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L'une des propriétés des graphes sociaux est leur structure en communautés, c'est-àdire en sous-ensembles où les noeuds ont une forte densité de liens entre eux et une faible densité de liens avec l'extérieur. Par ailleurs, la plupart des algorithmes de fouille des réseaux sociaux comportent une exploration locale du graphe sous-jacent, ce qui amène à partir d'un noeud, à faire référence aux noeuds situés dans son voisinage. L'idée de cet article est d'exploiter la structure en communautés lors du stockage des grands graphes qui surviennent dans la fouille des réseaux sociaux. L'objectif est de réduire le nombre de défauts de cache avec pour conséquence l'amélioration du temps d'exécution. Après avoir formalisé le problème de numérotation des noeuds des réseaux sociaux comme un problème d'arrangement linéaire optimal qui est connu comme NP-Complet, nous proposons NumBaCo, une heuristique basée sur la struture en communautés. Nous présentons pour le score de Katz et Pagerank, des simulations comparant les structures de données classiques Bloc et Yale à leurs versions exploitant NumBaCo. Les résultats obtenus sur une machine NUMA de 32 coeurs à partir des jeux de données amazon, dblp et web-google montrent que NumBaCo contribue à diminuer les défauts de cache de 62% à 80% et le temps d'exécution de 15% à 50%.

ABSTRACT. One of social graph's properties is the community structure, that is, subsets where nodes belonging to the same subset have a higher link density between themselves and a low link density with nodes belonging to external subsets. Futhermore, most social network mining algorithms comprise a local exploration of the underlying graph, which consists in referencing nodes in the neighborhood of a particular node. The idea of this paper is to use the community structure during the storage of large graphs that arise in social network mining. The goal is to reduce cache misses and consequently, execution time. After formalizing the problem of social network ordering as a problem of optimal linear arrangement which is known as NP-Complet, we propose NumBaCo, a heuristic based on the community structure. We present for Katz score and Pagerank, simulations that compare classic data structures Bloc and Yale to their corresponding versions that use NumBaCo. Results on a 32 cores NUMA machine using amazon, dblp and web-google datasets show that NumBaCo allows to reduce from 62% to 80% of cache misses and from 15% to 50% of execution time.

Introduction

Lorsqu'un algorithme de fouille des réseaux sociaux (comme le score de Katz [10] ou le Pagerank [15]) s'execute, il opère sur chaque noeud x du graphe en faisant le plus souvent référence aux noeuds situés dans le voisinage de x. Les structures de données utilisées dans les langages spécialisés de graphes ou les plates-formes d'analyse des graphes (Galois [14], ou Stinger [2,5]) ne considèrent que le voisinage direct de x.

Dans ce rapport, nous nous intéressons à la prise en compte dans la structure de données utilisée, d'un voisinage allant au delà du voisinage direct de x, ici la communauté de x. En d'autres termes, peut-on augmenter les performances des programmes d'analyse des graphes sociaux si l'on tient compte, dans la structure de données utilisée, de l'organisation en communautés des noeuds du graphe ?

La suite de cet article comprend le background à la section 2, la section 3 présente notre approche pour résoudre le problème posé, la section 4 donne l'évaluation de l'approche, la section 5 les travaux connexes, et la section 6 la conclusion et quelques perspectives.

Background

Avant d'entamer la section 3, nous trouvons interessant (pour faciliter la compréhension) de présenter la structure en communautés des réseaux sociaux, la gestion de la mémoire cache et la représentation des graphes.

Structure en communautés des graphes sociaux

L'une des propriétes des graphes sociaux est leur structure en communautés. Une communauté dans un graphe social est un sous-ensemble du graphe dans lequel les noeuds ont une forte densité entre eux et une faible densité avec les noeuds de l'extérieur. La détection des communautés peut-être locale ou globale. Dans la détection locale, on cherche la communauté à laquelle appartient un noeud sans forcément connaitre tout le graphe [13]. Dans la détection globale, tout le graphe est connu et on cherche à le diviser en plusieurs communautés. Par exemple, à la figure 1, un algorithme de détection de communautés divisera le graphe en deux communautés C1 = {1, 2, 5, 7} et C2 = {3, 4, 6, 8}.

Dans cet article, nous utiliserons l'algorithme de Louvain [3] pour une détection globale des communautés. Cet algorithme recherche une partition du graphe en se basant sur une fonction de qualité appelée modularité. Celle-ci attribue à une partition une valeur comprise entre -1 et 1, en fonction de la densité de liens à l'intérieur des communautés comparée à la densité des liens à l'extérieur de la communauté.

L'algorithme de Louvain commence par une partition dans laquelle chaque noeud est une communauté. Puis, l'algorithme calcule les communautés en répétant les deux phases suivantes :

1) Pour chaque noeud i, évaluer le gain en modularité en déplaçant i de sa communauté courante vers la communauté de l'un de ses voisins. Placer i dans la communauté pour laquelle le gain est maximal (et positif).

2) Générer un nouveau graphe dans lequel les noeuds sont les communautés détectées à l'étape précédente. Revenir à la première étape avec en entrée ce nouveau graphe.

Ces deux phases sont répétées jusqu'à ce que le gain en modularité ne soit plus possible.

Structure imbriquée de Louvain

L'algorithme de Louvain retourne une structure hierarchique (ou imbriquée) qui est telle que les communautés obtenues à la dernier étape sont constituées des sous-communautés obtenues aux étapes précédentes. Cette structure sera utilisée dans la suite pour optimiser le stockage des noeuds.

Gestion de la mémoire cache

Un processeur qui veut accéder à une donnée pendant l'exécution d'un programme recherche d'abord l'entrée correspondante dans le cache. Si la donnée n'est pas présente, il y a défaut de cache.

Il existe trois principales catégories de défaut de cache qui sont :

-les défauts de cache obligatoires causés par la première référence à une donnée, -les défauts de cache conflictuels causés par les données ayant la même adresse dans le cache, -les défauts de cache capacitifs causés par le fait que les données d'un programme ne peuvent pas suffire dans le cache. C'est cette catégorie que nous considérons dans cet article.

Lorsque survient un défaut de cache, l'un des algorithmes classiques suivant est exécuté pour ramener la donnée de la mémoire dans le cache :

-algorithme optimal (la ligne de cache qui ne sera pas utilisée pour la plus grande période de temps est remplacée), -algorithme aléatoire, -LRU Least Recently Used, -FIFO First In First Out, -LFU Least Frequently Used, ... Étant donné que les processeurs généralistes (Intel, AMD, ARM) implémentent directement l'un de ces algorithmes dans leur matériel, pour bénéficier de l'efficacité de la mémoire cache, l'utilisateur devrait s'assurer que les structures de données qu'il utilise (graphe dans notre cas) sont bien organisées pendant l'exécution du programme. -Un vecteur A utilisé pour stocker le poids de chacune des arêtes. Dans le tableau 2, le vecteur A est utilisé pour stocker les poids des 22 arêtes du graphe G1.

Réprésentation des graphes

-Un autre vecteur JA donnant l'extrémité j de chacune des arêtes dont le poids est stocker dans A. De ce fait, A et JA ont la même taille (22 pour le graphe G1).

-Et un dernier vecteur IA qui donne l'indice dans A du premier élément non nul de chaque ligne de la matrice simulée (M ). La dernière case contient le nombre d'arête + 1.

Par exemple, le premier élément non nul de la première ligne de M est stocké à case 1 de A ; le premier élément non nul de la deuxième ligne de M est stocké à la case 4 de A ; le premier élément non nul de la troisième ligne de M est stocké à la case 6 de A ; ... ; le premier élément non nul de la huitième ligne de M est stocké à la case 20 de 
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Idée

L'idée est de faire en sorte que, chaque fois qu'un noeud est en cours de traitement, les autres noeuds membres de sa communauté se retrouvent dans le même cache mémoire que ce noeud. Ainsi, les données correspondant à une communauté doivent être consécutives en mémoire.

Structure en communautés du graphe

Le graphe est maintenant perçu comme un ensemble de communautés (détectées par l'algorithme de Louvain [3]). On procède ainsi à une renumérotation du graphe en suivant la structure imbriquée de Louvain (voir section 2.1.1) : les noeuds appartenant à une même communauté ou à une même sous-communauté ont des numéros consécutifs. Ceci aura pour effet de les rapprocher en mémoire pendant l'exécution d'un programme d'analyse des réseaux sociaux.

À la figure 3, le graphe comporte 3 communautés : C1, C2 et C3. À la partie droite, les noeuds ont des numéros consécutifs dans chaque communauté et dans chaque souscommunauté. Par exemple C3 est subdivisée en deux sous-communautés ; et les noeuds de chaque sous-communautés sont consécutifs. 

stockage du graphe

La structure en communautés est incorporée dans les modes de répresentation du graphe (rappelés à la section 2.3). Dans la nouvelle représentation obtenue, les voisins sont stockés de sorte que, lors d'un traitement, la priorité est accordée aux noeuds situés dans une même sous-communauté ou dans une même communauté.

La figure 4 donne une représentation par liste d'adjacence du graphe (G2) avant et après la prise en compte de la structure en communautés. On peut remarquer qu'après cette prise en compte, les noeuds appartenant à la même communauté sont maintenant plus groupés (distinction avec les couleurs). L'astuce utilisée pour rapprocher les noeuds en mémoire est la renumérotation du graphe en tenant compte des communautés. Dans la suite, nous la présenterons en détail après avoir montré qu'elle est une heuristique d'un problème plus général, le problème de numérotation des graphes sociaux pour la réduction des défauts da cache.

Formalisation du problème

Modélisation des défauts de cache

Nous considérons uniquement les défauts de cache capacitifs causés par le fait que les données utilisées lors de l'exécution d'un programme ne peuvent pas tenir en totalité dans le cache mémoire. On considère ici un cache de données avec une seule ligne encore appelée bloc, et une mémoire principale dont la taille est de t blocs (cf figure 5). -si les deux noeuds sont dans le même bloc mémoire b(x) = b(y), alors y se trouve aussi dans le cache -si x et y ne sont pas dans le même bloc mémoire, on dit qu'il y a un défaut de cache.

Le défaut de cache peut donc être modélisé par la fonction σ définie par :

σ : N × N -→ {0, 1} (x, y) -→ σ(x, y) = 0 si b(x) -b(y) = 0 1 sinon

Complexité du problème

Supposons qu'un programme P dans son exécution sur un graphe social G = (N, E), fasse référence à une séquence ordonnée de noeuds S k = (n 1 , n 2 , n 3 , ..., n k ). Le nombre de défauts de caches provoqué par cette exécution est donné par :

CM (N k ) = 1 + k i=2 σ(n i , n i-1 )
On aimerait alors trouver une numérotation (permutation) π des noeuds de ce graphe pour que P produise le minimum de défauts de cache (min dc ). Autrement dit,

Soit G = (N, E), min dc ∈ N,          -on cherche π : N -→ N n -→ π(n) -pour que k i σ(π(n i ), π(n i-1 )) ≤ min dc , avec N k = (n 1 , ..., n k ) et n i ∈ N.
Proposition 3.1 (relatif à la complexité du problème) Le problème de numérotation des graphes sociaux (PNGS) tel que défini plus haut est NP-complet.

Démonstration :Nous nous servons du problème d'arrangement linéaire optimal (PALO) connu comme étant NP-complet [START_REF] Bibliographie | Rabbit order : Just-in-time parallel reordering for fast graph analysis[END_REF]. En rappel, ce problème est défini comme suit :

Soit G = (N, A), min ∈ N      -on cherche π : N -→ N n -→ π(n) -pour que {ni,nj }∈A |π(n i ) -π(n j )|
≤ min Dans cette démonstration, il nous faut montrer que toute instance de PALO peut être transformée en temps polynomial en une instance de PNGS. A cet effet, il suffit de remar-quer que toute instance de PALO est une instance de PNGS en considérant l'exécution de la boucle qui balaie toutes les arêtes de G.

Heuristique basée sur la struture en communautés

Le problème de numérotation des graphes sociaux (PNGS) peut être résolu avec une heuristique basée sur la structure en communautés des graphes sociaux. L'algorithme 1 (NumBaCo) est une heuristique pour PNGS.

Algorithm 1 : Numérotation Basée sur les Communautés (NumBaCo)

Entrée : G = (N, E), un graphe social Sortie : G = π(G), π est un ordonnancement (permutation), le voisinage de chaque noeud x de G est stocké en respectant la structure imbriquée de Louvain

1: Com ← detect_comm_Louvain(G) 2: Com cl ← comm_des_comm(Com) 3: π ← numerotation_graphe(Com cl , G) 4: G1 ← stockage_des_voisins(Com, G) 5: G ← nouveau_graph(G1, π) 6: return G 3.2.3.1. Com ← detect_comm_Louvain(G)
Il s'agit de l'algorithme de Louvain tel que décrit plus haut (voir section 2.1). Il prend en paramètre un graphe (G) et retourne l'ensemble de communautés de (G) sous forme hierarchique ou imbriquée (voir section 2.1.1). Cet algorithme s'exécute en O(nlogn), n étant le nombre de noeuds de (G). Une exécution de cet algorithme pourra donner la configuration à la figure 3a) où le graphe (G2) est divisé en 3 communautés C1, C2 et C3.

3.2.3.2. Com cl ← comm_des_comm(Com)
Cet algorithme permet de classer les communautés en fonction de leur affinité (nombre d'arêtes qu'elles partagent entre elles). Il fonctionne comme l'algorithme de Louvain :

-La communauté i est placée dans la communauté voisine avec laquelle elle partage le plus grand nombre d'arêtes.

-On repète l'opération précedente jusqu'à ce qu'il ne reste qu'une seule communauté.

-Le classement des communautés initiales est donné par leur ordre d'inclusion dans la communauté finale Com cl . L'opération la plus couteuse ici le calcul des affinités. L'algorithme s'exécute alors en O(nk + C 2 ), où k est le dégré moyen des noeuds du graphe et C le nombre de communautés contenues dans Com.

3.2.3.3. π ← numerotation_graphe(Com cl , G)
Cette fonction est utilisée pour générer une nouvelle numérotation du graphe :

-Les noeuds appartenant à la même communauté ou sous-communauté ont des numéros consécutifs -Com_cl est utilisé pour décider quelle communauté (ou sous-communauté) vient avant l'autre en mémoire ; les numéros des noeuds des communautés qui viennent en premier ont des numéros plus petits.

Cette étape s'exécute en O(n).

3.2.3.4. G 1 ← stockage_des_voisins(Com, G)
Cette fonction permet de changer l'ordre de stockage des voisins.

-Le voisinage de chacun noeud suit désormais la structure imbriquée de Louvain (voir section 2.1.1).

-Par exemple, le noeud 10 de la figure 3b) a l'ordre de stockage de ses voisins modifié à la figure 4b). Dans un stockage classique, on respecte plutôt l'ordre chronologique des noeuds.

La complexité de cette étape est de O(nkC).

3.2.3.5. G ← nouveau_graph(G 1 , π)
Ici, le nouveau graphe est généré avec une nouvelle numérotation et avec un stockage des voisins qui respecte la structure imbriquée de Louvain. La complexité ici est de O(nk).

Ainsi la complexité totale de l'algorithme est de O(nlogn

+ (nk + C 2 ) + n + nkC + nk) = O(nlogn + n(K(2 + C) + 1) + C 2 ).

Quelques propriétés : gain dû à la numérotation

Étant donné un programme P d'analyse des réseaux sociaux, le gain désigne ici la réduction du nombre de défauts de cache provoquée par l'exécution de P lorsque les noeuds ont été stockés en mémoire en suivant l'algorithme de numérotation présenté plus haut.

Propriéte 3.1 (Exploration des noeuds) Le gain obtenu par cette numérotation depend de l'exploration des noeuds du graphe pendant l'exécution du programme :

1) Il est grand pour une exploration locale du graphe (à partir d'un noeud, on fait réference aux noeuds situés dans son voisinage).

2) Il est petit pour une exploration non locale du graphe (à partir d'un noeud, on fait réference aux noeuds situés en dehors de son voisinage).

Indications : Dans le premier cas, comme les noeuds successifs sont plus rapprochés en mémoire, on a moins de défauts de cache ; le gain est donc grand.

Dans le deuxième cas, les noeuds successifs étant éloignés en mémoire, il y a plus de défauts de cache ; le gain est donc plus petit. Propriéte 3.2 (Rangement initial des noeuds) Le gain obtenu par cette numérotation depend du rangement initial (avant l'usage de NumBaCo) des noeuds dans le graphe :

1) Il est grand lorsque les noeuds inter-communautaires (de chacune des communautés) ont des numéros non consécutifs et très éloignés.

2) Il est petit lorsque les noeuds inter-communautaires (de chacune des communautés) ont des numéros consécutifs (gain nul) ou proche (gain petit).

Indications : Dans le premier cas, le rapprochement des noeuds voisins est effectif. Ainsi dans une exploration locale du graphe, il y aura moins de défauts de cache avec la numérotation générée par l'algorithme 1.

Dans le deuxième cas, la numérotation générée par l'algorithme 1 sera presqu'identique à la numérotation initiale. Ainsi le gain sera faible.

Évaluation

Les expérimentations ont été menées sur la machine NUMA32, 4 noeuds (numa node) de 8 coeurs chacun, soit au total 32 coeurs pour 64 Go. Chaque noeud est de type Intel Xeon avec les caractéristiques 2.27GHz, L1 32KB, L2 256KB, L3 24MB, pas d'Hyper-Threading. La figure 6 présente un numa node. -par liste d'adjacence, chaque noeud étant relié à un bloc (de taille variable) de ses voisins : on l'appellera bloc -sous forme de Yale : on l'appellera yale Chacune de ces deux structures a ensuite été réorganisée en utilisant l'algorithme Num-BaCo présentée à la section 3.2.3. Nous notons chacune des structures résultantes par b_numbaco et y_numbaco.

Score de katz

Le score de Katz [10] est utilisé comme une mesure de similarité basée sur les distances entre les noeuds. Le score de Katz entre deux noeuds x et y est donné par la formule :

katz_score(x, y) = L l=1 (β l .|paths <l> x,y |) (1) 
Où :

-L représente la taille maximale d'un chemin.

paths <l> x,y est l'ensemble des chemins de longueur l entre x et y, et |paths <l> x,y | représente leur nombre.

-0 < β < 1. β est choisi tel que les chemins avec un l grand contribuent moins à la somme que les chemins avec un l petit.

Nous avons réalisé une implémentation multithreadée de l'algorihme de katz. Les noeuds sont rangés dans une liste chainée qui est ensuite parcourue en parallèle. Pour chaque noeud, la fonction computeKatzNode est invoquée (voir algorithme 2). L est responsable de la différence de temps d'exécution pour un même graphe. spawn_thread(do_work()) 12: end for 13: wait_every_child_thread() 14: output(Ksc)

Pour tout noeud x de G, on peut démontrer que les nombres de chemins à partir de ce noeud vers les autres noeuds se calculent ainsi qu'il suit (N i , et L i représentent respectivement les voisins et les nombres de chemins d'ordre i) :

               i = 1 N i = G.neighbors(x) L i [y] = 1, ∀y ∈ N i 2 ≤ i ≤ L N i = {z/z ∈ G.neighbors(y) ∧ y ∈ N i-1 } L i [z] = y L i-1 [y] /{y∈Ni-1∧z∈G.neighbors(y)} (2) 
Ceci nous permet d'établir l'algorithme 3. La clé réside dans le calcul du vecteur de nombre de chemins cLenP ath à la ligne 6 avec la fonction updateLenPath() développée entre les lignes 15 et 26). À chaque valeur de l, avant de passer à la valeur suivante, le score de katz est mis à jour (lignes 7 à 10) ; l'ensemble des noeuds courants et le tableau des nombres de chemins sont également mis à jour (lignes 11 et 12).

Algorithm 3 Score de Katz 

Pagerank

Pagerank [15] est un algorithme utilisé par Google pour classifier les pages dans le web. Le Pagerank d'une page x est donné par la formule suvante :

P R(x) = (1 -d) + d y∈Nin(x) P R(y) |N out (y)| (3) 
Où :

d est la probabilité de suivre cette page, (1 -d) la probabilité de suivre une autre page.

-N in (x) est l'ensemble des voisins entrant de x.

-N out (y) est l'ensemble des voisins sortant de y.

Nous avons utilisé une implémentation posix thread proposée par Nikos Katirtzis 1 . Cette implémentation utilise la structure de données bloc.

Résultats

Pour cette évaluation, nous nous sommes servis des graphes amazon, dblp et webgoogle [19].

Résultats sur amazon

Les noeuds représentent les produits vendus en ligne par le site amazon. Il existe un lien entre deux produits si ceux-ci sont fréquemment achetés ensemble. Les communautés (qui seront détectées ici par l'algorithme de Louvain) peuvent être considérées comme des ensembles de produits appartenant à la même catégorie. Le graphe considéré ici (après suppression des noeuds isolés) a 269906 noeuds et 1851744 arêtes.

Diminution du temps d'exécution

La figure 7 présente les temps d'exécution obtenus sur la machine décrite plus haut. En haut, nous avons la comparaison avec la structure bloc et en bas la comparaison avec la structure yale. Nous lisons chaque partie de la gauche vers la droite et de haut en bas. Considérons la première partie (a-comparaison avec bloc). Au premier cadrant, la courbe b_numbaco reste en dessous de la courbe bloc. Ceci traduit bien le fait que l'algorithme NumBaco contribue à réduire le temps d'exécution. Dans le troisième cadrant, on peut voir les différences de temps (en seconde) entre les deux structures. Ces différences se réduisent avec le nombre de coeurs (même variation que les temps d'exécution). Elles sont plus significatives en observant la courbe du quatrième cadrant qui présente les pourcentages des temps reduits en fonction du nombre de coeurs.

Cette courbe montre que les performances augmentent en fonction du nombre de coeurs, variant de 6.5% (avec 1 coeur) à 21.6% (avec 32 coeurs). Ceci peut s'expliquer par l'architecture utilisée (voir figure 6), plus précisement par le cache L3 qui est partagé entre les coeurs : les coeurs profitent de plus en plus des données chargées par les autres. Cette explication justifie aussi le speedup obtenu (deuxième quadrant, 32 coeurs) qui est de 27.8 avec NumBaco comparé à 23.3 sans NumBaco.

Nous faisons des observations similaires dans la deuxième partie (b-comparaison avec yale). Cette fois ci, NumBaco permet de réduire le temps d'exécution jusqu'à 20.6%. Et le speedup est de 27.7 avec NumBaco comparé à 23.4 sans NumBaco.

Diminution des défauts de cache

Pour vérifier que les temps d'exécution observés étaient liés au nombre de défauts de caches causés par le programme, nous avons lancé le programme avec l'outil perf 2 . La Dans chaque partie, le premier cadrant correspond aux courbes des évènements "cachereferences", le troisième cadrant correspond aux courbes de l'évènements "cache-misses". Le deuxième cadrant correspond au rapport (en %) entre les évènements "cache-misses" et "cache-references". Le quatrième cadrant donne le pourcentage des nombres de défauts de caches réduits l'usage de NumBaCo.

Considérons la première partie (a-comparaison avec bloc). Dans le premier cadrant, la courbe b_numbaco reste en dessous de la courbe bloc. Ceci signifie que NumBaCo permet de réduire le nombre de références au cache L3. En effet, les données (les noeuds) étant mieux organisées (avec la structure b_numbaco), les caches L2 et L1 se retrouvent plus sollicités. Ceci contribue à moins referencer le cache l3.

L'effet direct de la réduction du nombre de reférences au cache L3 est la diminution du nombre de défauts de cache observable au troisième cadrant. Ici, on observe bien que la courbe bloc reste au dessus de la courbe b_numbaco ; ce qui montre qu'en prenant en compte la structure en communautés, on réduit le nombre de défauts de cache. Le quatrième cadrant nous permet de voir qu'on réduit les defauts de caches de 95% (1 coeur) à 73% (32 coeurs).

Des observations similaires sont effectuées dans la deuxième partie (b-comparaison avec yale).

Résultats sur dblp

Les noeuds correspondent aux auteurs des articles scientifiques en informatique. Il existe un lien entre deux auteurs s'ils ont été co-auteurs d'au moins un article. Les communautés (qui seront détectées ici par l'algorithme de Louvain) correspondent aux auteurs qui ont publié dans un même journal ou dans une même conférence. Le graphe considéré ici (après suppression des noeuds isolés) a 195310 noeuds et 2099732 arêtes.

Diminution du temps d'exécution

La figure 9 présente les résultats les temps d'exécution obtenus. Les courbes ont les mêmes allures que dans le cas précédent (cas d'amazon). La différence se fait au niveau des performances observées. Avec le jeu de données dblp, l'usage de NumBaco permet de réduire le temps d'exécution jusqu'à 17% par rapport à bloc et 15% par rapport à yale. Dans ce cas, le speedup à 32 coeurs est de 27.3 (comparé à 23.5 avec bloc) et 26.7 (comparé à 23.5 avec yale).

Diminution des défauts de cache

Comme dans le cas du jeu de données amazon et comme le montre la figure 10, la diminution des temps d'exécution est aussi liée à la diminution des défauts de cache. Ici à 32 coeurs, les defauts de cache sont réduits de 64% (comparé à bloc) et 62% (comparé à yale). La différence de perfomance entre le Pagerank (80% des défauts de cache pour 50% du temps d'exécution) et le score de Katz (73% des défauts de cache pour 21% du temps d'exécution) s'explique l'exploration locale (Propriéte 3.1) : dans le cas du Pagerank, les noeuds successifs auxquels le programme fait reférence sont plus rapprochés en mémoire (ce qui cause moins de défauts de cache) ; et dans le cas du score de Katz, les noeuds successifs sont moins rapprochés (ce qui cause plus de défauts de cache).

Surcoût induit par NumBaCo

L'algorithme de numérotation présenté plus haut a pour vocation d'être exécuté avant un programme d'analyse des réseaux sociaux. Ceci afin d'avoir une organisation des noeuds en mémoire permettant de réduire au maximum les défauts de cache. Les performances du programme sont alors améliorées. Toutefois, pour atteindre cet objectif, il faudra que le programme en question ait une complexité plus élévée que l'algorithme de numérotation. Dans les expérimentations que nous proposons dans ce rapport, l'al- Une autre utilisation de NumBaCo peut être perçue dans les plateformes de streaming comme Stinger [5]. Ici, on peut imaginer que le coût est élévé à l'initialisation du système et moins élévé durant le reste de la vie du système. Nous n'avons pas étudié ce cas dans cet article, mais au regard de la théorie developpée ici, le gain généré par NumBaCo permettrait d'augmenter les permeformances de ces plateformes.

Travaux connexes

Dans de récents travaux, Junya Arai et ses co-auteurs [1] se servent d'une modification de l'algorithme de Louvain pour proposer une numérotation basée aussi sur la structure en communautés des graphes. Toutefois, comparé à leurs travaux, dans notre article (qui étend [12]), nous restons les seuls :

-à avoir proposé un classement des communautés avant la numérotation, ce qui contribue à augmenter les performances ; -à avoir proposé un stockage des voisins en suivant l'ordre de la structure imbriquée de Louvain (voir section 2.1.1), ce qui donne la priorité aux noeuds appartenant à la même communauté ou sous-communauté, augmentant ainsi les performances ; -à avoir montré que l'algorithme proposé est une heuristique d'un problème plus général, le problème de numérotation des graphes sociaux. Nous avons aussi montré que ce problème est NP-complet. D'autres auteurs se sont aussi servis de la structure en communautés des graphes pour une bonne organisation des données :

-Duong et co-auteurs [4] formalisent le problème de répartition des réseaux sociaux sur un système distribué de machines. Ils proposent ensuite un algorithme de répartition qui tire profit de la structure en communautés des réseaux sociaux. Leur objectif est de réduire le nombre de requêtes à la base de données. Dans notre cas, nous recherchons un algorithme de numérotation des noeuds dans une mémoire (partagée) et permettant de réduire les défauts de cache.

- ont conçu une technique d'organisation du disque dur en se basant sur le regroupement en communautés des données issues des graphes sociaux. Cette technique leur a permis de diminuer le nombre de déplacements de la tête de lecture et ainsi d'améliorer l'accès au disque (48% plus rapide). Nous agissons plutôt sur la mémoire vive (tandis qu'ils agissent sur le disque dur) ; et nous cherchons à réduire le nombre de défauts de cache.

Pour améliorer le prefetching, Li et co-auteurs [11] utilisent l'algorithme de recherche des itemsets (fréquents fermés) pour fabriquer leurs propres algorithmes (c-miner et cminer*). Ces algorithmes sont ensuite utilisés pour trouver la corrélation entre les blocs d'une mémoire : les blocs sont perçus comme des items, les règles d'association issues de ces items permettent de faire du prefetching. Dans notre cas, nous contribions aussi à améliorer le prefetching mais en se servant de la détection des communautés.

Plusieurs travaux visent l'usage d'une meilleure représentation des matrices creuses pour accroitre les performances de certaines applications (dans la résolution des systèmes d'équations linéaires) :

-Lukas Polok et co-auteurs [16] proposent une structure de données basée sur la représentation en sous-blocs d'une matrice creuse. Cette représentation permet de réduire les défauts de cache lors des opérations arithmétiques effectuées sur la matrice pendant l'exécution.

-Rukhsana S. et Anila U. [18] proposent une représentation en sous-blocs (d'éléments tous non nuls) d'une matrice creuse. Les auteurs montrent que, non seulement cette représentation permet d'économiser plus d'espace, mais aussi permet d'obtenir une meilleur perfomance (lors de la multiplication matrice-vecteur).

Dans notre cas, nous recherchons la représentation mémoire des graphes sociaux la plus appropriée pour réduire les défauts de cache des programmes d'analyse des réseaux sociaux.

Conclusion

Dans cet article, il était question de voir comment exploiter la structure en communautés pour diminuer les défauts de cache et le temps d'exécution des programmes de fouille des réseaux sociaux. Nous avons proposé NumBaCo, une numérotation des noeuds permettant de tenir compte de la struture en communautés des graphes sociaux. Des expérimentations effectuées sur le score de katz et le Pagerank avec les jeux de données amazon, dblp et web-google ont montré que les performances sont améliorées lorsqu'on utilise cette numérotation.

En perspective, nous envisageons d'intégrer cet algorithme dans les langages dédiés et les plates-formes d'analyse de graphes afin d'améliorer leurs performances. Une autre perspective est de se servir de la structure en communautés des graphes sociaux lors de l'optimisation des boucles (pendant la phase de compilation) ; ceci pourrait contribuer à augmenter les performances.

  Soit n le nombre de noeuds et m le nombre d'arêtes. Considérons le graphe G1 pondéré et non orienté de la figure 1. G1 a n=8 et m=11X2 (une arête est comptée double car le graphe est non-orienté).

Figure

  Figure 1 -Graphe G1

  avec des listes d'adjacence, espace O(n + 2m) D'autres représentations peuvent être utilisées : le graphe est alors représenté par un vecteur de noeuds, chaque noeud pouvant être relié 1) à un bloc de ses voisins, la taille du bloc étant variable [17] (voir figure 2 a)-) 2) à une liste chainée de blocs (de taille fixe) de ses voisins, adaptée aux graphes dynamiques et utilisée par la plateforme Stinger [2, 5] (voir figure 2 b)-).

Figure 2 -

 2 Figure 2 -Adjacency list representations of G1 Aucune de ces représentations ne tire profit du "regroupement en communautés" des noeuds du graphe pour réduire le temps d'exécution des algorithmes des réseaux sociaux, car ce n'était pas leur but.

Figure 3 -

 3 Figure 3 -Représentation de (G2) tenant compte des communautés

Figure 4 -

 4 Figure 4 -Liste d'adjacence de (G2) tenant compte des communautés Concernant le stockage des voisins, en considerant le noeud 10 (après numérotation), on remarque que ses voisins sont stockés dans cet ordre 8, 9, 5 et 2 : 8 et 9 sont d'abord stockés parce qu'ils sont dans la même sous-communauté que 10 (voir figure 3) ; ensuite on stocke 5 parce qu'il est dans la même communauté que 10 ; 2 est stocké en dernier parce qu'il n'est pas dans la même communauté que 10.L'astuce utilisée pour rapprocher les noeuds en mémoire est la renumérotation du graphe en tenant compte des communautés. Dans la suite, nous la présenterons en détail après avoir montré qu'elle est une heuristique d'un problème plus général, le problème de numérotation des graphes sociaux pour la réduction des défauts da cache.

Figure 5 -

 5 Figure 5 -Une ligne dans le cache et t blocks dans la mémoire principale

Figure 6 -

 6 Figure 6 -Numa node : 8 coeurs, L1 et L2 privé, L3 partagé Pour cette évaluation, nous avons utilisé deux applications d'analyse des réseaux sociaux : le score de Katz [10] et le Pagerank [15]. Chacune de ces applications a été implémentée avec deux structures de données pour la repésentation des graphes :-par liste d'adjacence, chaque noeud étant relié à un bloc (de taille variable) de ses voisins : on l'appellera bloc -sous forme de Yale : on l'appellera yale Chacune de ces deux structures a ensuite été réorganisée en utilisant l'algorithme Num-BaCo présentée à la section 3.2.3. Nous notons chacune des structures résultantes par b_numbaco et y_numbaco.

Algorithm 2

 2 Katz multi-threadé 1: Global nodeList, G, β, L, Ksc 2: do_work() 3: while nodeList = ∅ do 4: x ← atomic_dequeue(nodeList) 5: Ksc[x] ← computeKatzNode(x, G, β, L) 6: end while 7: 8: main() 9: nodeList ← generate_nodeList(G) 10: for i = 1 to n_threads do 11:

Figure 7 -

 7 Figure 7 -Diminution du temps d'exécution -amazon, Katz

Figure 8 -

 8 Figure 8 -Diminution des défauts de cache -amazon, Katz figure 8 présente les résutats obtenus pour les évenements "cache-references" et "cachemisses".

  Figure 9 -Diminution du temps d'exécution -dblp, Katz

Figure 10 -

 10 Figure 10 -Diminution des défauts de cache -dblp, Katz

Figure 11 -

 11 Figure 11 -Réduction du temps d'exécution -web-google, Pagerank

Figure 12 -

 12 Figure 12 -Réduction des défauts de cache -web-google, Pagerank gorithme de katz a une plus grande complexité (O(n 3 ) dans le pire des cas, comparé à O(nlogn) de l'algorithme de numérotation). Plus concrètement, en relevant le temps mis par NumBaCo, nous avons obtenu 1675 ms pour amazon et 1683 ms pour dblp (voir tableau 3). Ce qui est relativement petit par rapport au gain obtenu. Par exemple avec le jeu de données amazon (voir tableau 4), en comparant avec la structure bloc, on a obtenu le gain 389276 ms sur 1 coeur, 72668 ms sur 19 coeurs et 54252 ms sur 32 coeurs (ce qui correspondent à environ 232 fois, 43 fois et 32 fois le temps perdu).

  entre x et tout noeud atteignable avec L [cN eig, cLenP ath] ← updateLenPath(pN eig[ ], pLenP ath[ ])

	1: computeKatzNode(x, G, β, L)
	2: dN eig ← G.neighbors(x)
	3: pN eig ← dN eig
	4: pLenP ath[{dN eig}] ← 1
	5: for l = 2 → L do
	6:	
	7:	for all (t ∈ cN eig) and (t / ∈ dN eig) do
	9:	accessibleN eig.add(t)
	10:	end for
	11:	
	17:	for all z ∈ G.neighbors(y) do
	18:	if z ∈ cN eig then
	19:	cLenP ath[z] ← cLenP ath[z] + pLenP ath[z]
	20:	else
	21:	cLenP ath[z] ← pLenP ath[z]
	22:	cN eig.add(z)
	23:	end if
	24:	end for
	25: end for
	26: return [cN eig, cLenP ath]

8

:

katz[t] ← katz[t] + β l cLenP ath[t] [pN eig, cN eigh] ← [cN eig, empty()]

12: [pLenP ath, cLenP ath] ← [cLenP ath, empty()] 13: end for 14: return buildLign(x, katz[ ], accessibleN eig[ ]) 15: updateLenPath(pN eig[ ], pLenP ath[ ]) 16: for all y ∈ pN eig do

  NumBaCo proposé ici peut aussi être utilisé pour le pré-processing dans des applications où le même graphe est utilisé pour plusieurs exécutions. C'est le cas par exemple des benchmarks pour lesquels plusieurs expérimentations sont effectuées avec le même graphe. Le graphe est alors traité et stocké uniquement à la première expérimentation. Dans ce cas, le coût de NumBaCo, même s'il est élévé par rapport au benchmark, est amortit par le nombre d'expérimentations.

		Tableau 4 -Observed gain with b_comm++	
			amazon			dblp	
	nb de coeurs	1 coeur	19 coeurs	32 coeurs	1 coeur	19 coeurs	32 coeurs
	sans numérotation (ms)	6020869	384892	258333	3079606	190321	131220
	avec numérotation (ms)	5631593	312224	204081	2922478	167365	112695
	Gain (ms)	389276	72668	54252	157128	22956	18525
	(n fois coût NumBaCo)	232,4 fois	43,4 fois	32,4 fois	93,4 fois	13,6 fois	11 fois
	L'algorithme						
	Jeu de données	amazon	dblp				
	Temps (NumBaCo)	1675 ms 1683 ms				
	Tableau 3 -Temps d'exécution de l'algorithme de numérotation

ARIMA -volume 24 -2017 ARIMA Journal

ARIMA -volume 24 -2017 ARIMA Journal

ARIMA -volume 24 -2017 ARIMA Journal

ARIMA -volume 24 -2017 ARIMA Journal

Numérotation des graphes sociaux 33

ARIMA Journal

Numérotation des graphes sociaux 45