Transport of Indirect Excitons in Polar GaN/AlGaN Quantum Wells.
F Fedichkin, P Andreakou, P Valvin, M Vladimirova, T Guillet, T Bretagnon, A Dussaigne, N Grandjean, Pierre Lefebvre

To cite this version:
F Fedichkin, P Andreakou, P Valvin, M Vladimirova, T Guillet, et al.. Transport of Indirect Excitons in Polar GaN/AlGaN Quantum Wells.. Compound Semiconductor Week 2014, May 2014, Montpellier, France. hal-01305161

HAL Id: hal-01305161
https://hal.science/hal-01305161
Submitted on 20 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Transport of Indirect Excitons in Polar GaN/AlGaN Quantum Wells

F. Fedichkin1, P. Andreakou1, P. Valvin1, M. Vladimirova1, T. Guillet1, T. Bretagnon1,
A. Dussaigne2, N. Grandjean3, and P. Lefebvre1

1Laboratoire Charles Coulomb, CNRS-INP-UMR 5221, Université Montpellier 2, F-34095 Montpellier, France
2ALEDIA, Minatec campus, Grenoble, France
3Institute of Condensed Matter Physics, EPFL, CH-1015 Lausanne, Switzerland
e-mail: F.Fedichkin@gmail.com

1 Abstract

We present spatially- and time-resolved photoluminescence experiments on polar GaN/AlGaN quantum well structures, showing exciton propagation distance of tens of micrometers from generation position and exciton radiative lifetimes of tens of microseconds. We study in detail the dynamics and range of their relaxation/diffusion along the growth plane, as a function of temperature.

2 Motivation

Indirect excitons
(spatially separated bound electron and hole pairs)

- Long lifetime
- Built-in dipole moment

Use of dipole-dipole interaction for excitonic transport

Excitonic devices (e.g. exciton transistors [1,2])

GaN-based polar quantum wells (QWs):
- strong built-in electric field ~ MV/cm
- quantum Confined Stark Effect (QCSE) dominates over confinement in wide QWs > 30 atomic monolayers (ML):
 - fundamental optical transition below the excitonic gap of GaN
 - emission energy decreases linearly with increasing QW width
 - carrier lifetime ~ μs and longer
 (small e-h overlap)
- exciton binding energy (bulk GaN is ~ 26 meV)
- exciton Bohr radius (bulk GaN is ~ 3 nm)
- 2D Mott density \(n_{Mott} = 2 \times 10^{12} \text{ cm}^{-2} \)

High-exciton density, short lifetime (blueshift)

Low-exciton density, long lifetime (redshift)

Spatially-resolved photoluminescence (PL) (dependence of emission on distance from excitation)

- Close to the excitation spot: strong blue shift of PL energy (~300 meV), strong emission intensity
- At low temperature: excitonic emission observed hundreds of μm away from excitation spot
- Long range excitation transport (strong repulsive interaction between excitons + long carrier lifetime)
- With increasing temperature: quenching of transport (nonradiative recombination dominates over radiative), but only above some critical distance
- Excitonic transport is accompanied by energy relaxation and decrease of emission intensity
- LO-phonon replicas located 90, 180,… meV below the main emission peak

3 Experimental details and sample structure

Using interbarrier in the QW:
- Moderate modification of the exciton binding energy
- “Pinching” of the electron-hole overlap
 - larger lifetime

Spatially-resolved photoluminescence (PL):
- cw excitation at 266 nm
- Incident power 1-10 mW
- Excitation spot 1 μm in diameter

Micro-time-resolved PL:
- \(\lambda = 266 \text{ nm} \)
- 150 fs pulses
- Incident power about 1 mW
- Repetition rate: 8 kHz (125 μs between pulses)

Creation of dipolar excitons (red arrows) by laser excitation

4 Experimental results

5 Experimental results

6 Conclusions

- Long range exciton transport induced by exciton-exciton dipolar repulsion at low temperatures (up to 100 μm)
- Exciton transport is mainly dominated by drift due to the repulsive dipole-dipole interaction
- High temperature transport is hindered by nonradiative decay; mean exciton transport distance decreases with increasing temperature due to nonradiative decay (nonradiative horizon)
- Estimated speed of exciton flow in our structure is 2 m/s.