0

(
unj+1 − unj

δx

)2

.

Note that En is a consistent approximation of the energy E(n δt) introduced in section (2) up to order 1
with respect to the space variable. The equation (38) reads

(39) En+1 − En +
Λδx

2

vn0
un+1

0 +
n∑
p=0

sp(µ)un−p0

+ vnJ+1

un+1
J+1 +

n∑
p=0

sp(µ)un−pJ+1

 = 0.

We sum equation (39) over all n = 0, . . . , N − 1 with N ∈ N∗: one finds

(40) EN − E0 +
Λδx

2

N−1∑
n=0

vn0 (un+1
0 +

n∑
p=0

sp(µ)un−p0 ) +
N−1∑
n=0

vnJ+1(u
n+1
J+1 +

n∑
p=0

sp(µ)un−pJ+1)

 = 0.

To finish the proof, it remains to determine the sign of the last term in (40). To this end, we define (for
fixed N) the two sequences

ũn :=

{
un0 , ∀n = 0, . . . , N,
0, n > N,

and

ṽn := un ∗ s̃n(µ) := un+1 +
n∑
p=0

sp(µ)un−p, ∀n ∈ N.

The Z-transform Z[ũn](z) = û(z) is analytic for |z| > 0, since it is a finite sum. The Z-transform

Z[ṽn](z) = v̂(z) then satisfies v̂(z) = (z + ŝ(z))û(z) with ŝ(z) =

∞∑
p=0

sp(µ)

zp
and is analytic for |z| ≥ 1.

Using Plancherel’s Theorem A.4 for Z-transforms, we have

N−1∑
n=0

vn0 (un+1
0 +

n∑
p=0

sp(µ)un−p0 ) =
1

2π

∫ π

−π

eiθ + 1

2
eiθ + ŝ(eiθ)|û(eiθ)|2dθ.

We deduce that
N−1∑
n=0

vn0 (un+1
0 +

n∑
p=0

sp(µ)un−p0 ) =
1

2π

∫ π

−π
cos

(
θ

2

)(
cos

(
θ

2

)
+ <(

√
2(cos(θ)− µ))

)
|û(θ)|2dθ > 0.
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Using a similar trick for the other boundary term, one finds

N−1∑
n=0

vnJ+1(u
n+1
J+1 +

n∑
p=0

sp(µ)un−pJ+1) > 0.

From (40), we deduce that EN ≤ E0 for all N ∈ N∗ which completes the proof of the proposition.

We now state the following consistency result:

Proposition 3.12. Let δt, δx > 0. Let u satisfies the linearized BBM equation (3) and the transparent
boundary conditions (5). We define the Z-transform of (u(nδt, x))n∈N for all x ∈ [0; 1] by:

û(z, x) =

∞∑
n=0

u(nδt, x)

zn
, ∀z 6= 0.

One has, for all compact set K ⊂ C+, all s ∈ K:

δx(z − 1)
(
û(es δt, δx)− r+(es δt)û(es δt, 0)

)
= O(δt2 + δx2),

δx(z − 1)
(
û(es δt, 1)− r−(es δt)û(es δt, 1− δx)

)
= O(δt2 + δx2).

where r± is defined by (30) and O(δx2) +O(δt2) is a term bounded in absolute value by a constant of the
form M(δt2 + δx2) where M only depends on u,K.

Proof. We focus on the left boundary condition. Recall that u, solution of (3) and (5), satisfies the
boundary condition

L
(
∂u

∂x
(. , x`)

)
(s) =

1

2εs

(
c+

√
c2 + 4ε s2

)
L(u(. , x`))(s),

where L(f)(s) =
∫∞
0 e−s tf(t)dt. Since u(0, x) =

∂u

∂x
(0, x) = 0 for all x ∈ {0, δx, 1− δx, 1}, one has

δtû(es δt, x) = δt

∞∑
n=0

e−s nδtu(nδt, x) = L(u(. , x))(s) +O(δt2), ∀x ∈ {0, δx, 1− δx, 1},

δt
∂û

∂x
(es δt, x) = δt

∞∑
n=0

e−s nδt
∂u

∂x
(nδt, x) = L

(
∂u

∂x
(. , x)

)
(s) +O(δt2), ∀x ∈ {0, δx, 1− δx, 1},

Now, let us consider the error of consistency E defined as

δx−1E = (2α(z − 1)− λ(z + 1))û(z, δx)−
(

(1 + 2α)(z − 1) +
√

(1 + 4α)(z − 1)2 + λ2(z + 1)2
)
û(z, 0),

=
δt

δx

z + 1

2

(
2ε(

2(z − 1)

δt(z + 1)
)
û(z, δx)− û(z, 0)

δx
− δx

(
2(z − 1)

δt(z + 1)
û(z, 0) + c

û(z, δx)− û(z, 0)

δx

))

− δt
δx

z + 1

2

c+

√
c2 + (4ε+ δx2)

(
2(z − 1)

δt(z + 1)

)2
 û(z, 0).
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Now, let us set z = es δt, one has

2E = δt

(
δx

(
sû(esδt, 0)− sε∂

2û

∂x2
(esδt, 0)

)
+ cδx

∂û

∂x
(esδt, 0) +O(δx2 + s2δt2)

)
,

δt

(
2ε s

∂û

∂x
(esδt, 0)−

(
c+

√
c2 + 4ε s2

)
û(esδt, 0) +O(δx2 + s2δt2)

)
=

(
δxL

(
∂

∂t
(u− ε∂

2u

∂x2
)(., 0) + c

∂u

∂x
(., 0)

)
(s) +O(δx2 + s2δt2)

)
−
(

2ε sL
(
∂u

∂x
(., 0)

)
(s)−

(
c+

√
c2 + 4ε s2

)
L(u(., 0))(s) +O(δx2 + s2δt2)

)

Since u is a solution of (3) and (5), one deduces that E = O(δt2 + δx2). We deal similarly with the right
boundary and this completes the proof of the proposition.

We now state a convergence Theorem. Note that the convergence rate is better than one of Theorem
3.9 since the centered dispersion and transport Crank Nicolson scheme has a better consistency with the
linear BBM equation than the centered dispersion and upwind transport one.

Theorem 3.13. Let u be the solution of the linearized BBM equation (3) with boundary conditions (5).
Let δt, δx > 0. We define the sequence (vn0 , ..., v

n
J+1)n∈N by:

∀k ∈ [0; J + 1], ∀n ∈ N, vnk = u(nδt, kδx).

We define the sequence (un0 , ..., u
n
J+1)n∈N built by induction by the Crank-Nicolson scheme (26) with trans-

parent boundary conditions (33) initialized with (u(0, 0), ...u(0, (J + 1)δx)). Then, one has:

∀T > 0, ∃CT ,
√
δx sup

n,nδt<T
|(un0 , ..., unJ+1)− (vn0 , ...v

n
J+1)|H1(0;J+1) ≤ CT (δx2 + δt2)

where |(w0, ..., wJ+1)|H1(0;J+1) = (EN ((w2
j )j))

1/2 and EN is defined in Proposition 3.11.

Proof. The proof is the same as for Theorem 3.9. The only difference is that the centered dispersion and
transport Crank Nicolson scheme (26) is consistent at order 2 in space and time with the linear BBM
equation.

4 Numerical Results

In this section, we present various numerical results to test the accuracy of our transparent boundary
conditions. The first numerical test is made with a gaussian initial datum with a small standard deviation.
The spectrum associated to this datum is therefore wide. We analyze the dispersive effects related to ε.
The second numerical scheme concerns a wave packet as initial datum. The spectrum is more narrow
and the dispersive effects are different. Finally, we show how to take into account an incoming wave.
We denote by UCN and CCN respectively the Centered dispersion/Upwind transport numerical scheme
introduced in section 3.1 and the Centered dispersion and advection numerical scheme introduced in
section 3.2.
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4.1 Numerical example 1: Gaussian initial condition

In order to show the efficiency of the approximation of the artificial boundary conditions, we compute
numerical solutions and compare them to reference solutions. We consider here the solution to (3) with
the initial datum

u0(x) = exp(−400(x− 1

2
)2).

The computational domain is (t, x) ∈ [0, 1]× [0, 1] meshed with (N + 1)× (J + 2) nodes. The evolution
of the solution depends on ε and c. In order to check the order of the numerical scheme, we define e(n)

the relative `2-error at time t = nδt given by:

e(n) = ‖uref(tn, ·)− un(·)‖2 / ‖uref(tn, ·)‖2 ,

where un is the solution to the numerical scheme and where we use trapezoidal rule to compute the `2-
norm. Since the equations are linear, we compute reference solutions by using fast Fourier transform on a
larger domain [−40, 80]. Thanks to the definition of e(n), we consider two error functions: the maximum
of e(n) with respect to 0 < n < N and the `2-error given by

rel.ErrTm = max
0<n≤N

(
e(n)

)
, rel.ErrL2 =

(
δt

N∑
n=1

(e(n))2

)1/2

,

which corresponds respectively to the discrete version of L∞t L2
x and L2

tL
2
x errors functions. For the UCN

numerical scheme, the error functions rel.ErrTm and rel.ErrL2 is bounded by

{rel.ErrTm, rel.ErrL2} ≤ Ctδt2 + Cxδx.

and for the CCN numerical scheme, we have

{rel.ErrTm, rel.ErrL2} ≤ Ctδt2 + Cxδx
2.

We consider here a positive velocity c = 2 and various values of ε, namely ε = 10−p, p = 1, 2, 3, 4. The
smallest values of ε lead to higher oscillations in the propagative right part. We plot the behavior of the
reference solution for ε = 10−4 on Figure 1. Note that the characteristics in the (x, t) plane have all a
slope close to 1/2 which is close to 1/c. It is noticeable that, as ε > 0 is increased, a part of the energy
carried by the solution travel to the left even if phase velocity are always positive for the BBM equation.
This is easily explained by the fact that the BBM equation is dispersive and the dispersion relation is
not monotone with respect to k > 0 the spatial wavenumber. More precisely, if we consider plane wave
solutions aei(kx−ωt), the dispersion relation is

ω(k) =
ck

1 + εk2

which leads to the phase and group velocities respectively

vϕ =
ω

k
=

c

1 + εk2
, vg = ω′(k) =

c(1− εk2)
(1 + εk2)2

.

If c > 0, the phase velocity is always positive. However, if |k| > 1/
√
ε, the group velocity is negative. We

can see the effect of this process on the Figure 2 when ε = 10−3.
In order to look at the behavior of the error functions with respect to δt, we take J = 219 which leads

to δx = 2−19 ≈ 2. 10−6. We are forced to take a very small value for δx to be sure that the dominating
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Figure 1: Evolution of the reference solution for c = 2 and ε = 10−4
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Figure 2: Evolution of the reference solution for c = 2 and ε = 10−3
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Figure 3: Evolution of the errors with respect to δt for c = 2 and various ε
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error term is linked to Ct and more specifically when we study the UCN scheme. The errors are plotted
on Fig. 3. The second order accuracy with respect to time step is preserved. We clearly identify the
saturation process linked to the dominating error due to the diffusive behaviour with respect to δx. Since
the CCN scheme has a second order accuracy with respect to δx, the error level are lower than that of
UCN.

We plot on Fig. 4 the behavior of the errors with respect to δx for N = 104. The accuracy is in
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Figure 4: Evolution of the errors with respect to δx for c = 2 and various ε

adequation with the order of UCN and CCN schemes.

4.2 Numerical example 2: Small wave packet

In order to observe more clearly the dispersive behavior of the BBM equation (in particular negative
group velocities), we consider here the solution to (3) with the initial datum

u0(x) = exp(−400(x− 1

2
)2) sin(20πx).

25



The evolution of the reference solution is plotted in Fig. 5 for c = 2 and ε = 10−3. The computational
domain is (t, x) ∈ [0, 1] × [0, 1] meshed with (N + 1) × (J + 2) nodes. We clearly observe that a large
part of the energy carried out by the wave packet travel to the left, illustrating again the fact that for
wavenumbers larger than kc = 1/

√
ε, the group velocity is negative. On the other hand, we also see in

front of the wave packet small amplitude oscillations/large scale travelling wave with a group velocity
vg ≈ vφ(0) = c.
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Figure 5: Evolution of the reference solution for ε = 10−3

We present the evolution of the errors with respect to δt and δx for ε = 10−3 on Fig. 6. As in the
first numerical experiment, we get the accuracy O(δx+ δt2) for UCN scheme and O(δx2 + δt2) for CCN
scheme.
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Figure 6: Evolution of the errors with respect to δt and δx for ε = 10−3
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4.3 Numerical example 3: Incoming traveling waves

In this section, we show how to inject an incoming travelling wave in a computational domain through
transparent boundary conditions. This is of particular interest for the applications we have in mind: in
particular, we wish to inject particular solutions of the full BBM equations (likes solutions, cnoidal waves
or trains of solitons) in the computational domain in order to describe more realistic situations. Here,
we carry out such an analysis in the linear case. We follow here the method presented in [AMP] for the
Schrodinger-Poisson system.

Let us denote uin(x, t) = α+β cos(kx−ω(k)t) a plane wave solution of the linearized BBM equation, α
being the mean and β the amplitude of the wave. We search transparent boundary conditions for the linear
BBM condition with an initial data u0 satisfying u0(x) = uin(x), ∀x ≤ x` and u0(x) = 0, ∀x ≥ xr.
For that purpose, we introduce a cut-off function χ such that χ(x) = 1∀x ≤ x` and χ(x) = 0∀x ≥ xr and
decompose u as u(x, t) = χ(x)uin(x, t) + v(x, t). The new unknown v is compactly supported in [x`, xr]
at time t = 0 and satisfies the BBM equation with a source term:

∂t(v − ε∂xxv) + c∂xv = Gε(x, t), ∀x ∈ [x`, xr],

with G(x, t) = ε
(
χ′′(x)∂tu

in(x, t) + 2χ′(x)∂xtu
in(x, t)

)
− cχ′(x)uin(x, t). The function G is compactly

supported in [x`, xr]. The derivation of the transparent boundary conditions for v is similar to the
homogeneous uin = 0. Back to the original coordinates, the transparent boundary conditions for u are
written as
(41)

∂2

∂x∂t
u(t, xr) =

1

2ε

(
c u(t, xr)−

1

2
√
ε

∫ t

0
J0(

c s

2
√
ε

)(c2 + 4ε∂2t )u(t− s, xr)ds
)
,

∂2

∂x∂t
(u− uin)(t, x`) =

1

2ε

(
c (u− uin)(t, x`) +

1

2
√
ε

∫ t

0
J0(

s c

2
√
ε

)(c2 + 4ε∂2t )(u− uin)(t− s, x`)ds
)
.

The derivation of discrete transparent boundary conditions is completely similar. The continuous plane
wave solution is replaced by the discrete plane wave solution

uinn,j = α+ β cos(j kδx− nω̃(k)δt), ω̃(k) =
2

δt
arctan

(
λ sin(kδx)

1 + εk2sinc2(kδx/2)

)
and discrete transparent boundary conditions are applied to the sequence unj − uinn,j both at j = 0 and
j = J + 1 (with the notation uinn,J = uinn,J+1 = 0).

We present on Figures 7 and 8 the results of simulation when one sets an incoming wave uin with
α = 0 and β = 0.5 on the left boundary with k = 2πp for various p, with c = 4 and ε = 10−3. The
computational domain is (t, x) ∈ [0, 10]× [−2, 20] meshed with N = 20000 and J = 215. The initial datum
is u0(x) = 0.

When the wave number is small compared (case p = 1) to the critical wave number kc = 1/
√
ε,

the group velocity is close to the wave velocity and the incoming wave propagate into the computational
domain. At the end of the computation, we then obtain the profile of the incoming wave which is spatially
periodic. The method also work with incoming wave with a non zero spatial mean. When the wave number
is increased, both the group velocity and phase velocity are smaller and it takes much more time for the
incoming wave to propagate in the computational domain (cases p = 2, 3). For wavenumbers larger than
kc, the “incoming” wave does not invade the computational domain: indeed, we only observe the part of
the solution that describes the transition between the incoming wave at x = −∞ and the trivial solution
u = 0 at x = +∞.

We also show on Figure 9 the propagation of an incoming front uin with α = 2, β = 0.5, p = 5 and
ε = 10−3. We plot the evolution of the wave on Figure 10 at times t = 2.5, t = 5, t = 7.5 and t = 10. We
do not see any reflection at boundaries which show the effectivness of our TBCs.
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Figure 7: Evolution of an incoming wave for p = 1 (left) and p = 2 (right)
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Figure 8: Evolution of an incoming wave for p = 3 (left) and p = 5 (right)
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Figure 9: Evolution of a propagative incoming front

5 Conclusion

In this paper, we derived discrete transparent boundary conditions for the linear Benjamin-Bona-Mahony
equation for a upwind and centered discretization of the convection term, the dispersive term being
modeled with finite difference centered scheme. Both schemes are proved to be stable, consistant and
convergent. Note that in our proof, we do not need an explicit form of the boundary conditions (rather
their expression with the help of the Z-transform) and that this result could be extended to linear
Korteweg-de Vries equations [BEL-V].

In addition, we showed how to use those transparent boundary conditions to deal with the problem
of wave generation in water wave problems. In practice, we will have to deal with non-linear equations.
In order to derive transparent boundary conditions in the nonlinear case, we will adapt our strategy to
linear equations with variable coefficients and then adopt a fixed point strategy: see [AABES] for more
details in the case of nonlinear Schrodinger equations. We shall use this strategy to study accurately
the interaction of solitons in BBM equations like [E-McG, DP] (where non physical boundary conditions
were used). We also expect that this strategy can also be used in the numerical simulation of Boussinesq
systems of PDEs which are in some cases nothing but a system of linearized BBM equations only coupled
by nonlinear convection terms [AABCW]. An other question of interest is of course to derive discrete
transparent boundary conditions in the case of the Serre-Green-Naghdi equations [L] which are physically
more relevant for the water wave problem.

A The Z-transform
The discrete analogous of the Laplace transform is the so called Z-transform. In this section, we list some
results used in this paper concerning this transformation. More precise details on the Z-transform and
its properties are given in [JEI].

Definition A.1. Let (un)n∈N ∈ CN. We define the Z-transform of the sequence (un), denoted û by:

∀z ∈ C, |z| > R, Z(un) = û(z) =
∞∑
n=0

un
zn
,
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Figure 10: Evolution of a propagative incoming front at times t = 2.5, t = 5, t = 7.5 and t = 10
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where R is the radius of convergence of the series
∑∞

n=0 unz
n.

Note that in the previous definition, the radius R depends a priori on the sequence (un). We now
state a couple of analogue results of the Laplace transform properties in the context of the Z-transform.
One has the following discrete differentiation Theorem:

Theorem A.2. When these quantities are well defined, one has:

Z(un+1) = zû(z)− zu0.

We also have the following behavior of the Z-transform regarding the convolution:

Theorem A.3. Let (un), (vn) ∈ CN. If û(z) exists for |z| > Ru and v̂(z) exists for |z| > Rv, then
Z(un ? vn) exists for |z| > max(Ru, Rv) and one has:

∀|z| > max(Ru, Rv), Z(un ? vn) = û(z)v̂(z).

By a classical series-integral commutation, one gets the following Plancherel Theorem:

Theorem A.4. Let (un), (vn) ∈ CN. If û(z) exists for |z| > Ru and v̂(z) exists for |z| > Rv with
RuRv < 1, then, one has, for all r ∈ [Ru;Rv]:

∞∑
n=0

unvn =
1

2π

∫ 2π

0
f̂(reiϕ)ĝ(eiϕ)dϕ.

We now state the following inversion result (which is a consequence of Cauchy Integral Theorem):

Theorem A.5. Let (un) be a complex sequence and û its Z-transform with radius of convergence Ru.
Then, one gets the following relation:

∀n ∈ N, un =
1

2iπ

∫
C(0,R)

û(z)zn−1dz

where R > Ru and C(0, R) denotes the circle of center 0 and radius R.

A useful result is the following inverse Z-transform:

Z−1( z√
z2 − 2µz + 1

) = Pn(µ)

for all |z| > max(|z1|, |z2|) where z1, z2 are the square roots of z2 − 2µz + 1 and Pn is the n-th Legendre
polynomial. We deduce by scaling the variables the following inverse formula:

Z−1( Λz√
Λ2z2 − 2µΛz + Λ

) = Λ−nPn(µ)

for all |z| > max(|Λ−1z1|, |Λ−1z2|) where z1, z2 are the square roots of z2 − 2µz + 1 and Pn is the n-th
Legendre polynomial.
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