Spectral distribution and L2-isoperimetric profile of Laplace operators on groups - Archive ouverte HAL
Article Dans Une Revue Mathematische Annalen Année : 2012

Spectral distribution and L2-isoperimetric profile of Laplace operators on groups

Résumé

We give a formula relating the $L^2$-isoperimetric profile to the spectral distribution of the Laplace operator associated to a finitely generated group $\Gamma$ or a Riemannian manifold with a cocompact, isometric $\Gamma$-action. As a consequence, we can apply techniques from geometric group theory to estimate the spectral distribution of the Laplace operator in terms of the growth and the F{\o}lner's function of the group, generalizing previous estimates by Gromov and Shubin. This leads, in particular, to sharp estimates of the spectral distributions for several classes of solvable groups. Furthermore, we prove the asymptotic invariance of the spectral distribution under changes of measures with finite second moment.
Fichier principal
Vignette du fichier
0901.0271.pdf (322.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01305024 , version 1 (06-10-2023)

Identifiants

Citer

Alexander Bendikov, Christophe Pittet, Roman Sauer. Spectral distribution and L2-isoperimetric profile of Laplace operators on groups. Mathematische Annalen, 2012, 354 (1), pp.43-72. ⟨10.1007/s00208-011-0724-6⟩. ⟨hal-01305024⟩
104 Consultations
14 Téléchargements

Altmetric

Partager

More