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Convexity of Network Restricted Games Induced by

Minimum Partitions

A. Skoda∗

Abstract

We consider restricted games on weighted communication graphs
associated with minimum partitions. We replace in the classical defini-
tion of Myerson’s graph-restricted game the connected components of
any subgraph by the sub-components corresponding to a minimum par-
tition. This minimum partition Pmin is induced by the deletion of the
minimum weight edges. We provide necessary conditions on the graph
edge-weights to have inheritance of convexity from the underlying game
to the restricted game associated with Pmin. Then we establish that
these conditions are also sufficient for a weaker condition, called F-
convexity, obtained by restriction of convexity to connected subsets.
Moreover we show that Myerson’s game associated to a given graph G
can be obtained as a particular case of the Pmin-restricted game for a
specific weighted graph G

′

. Then we prove that G is cycle-complete if
and only if a specific condition on adjacent cycles is satisfied on G

′

.

Keywords: communication networks, cooperative game, restricted game,
partitions.

1 Introduction

Communication games were introduced by Myerson in 1977 [11]. These are
cooperative games (N, v) defined on the set of vertices N of an undirected
graph G = (N,E), where E is the set of edges. v is the characteristic
function of the game, v : 2N → IR, A 7→ v(A) and satisfies v(∅) = 0. The
graph G describes how the players of N can communicate: e = {i, j} ∈ E if
and only if the players i and j can directly communicate. For every coalition
A ⊆ N , we consider the induced graph GA := (A,E(A)), where E(A) is the
set of edges e = {i, j} ∈ E such that i and j are in A. We denote by A/G the
set of connected components of GA, that is, those sets F which are maximal
subcoalitions of A such that all pairs of players i, j in F can communicate
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by a path in GA linking i and j. Myerson defined the graph-restricted game
(N, vM ),

(1) vM (A) =
∑

F∈A/G

v(F ), for all A ⊆ N.

The new game (N, vM ) takes into account how the players of N can commu-
nicate according to the graph G. The inheritance of some important prop-
erties as superadditivity and convexity from the underlying game (N, v) to
the graph-restricted game (N, vM ) has been investigated. Owen [12] proved
that if (N, v) is superadditive then (N, vM ) is also superadditive without
any assumption on G. Van den Nouweland and Borm [14] showed that if a
communication graph is cycle-complete1 and the underlying game is convex
then the graph-restricted game is also convex. Other graph restricted games
have been defined when there exists a hierarchical structure on the set of
players. Games with permission structures have been introduced in [9] to
describe situations where some players need permission of some other players
to cooperate within a coalition. They were later extended to games on anti-
matroids [4]. Other combinatorial structures have been proposed to describe
situations which cannot necessarily be represented by a graph [7, 3, 2, 5].
In particular the result on inheritance of convexity by Van den Nouweland
and Borm for Myerson’s restricted game can also be seen as a consequence
of a result by Faigle [7] as proved in [2]. Superadditivity and convexity
are important properties in cooperative game theory, since they imply the
nonemptiness of the set of imputations, of the core, and that the Shapley
value lies in the core.

Myerson’s restricted game only takes into account the connectivity be-
tween players. It makes sense for a physical communication network as a
group of players should be at least able to communicate together to cooper-
ate and get their initial value but it can seem optimistic for social networks.
For example let us consider a coalition corresponding to a path as repre-
sented in Figure 1. Then this coalition consisting of two terminal players and
some intermediaries is supposed to get its initial value as the corresponding
subgraph is connected. The coordination of players may be acceptable for

1 n

Figure 1: A coalition of players corresponding to a path.

a small number of intermediairies but seems rather unlikely if this number
is important. If the group is unable to coordinate then subgroups of players

1A graph G = (N,E) is cycle-complete if for any cycle C = (v1, e1, v2, e2, . . . , em, v1)
in G the subset {v1, v2, . . . , vm} ⊆ N of vertices of C induces a complete subgraph in G.
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may form and could be reduced to singletons in the worst case. Hence, not-
ing that A/G is a partition of A, a more general setting has been introduced
in [10]. We call correspondence any way of partitioning, formally a mapping
P on 2N , assigning to any nonempty A ⊆ N a partition P(A) of A. Then
the partition restricted game (N, v) associated with P is defined by:

(2) v(A) =
∑

F∈P(A)

v(F ), for all A ⊆ N.

We will more simply refer to this game as the P-restricted game. Let us
note that if P corresponds to the partition into connected components then
(N, v) = (N, vM ). Then a natural problem is to find necessary and sufficient
conditions on correspondences to have inheritance of superadditivity and
convexity from (N, v) to (N, v). A characterization of inheritance of super-
additivity and another one of inheritance of convexity but restricted to the
family of unanimity games have been established in [10]. For a given corre-
spondence these characterizations imply strong conditions on graphs (as for
Myerson game). Therefore it is natural to look for necessary and sufficient
conditions on graphs to have inheritance of superadditivity or convexity. Let
us observe that even if players are connected they do not necessarily have
the same levels of relationships or communication possibilities. Therefore we
consider weighted graphs, where each edge e ∈ E has a weight w(e), whose
interpretation may depend on the context (e.g., a degree of friendship, a
level of communication, a resistance under attacks, or a security level, etc.).
Then, an obvious way of partitioning a coalition A ⊆ N , which we denote by
Pmin, is to remove all edges of minimum weight in A. The reason to do this is
that these edges are weak in some sense, and may easily disappear. Of course
the weakness of an edge is relative to the subgraph GA it belongs to. The
minimum edge-weight in GA can be higher than the minimum edge-weight
in G but it corresponds to the weakest links between players in coalition A.
The components of Pmin(A) should then show the “strongest” components
of GA. In this framework, we study under which necessary conditions the
convexity is inherited from (N, v) to (N, v). The particular case of cycle-free
graphs has already been investigated in [10]. Two necessary conditions of
convexity on edge-weights were established, the first one on paths and the
second one on stars in the graph. It was also observed that for arbitrary
graphs a condition on edge-weights of cycles was required. Following the line
started in [10] we investigate in this paper the more intricate situation of
arbitrary graphs for Pmin. We provide two supplementary necessary condi-
tions on edge-weights associated with pans2 and adjacent cycles. The three
conditions of [10] are also extended to a more general setting. In particular,
paths, stars, and cycles do not necessarily correspond to induced subgraphs.
To establish these five necessary conditions we only need to consider con-

2A pan graph is a graph obtained by joining a cycle to a vertex by an edge.
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nected subsets. Hence these necessary conditions are valid if we only assume
F-convexity which is a weaker condition than convexity introduced in [10]
and obtained by restricting the definition of convexity to connected subsets.
Then we prove the sufficiency of these five conditions for the inheritance of
F-convexity from (N, v) to (N, v) for arbitrary graphs, and this constitutes
the main result of the paper (Theorem 20). Of course F-convexity does
not imply convexity but we think this notion is of interest in the context of
communication networks. Convexity corresponds to the idea that tendency
for a player to join a coalition increases as the coalition grows. But if the
coalition does not correspond to a connected subset in G then this property
seems rather unlikely. Indeed the player will not be able to communicate
with the whole group of players in the coalition and in the worst case could
be not even linked to any player in the coalition. If we consider that players
should be at least able to communicate to cooperate then it becomes natural
to restrict convexity to connected subsets. Moreover we give in Section 3
a very simple counter-example to inheritance of convexity with only two
different edge-weights for which nevertheless inheritance of F-convexity is
satisfied. Hence inheritance of convexity can only occur for a very small
class of weighted graphs and it is interesting to consider F-convexity to get
inheritance for a sufficiently large class of weighted graphs.

The article is organized as follows. In Section 2 we give preliminary def-
initions and results established in [10]. In particular, we recall the definition
of F-convexity and general conditions on a correspondence to have inher-
itance of convexity and F-convexity. The Pmin-restricted game is defined
in Section 3. In Section 4 we first show that Myerson’s game associated
to a given graph G corresponds to a restriction of the Pmin-restricted game
associated to a specific weighted graph G

′
built from G. Then we prove

that inheritance of convexity for Myerson’s game is equivalent to inheri-
tance of F-convexity for the Pmin-restricted game. Section 5 includes the
main results ot the paper. In Section 5.1 we establish necessary conditions
on edge-weights to have inheritance of F-convexity. Then we prove that
these conditions are also sufficient for superadditive games in Section 5.2.
As a consequence one only needs to verify inheritance of F-convexity for
unanimity games. That is an interesting and non trivial result as a convex
game is not in general a convex combination of unanimity games. In Sec-
tion 5.3 we prove that cycle-completeness of a graph is satisfied if and only
if one of the necessary conditions on adjacent cycles is satisfied on the spe-
cific graph described in Section 4. Hence this condition on adjacent cycles
is particularly relevant. In Section 5.4 we give a description of graphs satis-
fying the necessary and sufficient conditions for inheritance of F-convexity.
This class is large as the number of different edge-weights and of adjacent
cycles is not restricted. We conclude with some remarks and suggestions for
generalization of these results to other correspondences in Section 6.
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2 Preliminary definitions and results

A game (N, v) is zero-normalized if v(i) = 0 for all i ∈ N . We recall that
a game (N, v) is superadditive if, for all A,B ∈ 2N such that A ∩ B = ∅,
v(A ∪ B) ≥ v(A) + v(B). For any given subset ∅ 6= S ⊆ N , the unanimity
game (N, uS) is defined by:

(3) uS(A) =

{

1 if A ⊇ S,
0 otherwise.

We note that uS is superadditive for all S 6= ∅. The following result es-
tablished in [10] gives general conditions on a correspondence P to have
inheritance of superadditivity.

Theorem 1. Let N be an arbitrary set and P a correspondence on N . Then
the following claims are equivalent:

1) For all ∅ 6= S ⊆ N , the P-restricted game (N, uS) is superadditive.

2) For all subsets A ⊆ B ⊆ N , P(A) is a refinement of the restriction of
P(B) to A.

3) For all superadditive game (N, v) the P-restricted game (N, v) is super-
additive.

Let F be a weakly union-closed family3 of subsets of N such that ∅ /∈ F .
A game v on 2N is said to be F-convex if for all A,B ∈ F such that
A ∩B ∈ F , we have:

(4) v(A ∪B) + v(A ∩B) ≥ v(A) + v(B).

We note that uS is convex for all S 6= ∅. Of course convexity implies F-
convexity which implies also the following condition. If a game v on 2N is
F-convex then, for all i ∈ N and all A ⊆ B ⊆ N \ {i} such that A,B and
A ∪ {i} ∈ F we have:

(5) v(B ∪ {i})− v(B) ≥ v(A ∪ {i})− v(A).

Of course if F = 2N \ ∅ then F-convexity corresponds to convexity and it is
well known that there is equivalence of the two previous conditions [13]. We
say that a subset A ⊆ N is connected if the induced graph GA = (A,E(A))
is connected. The family of connected subsets of N is obviously weakly
union-closed [3]. For this last family the two previous conditions are also
equivalent [10].

3F is weakly union-closed if A ∪ B ∈ F for all A, B ∈ F such that A ∩ B 6= ∅ [8].
Weakly union-closed families were introduced and analysed in [1, 3] and called union stable
systems.
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Theorem 2. Let G = (N,E) be an arbitrary graph and let F be the family
of connected subsets of N . Then the following conditions are equivalent:

(6) v is F-convex.

(7)
v(B ∪ {i})− v(B) ≥ v(A ∪ {i})− v(A), for all i ∈ N,
for all A ⊆ B ⊆ N \ {i} with A,B, and A ∪ {i} ∈ F .

The next theorem established in [10] gives general abstract conditions on
a correspondence P to have inheritance of convexity for unanimity games.

Theorem 3. Let N be an arbitrary set, P a correspondence on N , and
F a weakly-union closed family of subsets of N such that ∅ /∈ F . If for all
non-empty subset S ⊆ N , (N, uS) is superadditive, then the following claims
are equivalent.

1) For all non-empty subset S ⊆ N , the game (N, uS) is F-convex.

2) For all A,B ∈ F such that A ∩ B ∈ F , P(A ∩ B) = {Aj ∩ Bk ; Aj ∈
P(A), Bk ∈ P(B), Aj ∩Bk 6= ∅}.

Moreover if F = 2N \ {∅} or if F corresponds to the set of all connected
subsets of a graph then 1) and 2) are equivalent to:

3) For all i ∈ N and for all A ⊆ B ⊆ N \ {i} with A,B, and A ∪ {i} ∈ F ,
we have for all A

′
∈ P(A ∪ {i}), P(A)|A′ = P(B)|A′ .

Remark 1. We will mostly use claim 3 in subsequent proofs.

3 Pmin-restricted game

Let G = (N,E,w) be an arbitrary graph with an edge-weight function w
which assigns a weight w(e) to each edge e ∈ E. We assume that the
edge-weights are not all equal to avoid trivial situations. For any subset
A ⊆ N , we denote by σ(A) the minimum edge-weight in GA, i.e., σ(A) =
mine∈E(A)w(e), and by Σ(A) the subset of edges of minimum weight in
E(A). Let Pmin be the correspondence which associates to every subset
A ⊆ N the partition Pmin(A), the elements of which are the components of
the graph GA = (A,E(A) \ Σ(A)). We set Pmin(∅) = {∅}. Then for every
game (N, v) the Pmin-restricted game (N, v) is defined by:

v(A) =
∑

F∈Pmin(A)

v(F ), for all A ⊆ N.

This game can be considered as a pessimistic alternative to Myerson’s game.
Indeed to get its initial value a coalition has to be connected but the induced

6
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Figure 2: A weighted graph.

subgraph has also to stay connected if we delete the minimum weighted
edges. For example, let us consider the weighted graph G represented in
Figure 2. If A = {1, 2, 3} then v(A) = v({1}) + v({2, 3}), and if A =
{1, 2, 4} then v(A) = v({1}) + v({2}) + v({4}). This basic example shows
the specificity of the game associated with Pmin. In the two cases the three
players can perfectly communicate as they form a complete subgraph. In
the first case the edge-weights imply that players 2 and 3 form a subcoalition
and will cooperate. But in the second case the three players have the same
level of communication. Therefore no particular group will emerge. Hence
the Pmin-restricted game is very different from Myerson’s restricted game.
We show in Section 4 that they are actually deeply linked and that the Pmin-
restricted game is more general as it contains Myerson’s game as a specific
subcase.

We can immediately observe that inheritance of superadditivity from the
underlying game to the Pmin-restricted game is always satisfied. Indeed, as
for all A ⊆ B ⊆ N , Pmin(A) is a refinement of Pmin(B)|A, Theorem 1 implies
the following result.

Corollary 4. Let G = (N,E,w) be an arbitrary weighted graph. Then for
every superadditive game (N, v), the Pmin-restricted game (N, v) is superad-
ditive.

In comparison inheritance of convexity is very intricate. As pointed out
in the introduction we will restrict the study in this paper to inheritance of
F-convexity. We end this section with a counterexample to inheritance of
convexity. Let us consider the graph represented in Figure 3. We suppose:

(8) w1 = w2 < w3 = w4.

We consider i = 1, A1 = {2}, A2 = {4, 5}, A = A1 ∪ A2, and B = A ∪ {3}.
Then v(B∪{i})−v(B) = v(i) and v(A∪{i})−v(A) = v(A2)+v(i)−v(4)−
v(5). Taking v = uA2 we get v(B∪{i})−v(B) = 0 < 1 = v(A∪{i})−v(A).
Therefore there is no inheritance of convexity. It can easily be checked that
if A is replaced by any connected subset of B then v(B ∪ {i}) − v(B) =
v(i) = v(A ∪ {i})− v(A).

Remark 2. We could also use Theorem 3 to prove that there is no inheri-
tance of convexity in the preceding example.

7
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1 2 3 4 5
e1 e2 e3 e4

A2A1 B

Figure 3: A counterexample to inheritance of convexity.

4 Myerson’s game as a particular case of the Pmin-

restricted game

Given a graph G = (N,E) we build a weighted graph G
′

= (N
′

, E
′

, w) as
follows. We add a new vertex s to G and an edge joining s to i for each
i ∈ N . Hence N

′

= N ∪ {s} and E
′

= E ∪ {{s, i}, i ∈ N}. For the weight
function, we set w(e) = 1 if e ∈ E and w(e) = 1

2 if e ∈ E
′
\ E (we can take

any value in ]0, 1[ instead of 1
2). For example if G corresponds to a cycle on

five vertices then G
′

corresponds to the graph represented in Figure 4.

4 3

2 s

5 1
1

1

1

1

1
1
2

1
2

1
2

1
2

1
2

Figure 4: Graph G
′
.

We consider on G
′

the correspondence Pmin. We denote by PM the
correspondence on G which assigns to each subset A ⊆ N the partition
PM (A) of A into its connected components. Let us consider a subset A

′

in
N

′
. If A

′
⊆ N then Pmin(A

′
) is the singleton partition of A

′
. Otherwise

A
′

= A ∪ {s} with A ⊆ N and Pmin(A
′

) = {PM (A), {s}}.
Let (N

′
, v) be a zero-normalized game on N

′
. Then for any A ⊆ N we

have :

(9) v(A) = 0,

and setting PM (A) = {A1, A2, . . . , Ak},

(10) v(A ∪ {s}) =
k

∑

i=1

v(Ai) = vM (A).

Let us observe that by (9) and (10) the restricted game (N
′

, v) only depends
on the restriction of v to N and the restriction of (N

′
, v) to the set of

coalitions containing s corresponds to the Myerson game on N .
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Theorem 5. Let G = (N,E) be a graph and G
′
= (N

′
, E

′
, w) be the

weighted connected graph obtained from G by the preceding procedure. Let
us consider a zero-normalized game (N

′

, v). Then the Pmin-restricted game
(N

′
, v) is F-convex if and only if (N, vM ) is convex.

Proof. Let us assume that (N
′
, v) is F-convex. Then for any subsets A,B ⊆

N , we have:

(11) v(A ∪B ∪ {s}) + v(A ∩B ∪ {s}) ≥ v(A ∪ {s}) + v(B ∪ {s}).

(10) implies that (11) is equivalent to:

(12) vM (A ∪B) + vM (A ∩B) ≥ vM (A) + vM (B).

Hence F-convexity of (N
′
, v) implies convexity of (N, vM ).

Let us now assume that (N, vM ) is convex. Then (12) and therefore (11)
are satisfied for any subsets A,B ⊆ N . As (N, vM ) is convex it is also
superadditive and therefore for any subsets A,B ⊆ N , we have:

(13) vM (A ∪B) ≥ vM (A),

which is equivalent to:

(14) v(A ∪B ∪ {s}) + v(A ∩B) ≥ v(A ∪ {s}) + v(B).

By symmetry we also have v(A∪B∪{s})+v(A∩B) ≥ v(A)+v(B∪{s}). And
v(A∪B) + v(A∩B) ≥ v(A) + v(B) is obviously satisfied for all A,B ⊆ N

′
.

Hence (N
′

, v) is convex.

Corollary 6. Let G = (N,E) be a graph and G
′

= (N
′

, E
′

, w) be the
weighted connected graph obtained from G by the preceding procedure. Let us
consider a zero-normalized game (N

′

, v). Inheritance of F-convexity from
(N

′
, v) to the Pmin-restricted game (N

′
, v) is equivalent to inheritance of

convexity from (N, v) to (N, vM ).

5 Inheritance of F-convexity with Pmin

Let G = (N,E,w) be a weighted graph. We denote by wj the weight of an
edge ej in E. We establish in this part necessary and sufficient conditions
on the weight vector w for the inheritance of F-convexity from the original
communication game (N, v) to the Pmin-restricted game (N, v).

5.1 Necessary conditions on edge-weights

We first establish that there exists a necessary condition associated with ev-
ery subgraph of G corresponding to a star. A star Sk corresponds to a tree

9
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with one internal vertex and k leaves. We present the result for stars with
three leaves. The generalization to stars of greater size is immediate. We
consider a star S3 with vertices {1, 2, 3, 4} and edges e1 = {1, 2}, e2 = {1, 3}
and e3 = {1, 4}. The following necessary condition already appeared in [10]
but was limited to induced stars. It can be extended to all stars of a given
graph.

Star Condition. For every star of type S3 of G, the edge-weights
w1, w2, w3 satisfy, after renumbering the edges if necessary:

w1 ≤ w2 = w3.

Proposition 7. Let G = (N,E,w) be a weighted graph, and F the family
of connected subsets of N . If for every unanimity game (N, uS), the Pmin-
restricted game (N, uS) is F-convex, then the Star Condition is satisfied.

Proof. We have to prove that we cannot have two edge-weights strictly
smaller than a third one. By contradiction let us assume we have w1 ≤
w2 < w3, after renumbering if necessary. Let us consider the situation of

3

1 2

4

w2

w3

w1

B

A

Figure 5: Star of type S3 with w1 ≤ w2 < w3.

Figure 5 where A = {1, 4}, B = {1, 3, 4}, and i = 2. Let us observe that, as
the star is not necessarily induced, edges {2, 3}, {3, 4}, and {2, 4} may exist.
By deleting the edges of minimum weight we obtain Pmin(A) = {{1}, {4}},
and Pmin(B) = {A, {3}} or Pmin(B) = {B}. If Pmin(A∪ {i}) = {A, {i}} we
have A ∈ Pmin(A ∪ {i}) but Pmin(B)|A = A 6= Pmin(A)|A and it contradicts
Theorem 3. Now if Pmin(A ∪ {i}) = {A ∪ {i}} we still get a contradiction
since we have Pmin(B)|A∪{i} = A 6= Pmin(A)|A∪{i}.

For a weighted graph G = (N,E,w), we denote by M the maximum
edge-weight, i.e., M = maxe∈E w(e), and by EM the set of edges of max-
imum weight in G, i.e., EM = {e ∈ E ; w(e) = M}. A subset A ⊆ N
is M -maximal if A is a maximal subset w.r.t. inclusion such that A is
connected, and E(A) ⊆ EM . For a vertex x ∈ V , we denote by N(x) its
neighborhood (i.e., the set of vertices adjacent to x). The neighborhood of
a subset A of N , is defined by N(A) := ∪x∈AN(x). We say that a vertex

10
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i ∈ N(A) \A is a neighbor of the set A, and we denote by E(A, i) the set of
edges joining i to A in G.

Lemma 8. Let G = (N,E,w) be an arbitrary weighted graph and let us
consider an M -maximal subset A of N . For all i ∈ N(A) \ A, we have
Pmin(A ∪ {i})|A = {A}.

Proof. We cannot have w(e) = M for all e ∈ E(A, i) otherwise A is not
M -maximal. Therefore there exists at least one edge e = {i, j} ∈ E(A, i)
such that w(e) < M . If all edges in E(A, i) have the same weight w(e), then
Pmin(A ∪ {i}) = {A, {i}}. Otherwise Pmin(A ∪ {i}) = {A ∪ {i}}.

Theorem 9. Let G = (N,E,w) be an arbitrary weighted graph, and F the
family of connected subsets of N . If for every unanimity game (N, uS), the
Pmin-restricted game (N, uS) is F-convex, then an M -maximal subset A of
N has at most one neighbor in N \A.

Proof. Let us assume A is M -maximal and has two distinct neighbors de-
noted by 1 and 2 in N . Let us consider B = A ∪ {2} and i = 1. Applying
Lemma 8, we have Pmin(A ∪ {i})|A = {A} (resp. Pmin(B)|A = {A}). Then
Pmin(B)|A = {A} 6= Pmin(A)|A and it contradicts Theorem 3.

Let γ = (e1, e2 . . . , em) be an elementary path of G (i.e., a path with no
repeated vertices) with ei = {i, i+ 1} for 1 ≤ i ≤ m. We now establish that
we have a property of convexity on the edge-weights along every elementary
path in G.

Path Condition. For every elementary path γ = (1, e1, 2, e2, 3, . . . ,m,
em,m + 1) in G and for all i, j, k such that 1 ≤ i < j < k ≤ m, the
edge-weights satisfy:

wj ≤ max(wi, wk).

Corollary 10. Let G = (N,E,w) be a weighted graph, and F the family
of connected subsets of N . If for every unanimity game (N, uS), the Pmin-
restricted game (N, uS) is F-convex, then the Path Condition is satisfied.

Proof. It is sufficient to prove that we have:

(15) wj ≤ max(w1, wm), ∀j, 1 ≤ j ≤ m.

Actually we can do the same reasoning with wi, wk by considering the re-
striction of γ between i and k+1. Let G

′
= (N

′
, E

′
, w) be the subgraph of G

induced by the vertices of γ. Let us consider an M -maximal subset A in G
′

.
Then A contains the end-vertices of e1 or em otherwise it has two neighbors
in N

′
\ A, contradicting Theorem 9. Therefore w1 = M or wm = M and

(15) is satisfied.

11
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Remark 3. Moreover we have proved that maxe∈E′ w(e) = maxe∈γ w(e) =
max(w1, wm).

We can also obtain necessary conditions for inheritance of convexity in
the case of a simple cycle in G (i.e., a cycle with no repeated vertices or
edges except for the start and end vertex). For a given cycle C we denote
by E(C) the set of edges in E having their end vertices in C.

Cycle Condition. For every simple cycle of G, C =
(1, e1, 2, e2, . . . ,m, em, 1) with m ≥ 3, the edge-weights satisfy, after
renumbering the edges if necessary:

(16) w1 ≤ w2 ≤ w3 = · · · = wm = M

where M = maxe∈E(C)w(e). Moreover w(e) = w2 for all chord incident
to 2, and w(e) = M for all chord non incident to 2.

Corollary 11. Let G = (N,E,w) be a weighted graph, and F the family
of connected subsets of N . If for every unanimity game (N, uS), the Pmin-
restricted game (N, uS) is F-convex, then the Cycle Condition is satisfied.

Proof. If |E(C)| = 3 then the results are obviously satisfied. Let us assume
|E(C)| ≥ 4. Let us denote by G

′
= (N

′
, E

′
, w) the subgraph of G induced

by the vertices of C. Let A be an M -maximal subset of G
′
. Theorem 9

implies |N
′
\A| ≤ 1, therefore (16) is obviously satisfied, after renumbering

the edges if necessary. Moreover as w(e) = M for all e ∈ E(A), we have
w(e) = M for all chord e non incident to 2. Let us now consider a chord
e = {2, j} incident to 2. Then Proposition 7 applied to the star defined by
{e1, e2, e} implies w1 ≤ w2 = w(e) or w(e) ≤ w1 = w2. By contradiction let
us assume w(e) < w1 = w2. Using Star condition, we have w(e

′
) = w1 = w2

for all other chords e
′

= {2, k} incident to 2. If such a chord e
′

exists
we can consider a cycle smaller than C by replacing the vertex 1 or 2 by
k. Hence we can assume that e is a unique chord incident to 2. Let us
consider A = V (C) \ {1, 3}, B = V (C) \ {1}, and i = 1 as represented in
Figure 6. Then Pmin(A∪ {i}) = {A∪ {i}}, Pmin(B) = {B}, and Pmin(A) =
{{2}, A \ {2}}. Therefore Pmin(B)|A∪{i} = {A} 6= Pmin(A)|A∪{i} and it
contradicts Theorem 3.

Let us consider a weighted graph G = (N,E,w) and a cycle C in G. If
e ∈ E(C) is a chord of C such that w(e) = maxe∈E(C)w(e), we say that e is
a maximum weight chord.

12
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j

1 3

2

e1 e2

ei
A

B

Figure 6: Cycle C with w(e) < w1 = w2.

Pan Condition. For all connected subgraphs corresponding to the union
of a simple cycle C = {e1, e2, . . . , em} with m ≥ 3, and an elementary
path P such that there is an edge e in P with w(e) ≤ min1≤k≤mwk and
|V (C) ∩ V (P )| = 1, the edge-weights satisfy:

either w1 = w2 = w3 = · · · = wm = M,(17)

or w1 = w2 < w3 = · · · = wm = M,(18)

where M = maxe∈E(C)w(e). In this last case V (C) ∩ V (P ) = {2} and
if moreover w(e) < w1 then {1, 3} is a maximum weight chord of C.

Proposition 12. Let G = (N,E,w) be a weighted graph, and F the family
of connected subsets of N . If for every unanimity game (N, uS), the Pmin-
restricted game (N, uS) is F-convex, then the Pan Condition is satisfied.

Proof. Let us consider C = {1, e1, 2, e2, 3, . . . ,m, em, 1}, and P = {j, em+1,
m+ 1, em+2,m+ 2, . . . , em+r,m+ r} with j ∈ {1, . . . ,m}, as represented in
Figure 7. We can assume w.l.o.g. that e = em+r (restricting P if necessary)
and that wm+j > wm+r = w(e) for all 1 ≤ j ≤ r− 1. Applying Corollary 11

m j

1 2
e1

em e2

ej

em+1 em+2 em+r

Figure 7: Pan formed by the union of C and P .

to the cycle C, we have after renumbering the edges if necessary:

(19) w1 ≤ w2 ≤ w3 = · · · = wm = M.

a) Let us first assume 3 ≤ j ≤ m. Applying Corollary 10 to the path
{2, e1, 1, em,m, . . . , j + 1, ej , j, em+1,m+ 1, . . . ,m+ r − 1, em+r,m+ r}, we
have wj ≤ max(w1, w(e)) = w1. Then (19) implies (17).

13
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b) Let us now assume j ∈ {1, 2}. If r = 1 then wm+1 = w(e) ≤ w1.
Otherwise, applying Corollary 10 to the path {e1, em+1 . . . , em+r}, we have
wm+1 ≤ max(w1, w(e)) = w1.
If j = 1, Proposition 7 applied to the star defined by {e1, em, em+1}, implies
wm+1 ≤ w1 = wm. Hence (19) still implies (17).
If j = 2, Proposition 7 applied to the star defined by {e1, e2, em+1}, implies
wm+1 ≤ w1 = w2. If w1 = w2 = M then (17) is satisfied. Otherwise
we have w1 = w2 < M and therefore (18) is satisfied. In this last case
let us assume by contradiction that {1, 3} /∈ E(C). Corollary 11 implies
w(e) = M (resp. w(e) = w2) for any chord e of C non incident (resp.
incident) to 2. Therefore we can assume w.l.o.g. that C has no maximum
weight chord (otherwise we can replace C by a smaller cycle which still
contains the vertices 1, 2, 3). Let us consider i ∈ V (C) \ {1, 2, 3}, A =
V (C) \ {i} and B = A ∪ V (P ) as represented in Figure 8. Then Pmin(A) =

3

i 2

1
em

ei

ei−1

e1

e2

e3

em+1 em+2 em+r

A
B

Figure 8: wm+r < w1 = w2 < w3 = · · · = wm = M .

{{2}, {3, 4, . . . , i−1}, {i+1, . . . ,m, 1}}, Pmin(A∪{i}) = {A∪{i}\{2}, {2}},
and Pmin(B) = {B \{m+r}, {m+r}} or Pmin(B) = {B} (this last case can
occur if there exists an edge e

′
in GB with w(e

′
) < w(e) or with m+ r as an

end-vertex and w(e
′
) > w(e)). Therefore A

′
:= A∪{i}\{2} ∈ Pmin(A∪{i}),

but Pmin(B)|A′ = {A\{2}} 6= Pmin(A)|A′ and it contradicts Theorem 3.

Let G = (N,E,w) be a graph. We say that two cycles are adjacent
if they have at least one common edge. Let us consider a cycle C =
(1, e1, 2, e2, . . . ,m, em, 1) such that w1 ≤ w2 ≤ w3 = . . . = wm. If w1 < w3

(resp. w2 < w3), we say that e1 (resp. e2) is a non-maximum weight edge
of C.

Lemma 13. Let G = (N,E,w) be a weighted graph satisfying the Star and
Cycle conditions. Then for all pairs (C,C

′

) of adjacent simple cycles in G,
we have:

(20) M = max
e∈E(C)

w(e) = max
e∈E(C′ )

w(e) = M
′

.

Proof. Let us consider two adjacent cycles C and C
′
with M < M

′
. There

is at least one edge e1 common to C and C
′

. Then we have w1 ≤ M < M
′

and therefore e1 is a non-maximum weight edge in C
′
. The cycle condition

14
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implies that there are at most two non-maximum weight edges in C
′
(cf.

Corollary 11). Therefore there exists an edge e
′

2 in C
′
adjacent to e1 with

w
′

2 = M
′

. As M
′

> M , e
′

2 is not an edge of C. Let e2 be the edge of C
adjacent to e1 and e

′

2. Then we have w2 ≤ M < M
′
but it contradicts the

star condition applied to {e1, e2, e
′

2} (two edge-weights are strictly smaller
than w

′

2).

Adjacent Cycles Condition. For all pairs (C,C
′
) of adjacent simple

cycles in G such that:

1. V (C) \ V (C
′

) 6= ∅ and V (C
′

) \ V (C) 6= ∅,

2. C has at most one non-maximum weight chord,

3. C and C
′
have no maximum weight chord,

4. C and C
′

have no common chord,

then C and C
′
cannot have two common non-maximum weight edges.

Moreover C and C
′
have a unique common non-maximum weight edge

e1 if and only if there are non-maximum weight edges e2 ∈ E(C)\E(C
′
)

and e
′

2 ∈ E(C
′

) \ E(C) such that e1, e2, e
′

2 are adjacent and:

• w1 = w2 = w
′

2 if |E(C)| ≥ 4 and |E(C
′

)| ≥ 4.

• w1 = w2 ≥ w
′

2 or w1 = w
′

2 ≥ w2 if |E(C)| = 3 or |E(C
′
)| = 3.

Proposition 14. Let G = (N,E,w) be a weighted graph, and F the family
of connected subsets of N . Let us assume that for every unanimity game
(N, uS), the Pmin-restricted game (N, uS) is F-convex. Then the Adjacent
Cycles Condition is satisfied.

Proof of Proposition 14. Let us consider two adjacent cycles C = {1, e1, 2, e2,
. . . ,m, em, 1} and C

′

= {1
′

, e
′

1, 2
′

, e
′

2, . . . , p
′

, e
′

p, 1
′

}. By Lemma 13 we have

M = maxe∈E(C)w(e) = maxe∈E(C
′
)w(e) = M

′

. Corollary 11 implies that

there are at most two non-maximum weight edges in E(C) ∩ E(C
′
).

A) Let us first assume that there are exactly two common non-maximum
weight edges e1, e2. Therefore we can assume e1 = e

′

1, e2 = e
′

2, j = j
′
for

1 ≤ j ≤ 3. Of course C and C
′

may have other common edges or vertices.
Hence we have:

(21) w1 ≤ w2 < M = max
e∈E(C)

w(e) = max
e∈E(C

′
)
w(e) = M

′

.

Corollary 11 also implies that all chords of C and C
′
are incident to 2

and have weight w2. By assumption, C has at most one non-maximum
weight chord in E(C) \ E(C

′
). If C has one non-maximum weight chord

15
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e in E(C) \ E(C
′
) then e = {2, i} with i ∈ V (C) \ V (C

′
). Let us define

A = V (C) \ {i}, B = A∪ V (C
′
) as represented in Figure 9 with m = p = 6.

If C has no chord, then we choose i ∈ V (C) \ V (C
′

) arbitrarily. We now

3

2

i 1

ei−1

ei

e4

e1

e2

e3 e
′

3

e
′

4

e
′

5

e
′

6

e

A

B

Figure 9: C and C
′
with two common non-maximum weight edges.

consider two cases.
Case 1 If w1 < w2 then Pmin(A) = {{2, 3, . . . , i − 1}, {i + 1, . . . ,m, 1}},
Pmin(A ∪ {i}) = {A ∪ {i}}, and Pmin(B) = {B}. Therefore A

′

:= A ∪ {i} ∈
Pmin(A ∪ {i}), but Pmin(B)|A′ = {A} 6= Pmin(A)|A′ and it contradicts The-
orem 3.
Case 2 Now if w1 = w2, we have Pmin(A) = {{2}, {3, 4, . . . , i − 1}, {i +
1, . . . ,m, 1}}, Pmin(A ∪ {i}) = {A ∪ {i} \ {2}, {2}}, and Pmin(B) = {B \
{2}, {2}} (as V (C

′
) \ V (C) 6= ∅). Taking A

′
= A ∪ {i} \ {2}, we have

Pmin(B)|A′ = {A \ {2}} 6= Pmin(A)|A′ , and it still contradicts Theorem 3.

B) Let us now assume that there is exactly one common non-maximum
weight edge e1. Therefore we can assume e1 = e

′

1, j = j
′
for 1 ≤ j ≤ 2, and

we have:

(22) w1 < M = max
e∈E(C)

w(e) = max
e∈E(C′ )

w(e) = M
′

.

If the edges in C (resp. C ′) adjacent to e1 are maximum weight edges then
Corollary 11 applied to C (resp. C

′

) implies w(e) = M for all e ∈ E(C)\{e1}
(resp. e ∈ E(C

′
) \ {e1}). Therefore C and C

′
have no chord. We choose

arbitrarily a vertex i ∈ V (C) \ V (C
′

). Then taking A = V (C) \ {i}, and
B = A ∪ V (C

′
), we get the same contradiction as in Case 1. If there is a

non-maximum weight edge e in C or C
′

adjacent to e1 then we can assume
w.l.o.g. e = e2 = {2, 3} ∈ C. Let us consider e

′

2 = {2, 3
′
} ∈ C

′
. We

necessarily have 3 6= 3
′
otherwise e

′

2 = e2 and e1, e2 would be two common
non-maximum weight edges, a contradiction. If e

′

2 is a maximum weight edge
then it contradicts Proposition 7 applied to the star defined by {e1, e2, e

′

2}.
Therefore e

′

2 is a non-maximum weight edge. Proposition 7 applied to the
star defined by {e1, e2, e

′

2} implies w1 ≤ w2 = w
′

2 or w
′

2 ≤ w1 = w2 or
w2 ≤ w1 = w

′

2. Let us first assume w1 < w2 = w
′

2. Then we can establish
the same contradiction as in Case 1. Hence Proposition 14 is satisfied if

16
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E(C) = 3 or E(C
′
) = 3. Let us now assume w

′

2 < w1 = w2. If |E(C)| ≥ 4
then, as C has no chord, it contradicts Proposition 12 applied to the pan
defined by C and e

′

2 and represented in Figure 10. By symmetry the case

3 2 3
′

1

M

M

M

M

w1

w2 w
′

2

M

M

M

Figure 10: w
′

2 < w1 = w2 < M contradicts the pan condition.

w2 < w1 = w
′

2 is also impossible if |E(C
′
)| ≥ 4. Finally if e1, e2 and e

′

2

satisfies the conditions of the proposition then e1 is the unique common
non-maximum weight edge as each cycle cannot have more than two non-
maximum weight edges.

Remark 4. We consider simple cycles in Proposition 14 to avoid situations
similar to the one represented in Figure 11. In this case we cannot establish

2

1

3 3
′

4

5

w1

M

M

M

M

w2

w
′

2

M

Figure 11: C = {1, e1, 2, e2, 3, e3, 4, e4, 5, e5, 3, e6, 1}, C
′

=
{1, e1, 2, e

′

2, 3
′

, e
′

3, 5, e5, 3, e6, 1} with w1 < w2 = w
′

2 < M but C is
not a simple cycle.

the same contradiction as in the proof of Proposition 14 even though V (C)\
V (C

′

) 6= ∅ and V (C
′

) \ V (C) 6= ∅.

5.2 Sufficient conditions

Let F be the family of connected subsets of N . We will now prove that the
preceding necessary conditions are also sufficient for superadditive games.
We first need some useful lemmas. The first one was already proved in [10].

17
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Lemma 15. Let us consider subsets A,B ⊆ N and a partition {B1, B2, . . . ,
Bp} of B. If A,Bi, and A ∩ Bi ∈ F , for all i ∈ {1, . . . , p}, then for every
F-convex game (N, v) we have:

(23) v(A ∪B) +

p
∑

i=1

v(A ∩Bi) ≥ v(A) +

p
∑

i=1

v(Bi).

Lemma 16. Let us consider a correspondence P on N and subsets A ⊆
B ⊆ N such that P(A) = P(B)|A. If A ∈ F and if all elements of P(A)
and P(B) are in F , then for every F-convex game (N, v) we have:

(24) v(B)− v(B) ≥ v(A)− v(A).

Proof. If P(B) = {B1, B2, . . . , Bp} then P(A) = {A∩B1, A∩B2, . . . , A∩Bp},
and Lemma 15 implies (24).

We say that an edge e ∈ E is connected to a subset A ⊆ N , if there is
a path in G joining e to A. The following lemma gives simple conditions
ensuring Pmin(A) is induced by Pmin(B) for A ⊆ B.

Lemma 17. Let G = (N,E,w) be a weighted graph, and F the family
of connected subsets of N . Let us assume that the edge-weight function w
satisfies the Pan condition. Let us consider A,B ∈ F such that A ⊆ B ⊆ N
and σ(A) = σ(B). Let us assume that either the subgraph GB = (B,E(B))
is cycle-free or there exists an edge e ∈ E connected to B with w(e) < σ(B).
Then Pmin(A) = Pmin(B)|A and for every F-convex game (N, v) we have:

(25) v(B)− v(B) ≥ v(A)− v(A).

Proof. Let Bk be a component of Pmin(B) such that A∩Bk 6= ∅. Let α0 be
a fixed vertex of A∩Bk and Ak be the component of Pmin(A) which contains
α0. We will prove A ∩ Bk = Ak. As σ(A) = σ(B), Σ(A) = E(A) ∩ Σ(B).
Let α1 be another vertex of Ak and γ be a path in Ak from α0 to α1. Each
edge e of γ is in E(A) \Σ(A) and therefore also in E(B) \Σ(B). Hence γ is
also a path from α0 to α1 in B and therefore α1 ∈ Bk. That is:

(26) Ak ⊆ A ∩Bk.

Let us assume there is a vertex α1 in A ∩ Bk \ Ak. As A (resp. Bk) is
connected, there exists a path γ (resp. γ

′
) from α0 to α1 in A (resp. Bk).

By definition of Bk, we have w(e) > σ(A) = σ(B) for all e ∈ γ
′
. As α1 /∈ Ak,

there exists at least one edge e
′
∈ γ such that w(e

′
) = σ(A) = σ(B).

Therefore γ 6= γ
′

and :

(27) w(e) > w(e
′

), ∀e ∈ γ
′

.

18
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α1

α0

e
′

e
′′

γ
′

γ

P

C

Figure 12: w(e) > w(e
′
), ∀e ∈ γ

′
, and w(e

′′
) < mine∈E(C)w(e).

Hence γ and γ
′

form a cycle C in GB. If GB is cycle-free we get a contra-
diction. Otherwise we can select α0, α1 and γ, γ

′
such that C is a simple

cycle without maximum weight chord (γ and γ
′

are paths with minimum
number of edges). By assumption, there exists an edge e

′′
∈ E connected to

B such that w(e
′′

) < σ(B). Therefore there is a path P linking e
′′

to C as
represented in Figure 12 and we have w(e

′′
) < mine∈E(C)w(e). If |V (C)| ≥ 4

or if |V (C)| = 3 and γ
′
contains two edges then (27) contradicts the pan

condition. Otherwise γ
′

is reduced to the edge e = {α0, α1} and therefore
(27) implies α1 ∈ Ak, a contradiction. Finally Lemma 16 implies (25).

Lemma 18. Let G = (N,E,w) be a weighted graph, and F the family
of connected subsets of N . Let us assume that the edge-weight function w
satisfies the Path and Star conditions. For a given i ∈ N , if A,B ∈ F ,
A ⊆ B ⊆ N \ {i}, and E(A, i) 6= ∅ then either σ(A, i) ≥ σ(A) ≥ σ(B) or
σ(A) = σ(B) > σ(A, i) where σ(A, i) = mine∈E(A,i)w(e).

Proof. As A ⊆ B, we have σ(A) ≥ σ(B). Let us assume:

(28) σ(A) > σ(A, i).

Let e = {i, j} be an edge in E(A, i) such that w(e) = σ(A, i). As A (resp.
B) is connected, there exists an elementary path γ = (e1, e2, . . . , em) in GA

(resp. γ
′

= (e
′

1, e
′

2, . . . , e
′

r) in GB) with w1 = σ(A) (resp. w
′

1 = σ(B)) and
such that j is an end-vertex of em (resp. e

′

r), as represented in Figure 13. If γ

j i
e1 e2 em

e
′

1 e
′

2

e
′

r

e

Figure 13: w(e) = σ(A, i), w1 = σ(A), w
′

1 = σ(B).

is reduced to e1 then (28) implies w1 > w(e). Otherwise the path condition
applied to γ ∪ {e} and (28) imply wm ≤ max(w1, w(e)) = w1 = σ(A). As
em ∈ E(A), wm = σ(A) and using again (28), we obtain:

(29) wm > w(e).
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If e
′

r = em, we have w
′

r = wm = σ(A). Otherwise, the star condition applied
to {e

′

r, em, e} and (29) imply again w
′

r = wm = σ(A). If γ
′
is reduced to e

′

1

then w
′

1 = σ(A) and therefore σ(B) = σ(A). Otherwise the path condition
applied to γ

′
∪ {e} implies w

′

r ≤ max(w
′

1, w(e)) and therefore:

(30) σ(A) ≤ max(σ(B), σ(A, i)).

Then (28) and (30) imply σ(A) ≤ σ(B). Therefore σ(A) = σ(B).

Lemma 19. Let G = (N,E,w) be a weighted graph, and F the family
of connected subsets of N . Let us assume that the edge-weight function w
satisfies the Pan condition. For i ∈ N , and A,B ∈ F , A ⊆ B ⊆ N \ {i},
let A1, A2, . . . , Ak be the components of Pmin(A) and let us assume σ(A) >
σ(B). Then for every edge e = {i, j} in E(A, i) such that w(e) > σ(A), j
belongs to the same component A1, after renumbering if necessary.

Proof. Let us assume w.l.o.g. that there exists an edge e1 = {i, j1} (resp.
e2 = {i, j2}) with j1 ∈ A1 (resp. j2 ∈ A2) such that w1 > σ(A) (resp.
w2 > σ(A)). As A is connected there exists a path γ in A from j1 to j2.
We obtain a cycle C = {i, j1} ∪ γ ∪ {j2, i}. There exists at least one edge of
weight σ(A) in γ and w(e) ≥ σ(A) for all e ∈ γ. We can select A1, A2 and
j1, j2 such that there is no maximum weight chord in C. As B is connected
and as σ(A) > σ(B), there is an edge e in E(B) of weight σ(B) linked by a
path to C as represented in Figure 14, but it contradicts the Pan condition.

j1

i

j2

> σ(A)

> σ(A)

≥ σ(A)

≥ σ(A)

σ(A)

σ(B)
e

A1

A2
A B

Figure 14: |V (C)| ≥ 3 and σ(A) > σ(B).

Remark 5. Lemma 19 is also valid with σ(A) = σ(B) if there exists an
edge e ∈ E(B, i) \ E(A, i) such that w(e) < σ(A).

We can now establish that the Path, Star, Cycle, Pan and Adjacent
cycles conditions defined in Section 5.1 are sufficient for superadditive games.

Theorem 20. Let G = (N,E,w) be a weighted graph. For every superaddi-
tive and F-convex game (N, v), the Pmin-restricted game (N, v) is F-convex
if and only if the Path, Star, Cycle, Pan, and Adjacent cycles conditions are
satisfied.
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Proof. We have already proved that the conditions are necessary. We now
prove they are sufficient. Let (N, v) be a given F-convex game. According
to Theorem 2, we have to prove that, for all i ∈ N , for all A ⊆ B ⊆ N \ {i}
and A,B,A ∪ {i} ∈ F , we have:

(31) v(B ∪ {i})− v(B) ≥ v(A ∪ {i})− v(A).

As A ∪ {i} is connected, there exists an edge e = {i, j} with j ∈ A. As
E(A, i) ⊆ E(B, i), we have σ(A, i) ≥ σ(B, i). Using Lemma 18, we have
several cases to consider.
Case 1 σ(A) = σ(B) > σ(A, i).
Case 1.1 Let us first assume there exists an edge e ∈ E(A, i) such that
w(e) > σ(A, i). Then Pmin(A ∪ {i}) = {A ∪ {i}} (resp. Pmin(B ∪ {i}) =
{B∪{i}}) as edges in E(A) (resp. E(B)) and e are not deleted. Hence (31)
is equivalent to v(B ∪ {i}) − v(B) ≥ v(A ∪ {i}) − v(A). This last inequal-
ity is satisfied as Lemma 17 implies v(B) − v(B) ≥ v(A) − v(A) and the
F-convexity of v implies v(B ∪ {i})− v(B) ≥ v(A ∪ {i})− v(A).
Case 1.2 Let us now assume that for all e ∈ E(A, i), w(e) = σ(A, i). We
consider several subcases.
Case 1.2.1 Let us assume that there exists an edge e ∈ E(B, i) such that
w(e) > σ(B, i). Then Pmin(A ∪ {i}) = {A, {i}} (all edges in E(A, i) are
deleted) and Pmin(B∪{i}) = {B∪{i}} (edges in E(B) and e are not deleted).
Then (31) is equivalent to v(B ∪{i})− v(B) ≥ v(A)+ v(i)− v(A). This last
inequality is satisfied as Lemma 17 implies v(B)− v(B) ≥ v(A)− v(A) and
the superadditivity of v implies v(B ∪ {i})− v(B) ≥ v(i).
Case 1.2.2 Let us now assume that for all e ∈ E(B, i), w(e) = σ(B, i).
Then Pmin(A ∪ {i}) = {A, {i}} and Pmin(B ∪ {i}) = {B, {i}}. Therefore
(31) is equivalent to v(B) − v(B) ≥ v(A) − v(A). Lemma 17 implies that
this inequality is satisfied.

Case 2 σ(A, i) ≥ σ(A) = σ(B).
If w(e) = σ(A) for all e ∈ E(A, i) then Pmin(A∪ {i}) = {Pmin(A), {i}}, and
(31) is equivalent to v(B∪{i})−v(B) ≥ v(A)+v(i)−v(A) = v(i). Corollary 4
implies the superadditivity of v and therefore the last inequality is satisfied.
Otherwise, let A1, A2, . . . , Ak (resp. B1, B2, . . . , Bl) be the components of
Pmin(A) (resp. Pmin(B)) connected to i by edges in E(A, i) (resp. E(B, i))
with weights strictly greater than σ(A). Then (31) is equivalent to

(32) v(B1 ∪ · · · ∪Bl ∪{i})−
l

∑

j=1

v(Bj) ≥ v(A1 ∪ · · · ∪Ak ∪{i})−
k

∑

j=1

v(Aj).

As A ⊆ B and as σ(A) = σ(B), each Aj , 1 ≤ j ≤ k is a subset of some
Bp, 1 ≤ p ≤ l. Let us prove that if j1 6= j2, then Aj1 ⊆ Bj1 and Aj2 ⊆ Bj2

with Bj1 6= Bj2 . By contradiction, let us assume that A1 and A2 are subsets
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of B1, after renumbering if necessary. There exist edges {i, j1} and {i, j2}
with j1 ∈ A1, j2 ∈ A2, and weights strictly greater than σ(A). As A
is connected there exists a path γ in A from j1 to j2. We obtain a cycle
C1 = {i, j1}∪γ∪{j2, i}. Let us select j1, j2 and γ such that C1 is of minimum
length. Hence C1 has no chord except possibly between i and vertices of γ.
As the components A1 and A2 in Pmin(A) are obtained by deleting edges
of weight σ(A) in E(A), there exists at least one edge in γ of weight σ(A).
The cycle condition applied to C1 implies there are two adjacent edges e1,
e2 with σ(A) = w1 < w2 ≤ M or σ(A) = w1 = w2 < M and all other edges
in γ have weight M = maxe∈E(C1)w(e) (Note that if |E(C1)| = 3 then we
necessarily have σ(A) = w1 < w2 ≤ M with e2 incident to i). Hence we
can assume A1 ∩ C1 = {2, 3, . . . , j1 = i − 1} if σ(A) = w1 < w2 ≤ M , or
A1 ∩C1 = {3, . . . , j1 = i− 1} if σ(A) = w1 = w2 < M , and A2 ∩C1 = {j2 =
i + 1, i + 2, . . . ,m, 1} as represented in Figure 15. If there is a chord {i, j}
with j ∈ A1 or j ∈ A2, then it contradicts the minimality of C1. Therefore
C1 has at most one chord {i, 2} adjacent to e1 and e2 (if w1 = w2 < M).

(a)

j1 3

i 2

j2 1
M

M

M

w1

w2

M

A1 ∩ C1

A2 ∩ C1
(b)

j1 3

i 2

j2 1
M

M

M

w1

w2

M A1 ∩ C1

A2 ∩ C1

Figure 15: (a) : w1 < w2 ≤ M , (b) : w1 = w2 < M .

As A1 and A2 are both subsets of the same component B1 ∈ Pmin(B), there
exists a minimum path γ

′
in B1 linking 1 ∈ A2 to k ∈ A1 with k = 2 if

w1 < w2 and k = 3 if w1 = w2. By definition of B1 each edge e
′

in γ
′

has a
weight w(e

′
) > σ(B) = σ(A). We get a cycle C2 = {1, e1, 2, . . . , k} ∪ γ

′
. Let

us remark that if w1 = w2 then 2 cannot be a vertex of γ
′
, otherwise there

is an edge e
′
in γ

′
incident to 2 with w(e

′
) > w1 = w2, and it contradicts

the star condition applied to {e1, e2, e
′
} (cf. Figure 16).

j1 3

i 2

j2 1

M

M

M

e1

e2

M

e
′

A1 ∩ C1

A2 ∩ C1

Figure 16: w1 = w2 < w(e
′
) contradicts the star condition.
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Let us first assume k = 3 (i.e., w1 = w2). Then we necessarily have
|E(C1)| ≥ 4 and |E(C2)| ≥ 4 (otherwise there is an edge from 1 to 3 with
weight strictly greater than σ(A), and A1, A2 are not disjoint components
of Pmin(A)). The cycle condition applied to C2 and Lemma 13 imply that
all edges e

′

∈ γ
′

have weight w(e
′

) = M . Any chord in C2 non incident to 2
would contradict the minimality of γ

′
. Moreover the cycle condition applied

to C1 (resp. C2) implies that any chord e in C1 (resp. C2) incident to 2
satisfies w(e) = w2. Therefore C1 and C2 have no maximum chord. But C1

and C2 have two common non-maximum weight edges e1, e2, contradicting
the adjacent cycles condition.
Let us now assume k = 2 (i.e., w1 < w2). Then C1 has no chord. C2 has
no chord, otherwise it contradicts the minimality of γ

′
. Let e

′
(resp. e

′′
)

be the edge of γ
′

incident to 1 (resp. 2) as represented in Figure 17. If

j1 3

i 2

j2 1

M

M

M

w1e1

w2e2

M

e
′′

M

M

e
′

M

Figure 17: w1 < w2 ≤ M and e
′
(resp. e

′′
) may coincide with em (resp. e2).

e
′

∈ C1 (resp. e
′′

∈ C1) then w(e
′

) = M (resp. w(e
′′

) = w2). Otherwise, as
w1 < w2 ≤ M , the star condition applied to {e1, em, e

′
} (resp. {e1, e2, e

′′
})

implies w(e
′

) = M (resp. w(e
′′

) = w2). Then the cycle condition applied to
C2 and Lemma 13 imply w1 < w(e

′′
) ≤ M and all other edges in C2 have

weight M . If w(e
′′

) < M and e
′′

= e2 then e1 and e2 are two non-maximum
common edges, contradicting the adjacent cycles condition. Otherwise e1 is
a unique non-maximum edge common to C1 and C2, but all edges adjacent
to e1 have a weight strictly greater than w1, contradicting the adjacent cycles
condition.
Therefore we can assume that Aj ⊆ Bj ∩ A, 1 ≤ j ≤ k ≤ l. As Pmin(A)
is partition of A, we have Aj = Bj ∩ A, 1 ≤ j ≤ k ≤ l. Applying

Lemma 16 to A1 ∪ A2 ∪ . . . ∪ Ak, we get v(B1 ∪ . . . ∪ Bk) −
∑k

j=1 v(Bj) ≥

v(A1 ∪ . . . ∪ Ak) −
∑k

j=1 v(Aj). The superadditivity of v implies: v(B1 ∪

. . . ∪ Bl ∪ {i}) −
∑l

j=1 v(Bj) ≥ v(B1 ∪ . . . ∪ Bk ∪ {i}) −
∑k

j=1 v(Bj). And
the F-convexity of v implies v(B1 ∪ . . . ∪ Bk ∪ {i}) − v(B1 ∪ . . . ∪ Bk) ≥
v(A1 ∪ . . .∪Ak ∪ {i})− v(A1 ∪ . . .∪Ak). These last inequalities imply (32).

Case 3 σ(A, i) ≥ σ(A) > σ(B). If w(e) = σ(A) for all e ∈ E(A, i) then
Pmin(A∪{i}) = {Pmin(A), {i}}, and (31) is equivalent to v(B∪{i})−v(B) ≥
v(A) + v(i)− v(A) = v(i). Corollary 4 implies the superadditivity of v and
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therefore the last inequality is satisfied. Otherwise we use Lemma 19. It
implies that a unique component A1 of Pmin(A) is connected to i by edges in
E(A, i) of weight > σ(A). If σ(B, i) ≥ σ(B), then let B1, B2, . . . , Bl be the
components of Pmin(B) connected to i by edges in E(B, i) of weight strictly
greater than σ(B). Then (31) is equivalent to :

(33) v(B1 ∪ . . . ∪Bl ∪ {i})−
l

∑

j=1

v(Bj) ≥ v(A1 ∪ {i})− v(A1).

As σ(A) > σ(B), we can assume A1 ⊆ B1, after renumbering if necessary.
Then the F-convexity of v implies v(B1∪{i})−v(B1) ≥ v(A1∪{i})−v(A1).
The superadditivity of v implies v(B1∪ . . .∪Bl∪{i})−

∑l
j=1 v(Bj) ≥ v(B1∪

{i}) − v(B1). These last inequalities imply (33). Now if σ(B, i) < σ(B),
then let B1, B2, . . . , Bl be all the components of Pmin(B). Then (31) is still
equivalent to (33).

Remark 6. As the example given in Section 3 satisfies the Path condition,
it satisfies inheritance of F-convexity.

Corollary 21. Let G = (N,E,w) be a weighted graph. The following prop-
erties are equivalent:

1) For every unanimity game (N, uS), the Pmin-restricted game (N, uS) is
F-convex.

2) For every superadditive and F-convex game (N, v), the Pmin-restricted
game (N, v) is F-convex.

3) For all A,B ∈ F such that A ∩ B ∈ F , Pmin(A ∩ B) = {Aj ∩ Bk;Aj ∈
Pmin(A), Bk ∈ Pmin(B) s.t. Aj ∩Bk 6= ∅}.

4) For all i ∈ N , for all A ⊂ B ⊆ N \ {i} with A,B,A ∪ {i} ∈ F , and for
all A

′
∈ Pmin(A ∪ {i}), Pmin(B)|A′ = Pmin(A)|A′ .

Proof. Let us assume 1) is satisfied. Then Proposition 7, Corollaries 10 and
11, and Propositions 12 and 14 imply that the conditions of Theorem 20 are
satisfied and therefore 2) is satisfied. Obviously 2) implies 1). As we consider
the correspondence Pmin, Corollary 4 implies that we have inheritance of
superadditivity. Then by Theorem 3, 1) is equivalent to 3) and 4).

5.3 Equivalence between cycle-complete condition for G and

adjacent cycle condition for G
′

.

We have established in Section 4 that the Myerson’s game on a graph G cor-
responds to a restriction of the Pmin-restricted game for a specific weighted
graph G

′
. We now prove that the Path, Star, Cycle, and Pan conditions are
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always satisfied on G
′
, and that the Adjacent cycles condition is satisfied on

G
′
if and only if G is cycle-complete.
Let γ = {1, e1, 2, e2, . . . ,m, em,m + 1} be an elementary path in G

′

. If
w1 = wm = 1

2 , then e1 and em are incident to s. We necessarily have 2 = s
and m = 2 otherwise γ would form a cycle. Then γ trivially satisfies Path
condition. Otherwise we can assume w.l.o.g. w1 = 1 and as wi = 1 or 1

2
for all i, 1 ≤ i ≤ m, we trivially have wi ≤ max(w1, wm) = 1 for all i,
1 ≤ i ≤ m. Hence Path condition is satisfied.

Let us now consider a star {e1, e2, e3} with e1 = {1, 2}, e2 = {1, 3}, and
e3 = {1, 4}. We can assume w1 ≤ w2 ≤ w3. As w(e) = 1

2 if and only if e
is incident to s we only have three possible cases represented in Figures 18.
Therefore Star condition is obviously satisfied.

(a)

3

1 2

4

1

1

1

(b)

3

1 2

4

1

1

1
2

= s

(c)

3

1 2

4

1
2

1
2

1
2

s =

Figure 18: (a) : w1 = w2 = w3 = 1, (b) : w1 = 1
2 < 1 = w2 = w3, (c) :

w1 = w2 = w3 =
1
2 .

Let us now consider a simple cycle Cm = {1, e1, 2, e2, . . . ,m, em, 1}. If
s /∈ V (Cm) then w1 = w2 = · · · = wm = 1. Otherwise we can assume w.l.o.g.
s = 2 and then w1 = w2 = 1

2 < 1 = w3 = w4 = · · · = wm as represented in
Figure 19. Hence Cycle condition is also satisfied.

4

3 5

2 1
1
2

1

11

1
2

s =

Figure 19: w1 = w2 =
1
2 < 1 = w3 = · · · = wm.

Let us consider a simple cycle Cm = {e1, e2, . . . , em} and an elementary
path Pr such that |V (Cm) ∩ V (Pr)| = 1. If s /∈ V (Cm) then w1 = w2 =
· · · = wm = 1. Otherwise min1≤k≤mwk = 1

2 . We have w(e) ∈ {1
2 , 1} for all

e ∈ E. Therefore there is no edge e in Pr with w(e) < min1≤k≤mwk. Hence
Pan condition is satisfied (in fact this condition is not relevant).

Proposition 22. Cycle complete condition for G is equivalent to Adjacent
cycle condition for G

′

.

Proof. By contradiction, let us assume there is a cycle Cm = {1, e1, 2, e2, . . . ,
em, 1} in G which is not complete. After renumbering if necessary we can
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assume that {1, j} /∈ E with j ∈ {3, . . . ,m−1} and j as small as possible. If
j ≥ 4, then ẽ = {1, j−1} is a chord of Cm. We can replace C by the smaller
cycle C̃ = {1, ẽ, j − 1, ej−1, j, ej , . . . ,m, em, 1} (which is not complete) as
represented in Figure 20. Hence we can assume j = 3. We can assume

j

m 3

1 2
e1

e2

ej−1ej

em

ẽ

Figure 20: {1, j} /∈ E(C) with j ≥ 4.

that there is no chord {k, l}, with k 6= 2 and l 6= 2, otherwise we can
replace C by a smaller cycle. Hence any chord of C is incident to 2. Let
us now consider the two adjacent cycles C̃ and C̃

′

in G
′

, obtained adding
the edges ẽ1 = {s, 1} and ẽ3 = {s, 3}, C̃ = {s, ẽ1, 1, e1, 2, e2, 3, ẽ3, s}, and
C̃

′

= {s, ẽ3, 3, e3, 4, . . . ,m, em, 1, ẽ1, s}, as represented in Figure 21. Then

4 3

2 s

m 1
em

e1

e2

e3

em−1
ẽ2

ẽ3

ẽ4

ẽ1

ẽm

Figure 21: C̃ and C̃
′

in G
′

.

C̃ and C̃
′
have no maximum weight chord. C̃ has only one chord {s, 2}

of weight 1
2 . We have |C̃| = 4 and |C̃ ′| ≥ 4, and ẽ1, ẽ3 are two common

non-maximum weight edges of C̃ and C̃
′
. Hence C̃ and C̃

′
contradict the

Adjacent cycles condition in G
′
.

Conversely assume that the Adjacent cycles condition is not satisfied in
G

′
. Let C̃ and C̃

′
be two adjacent cycles in G

′
satisfying the conditions

of the Adjacent cycles condition except that they have two common non-
maximum weight edges ẽ1 and ẽ3 (of weight 1

2) and |V (C̃)|, |V (C̃
′
)| ≥ 4.

Then ẽ1 and ẽ3 are necessary incident to s which is a common vertex of
C̃ and C̃

′
. By assumption C̃ and C̃

′
have no maximum weight chord (of

weight 1), and no common chord. Moreover C̃ can have at most one non-
maximum weight chord. As s is linked to all the other vertices we necessar-
ily have |V (C̃)| = 4 (otherwise C̃ has more than one chord). We set C̃ =
{s, ẽ1, 1, e1, 2, e2, 3, ẽ3, s}, and C̃

′
= {s, ẽ3, 3, e3, 4, . . . ,m, em, 1, ẽ1, s}, as rep-

resented in Figure 21. Then we consider the cycle C = {1, e1, 2, e2, 3, e3, . . . ,
m, em, 1} (= (C̃

′
\ {s}) ∪ {2}). We have |V (C)| ≥ 4. Then a chord of C
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can only be incident to 2 (otherwise it is a chord of C̃
′
of maximum weight,

contradicting the assumption). Therefore C is a non complete cycle and
G is not cycle-complete. Let us now observe that the second part of the
Adjacent cycles condition is always satisfied. Let C̃ and C̃

′
be two adjacent

cycles in G
′

satisfying the conditions of the Adjacent cycles condition and
with one common non-maximum weight edge e1. Then e1 is incident to s
and therefore s is a common vertex of C̃ and C̃

′

. As all edges incident to
s have weight 1

2 , we always have w1 = w2 = w
′

2 = 1
2 (with the notations of

the Adjacent cycles condition).

It is interesting to observe that to establish the inheritance of convexity
from (N, v) to (N, v) with G

′

we only need to verify the Adjacent cycles
condition. Moreover to verify the Adjacent cycles condition it is sufficient
in this case to verify the non existence of a pair of adjacent cycles C and C

′

with |V (C)| = 4 and |V (C
′
)| ≥ 4 and having two common non-maximum

weight edges (and satisfying the other conditions of the Adjacent cycles
condition).

5.4 A description of graphs satisfying the necessary condi-

tions for inheritance of F-convexity

We now describe more precisely the connected graphs satisfying the neces-
sary conditions defined in Section 5.1.

Proposition 23. Let G = (N,E,w) be a weighted connected graph. Let E1

be the set of minimum weight edges in E and N1 be the set of their end-
vertices in N . If the edge-weight function w satisfies the Star, Path, Cycle,
Pan, and Adjacent cycles conditions then:

1) If an elementary path γ in G has its first edge in E1 then the edge-weights
of γ are non decreasing.

2) G1 = (N1, E1) is a connected subgraph.

3) If |E1| = 1 then there exists at most one chordless cycle C̃ with E(C̃) ∩
E1 6= ∅. For all cycle Cm = {1, e1, 2, e2, . . . ,m, em, 1} with m ≥ 3 and
E(Cm) ∩ E1 = ∅, either Cm has constant edge-weights or σ(N) < w1 =
w2 < w3 = · · · = wm = M , where M = maxe∈E(Cm)w(e). In this last
case {1, 3} is a maximum weight chord of Cm and 2 is a cut vertex4 of
G.

4) If |E1| ≥ 2 then for all cycle Cm = {1, e1, 2, e2, . . . ,m, em, 1} with m ≥ 3
we have σ(N) ≤ w1 = w2 ≤ w3 = · · · = wm = M . If σ(N) < w1 = w2 <
M , then {1, 3} is a maximum weight chord and 2 is a cut vertex of G.

4A cut vertex (or articulation point) in a graph is a vertex the removal of which
disconnects the graph.
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If σ(N) = w1 = w2 < M and if there exists an edge in E1 non incident
to 2, then 2 is a cut vertex of G (but {1, 3} is not necessarily a chord).

We give an example of a graph satisfying Proposition 23 with |E1| = 1
(resp. |E1| ≥ 2) in Figure 22 (resp. Figure 23).

1

2

3

M

M w2

w1

ẽ

M

w2

w2

w
′

1

M
′

w
′

2

M
′

M
′

M
′

C̃

Cm

Figure 22: E1 = {ẽ}, w(ẽ) = w1 < w2 ≤ M in C̃ and w
′

1 = w
′

2 < M
′
in Cm.

1

2

3

M

M w1

w1 w1 w1

w1

w1

w1w1

w1

w1

w1

w2

w
′

1

w
′

1

M
′

M
′

M
′

M
′

M
′

w
′

1

Cm

C
′

m

Figure 23: |E1| ≥ 2, σ(N) = w1 < M , and w1 ≤ w2 < w
′

1 = w
′

2 < M
′
.

Proof. 1) Immediately results from Path condition.

2) Let us consider v
′

and v
′′

in N1. By definition v
′

and v
′′

are end-
vertices of edges e

′
and e

′′
in E1 such that w(e

′
) = w(e

′′
) = σ(N).

If e
′

= e
′′

or if e
′

and e
′′

are adjacent then e
′

∪ e
′′

corresponds to a
path in G1 linking v

′
to v

′′
. Otherwise let γ be a shortest path in G

linking e
′

to e
′′

. Then Path condition applied to γ
′

= e
′

∪γ∪e
′′

implies
w(e) ≤ max(w(e

′
), w(e

′′
)) = σ(N) and therefore w(e) = σ(N) for all

edge e ∈ γ. Hence γ
′
is a path from v

′
to v

′′
in G1.

3) Let ẽ be the unique edge in E1. By contradiction, let us assume that
ẽ is a common edge of two cycles C and C

′

without chords. Then the
Adjacent cycles condition implies that some edge of C or C

′
adjacent

to ẽ has a weight equal to w(ẽ) and therefore |E1| ≥ 2, a contradiction.
For a cycle Cm such that ẽ /∈ E(Cm), the Pan condition implies the
result. In particular every path γ linking ẽ to Cm has to end at vertex
2. Therefore if we delete vertex 2 the graph is disconnected.

4) Cycle condition applied to Cm = {1, e1, 2, e2, . . . ,m, em, 1} implies
w1 ≤ w2 ≤ w3 = · · · = wm = M , after renumbering if necessary,
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and that all chords of Cm have weight w2 or M . If {e1, e2} 6⊆ E1 then
there necessarily exists an edge e ∈ E1 \ E(Cm) and Pan condition
implies either σ(N) < w1 = w2 = M or σ(N) < w1 = w2 < M . In
this last case {1, 3} is a maximum weight chord of Cm and 2 is an
articulation point. If {e1, e2} ⊆ E1 then σ(N) = w1 = w2 ≤ M . Let
us assume σ(N) = w1 = w2 < M and that there exists e ∈ E1 non
incident to 2. No path γ can link e to some vertex j ∈ V (Cm) \ {2},
otherwise it contradicts Path condition applied to the path linking e
to e1 or e2 passing through vertex j and edges of maximum weight of
Cm as represented in Figure 24. 2 is not necessarily a cut vertex if all
edges of E1 are incident to it as it is shown in Figure 25.

3

2

j 1

M

M

M

M

w2

w1
w(e)

Cm

Figure 24: |E1| ≥ 2, σ(N) = w1 = w2 = w(e) < M .

3

2 3
′

1

w2

M

w1

w
′

3

M

C3

Figure 25: E1 = {e1, e2, e
′

3}, σ(N) = w1 = w2 = w
′

3 < M .

6 Conclusion

Our main result gives necessary and sufficient conditions for inheritance
of F-convexity with the Pmin correspondence. Although F-convexity is
a weaker condition than convexity this result presents interesting aspects.
First F-convexity is in itself an interesting property as connected subsets
correspond to natural coalitions and as incentive to cooperate is more natural
between connected players. Moreover we can establish that the conditions
for inheritance of F-convexity can be checked in polynomial time but this
result goes beyond the scope of the paper. Secondly the necessary condi-
tions are also valid for inheritance of convexity. In a forthcoming work we
will present supplementary necessary conditions to have inheritance of con-
vexity. These conditions are so restrictive that the edge-weights can have
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only three different values. Therefore F-convexity can constitute a good
alternative to convexity as the class of graphs satisfying the inheritance of
F-convexity is much larger than the one satisfying inheritance of convex-
ity. This work also constitutes a first step for other correspondences. In
particular the correspondence PG associated with the strength of a graph
presented in [10], which gives natural partitions, coincides with Pmin on
cycle-free graphs. Hence the Star and Path conditions restricted to induced
stars and paths are also valid for this correspondence and a natural exten-
sion of this work could be to find parallel results for PG. Moreover the
inheritance of superadditivity for PG is not always satisfied and its charac-
terization is not obvious. We could also consider another restricted game
(N, ṽ) defined by ṽ(A) =

∑p
l=1 v(Al) for all A ⊆ N , where A1, A2, . . . , Ap

are the connected components of A. It can be shown that for the Pmin cor-
respondence, the Star and Path conditions are valid for both games. Hence
we can address the problem of the extension of Theorem 20 to (N, ṽ), but
it seems that additional conditions are required. Borm, Owen and Tijs [6]
introduced arc games. It is well known that if the communication graph is
cycle-free then there is inheritance of convexity from the underlying game to
the corresponding arc game [14]. We can also define restricted arc games, by
substituting to the partition into connected components the correspondence
Pmin. The question of inheritance of convexity is more difficult as we do not
even necessarily have inheritance of superadditivity.
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