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Theperformance of bilirubin oxidase (BOx) based air breathing cathodewas constantlymonitored over 45 days. The

effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particu-

larly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in ac-

tivated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of

constant operation with a decrease of ~60 μAcm−2 day−1. The rate of decrease slowed to ~10 μAcm−2 day−1

(day 3 to 9) and then to ~1.5 μAcm−2 day−1 thereafter (day 9 to 45). Despite the constant decrease in output,

the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of

475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real

waste operationwith pollutants, solid particles and bacteria. The presence of low-molecularweight soluble contam-

inants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode op-

eration. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme.

1. Introduction

Enzymes are large, generally proteinaceous, biological molecules

that catalyze specific reactions transforming substrates into products.

Like all catalysts, they can increase reaction rates by decreasing the reac-

tion activation energies. Enzymes are widely used by the scientific com-

munity mainly due to their selectivity and specificity [1]. One set of

enzymes, belonging to the oxidoreductases family, can reduce oxygen

into water performing the “so called” oxygen reduction reaction

(ORR) [2–3]. The steps involved in the reduction mechanism of oxygen

have been previously described in details [4,5].

Multi-copper oxidases (MCOs) are among the enzymes able to re-

duce oxygen to water [6]. The most known and heavily explored

MCOs are ascorbate oxidase [7], laccase [8] and bilirubin oxidase

(BOx) [9]. These enzymes have been demonstrated to perform ORR

when immobilized on the surface of solid supports and extensively

used as cathodes in biofuel cells [10–12]. The electrons necessary for

ORR are transferred from the electrode to the enzyme directly without

the utilization of electron carriers, such as mediators [13–16].

Particularly for the cathode, it has been shown that BOx has a higher

ORR kinetic and durability compared to laccase and ascorbate oxidase

[17].

Indeed, new concept of biological/enzymatic based electrocatalyst

are actually developed because it has been previously reported that tra-

ditional inorganic ORR electrocatalyst based on carbonaceous materials

[18–19], platinum [20–21] and non-platinum [22–23] group metals

have very low activity toward ORR at neutral pH [23–24]. At contrary,

high electrocatalytic activity in oxygen reduction at neutral pH has

been demonstrate multiple times for MCOs [25–29]. Differences be-

tween Pt and BOx electrochemical activity have been previously

shown [30,31,32]. In fact, at pH 7.2–7.3, BOx catalyst demonstrated

higher open circuit potential (OCP) compared to platinum (~200 mV),

due to the lower activation losses of the enzymatically catalyzed

ORR, and generated much higher current densities than Pt, up to

500 μA cm−2 at 0 mV vs Ag/AgCl [30].

The research on the use of enzymes as electrode components has

generally focused on and limited to enzymatic fuel cells [33–34],

where enzymes have been utilized at both the anode and cathode

[35]. BOx-based enzymatic electrodes for applications in biofuel cells

have been also deeply studied recently [36–40]. Enzymatic catalysis

has been also explored in the design of biosensors due to the specific se-

lectivity of the selected enzyme [41–43]. Lately, enzymatic cathodes

have been utilized successfully in microbial fuel cells (MFCs), designing

a hybrid biofuel cell with a microbial anode and enzymatic cathode [30,

44–46]. Schaetzle et al. [44] used a laccase cathode in a double chamber
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MFC configuration, generating high power densities. Higgins et al. [45]

separated the anodic and cathodic chambers with a solid polymeric

membrane in their hybrid biofuel cell, with Shewanella oneidensis MR-

1 at the anode and laccase at the cathode achieving a maximum

power density of roughly 200 μWcm−2 (25 Wm−3) [45]. Bilirubin oxi-

dase based cathode was also used in a hybrid biological/enzymatic fuel

cell, with encapsulated S. oneidensis MR-1 at the anode, in order to in-

crease the current output for powering marine sensors [46]. In that

case, the hybrid fuel cell was working in marine environment [46]. At

last, a single chamber membraneless MFC in a hybrid configuration

with microbial mixed culture at the anode and bilirubin oxidase at the

cathode was demonstrated [30], where both anode and the cathode

were exposed to the same solution [30]. Despite the high output

achieved, all of the above studies lack a durability tests that remained

limited in hours/days frame time and consequently need to be ad-

dressed and reported.

Despite the superb efficiency toward ORR in neutral environment

few doubts concerning applicability for long terms operational period

can be raised. In fact, enzymes are subject to natural degradation over

time [47],moreover, the exposition to various inorganic and organic sol-

uble pollutants and solid matters (abiotic particles and mixed culture

bacteria) can further decrease the activity of the enzymes. Usually en-

zyme activity on electrodes is studied in a short period of time identified

in hours or few days during which the maximum activity is expressed

and measured [12–17,25–30]. To the best of our knowledge, durability

studies in continuous mode (more than 7 days) using MCO enzymes

are missing in the current literature. Additionally, enzyme activity is

mainly tested in buffer solutions [47–48], where no pollutants or

suspended solids with abiotic or biotic nature has been present.

In order to evaluate the activity of BOx in a complex industrial

media, in thiswork, the performance of a gas-diffusion bilirubin oxidase

based cathodewas tested continuously over time as a single electrode in

two different electrolytes. Current generation of the BOx cathode was

monitored in phosphate buffer saline (PBS) solution, which is the

most popular electrolyte in biofuel cells and in PBS with the addition

of activated sludge (PBS + AS). AS was specifically selected due to the

simultaneous presence of dissolved contaminants, solid non-biological

particles (suspended solids (1 μm to 1 cm), colloids (10 nm to 1 μm))

and mixed consortium of various types of bacteria. Moreover, the pres-

ence of AS could simulate working conditions of MFCs systems for

wastewater purification. In order to separate the effects specifically

due to bacteria, solid particles and dissolved inorganic pollutants, addi-

tional experiments were runwith: i) an autoclaved AS+ PBS (no active

bacteria); ii) autoclaved AS + PBS with an enzyme encapsulated in

silica-gel matrix as a physical barrier for contact with solid particles;

and iii) mixed culture bacteria, “washed out” from AS, in PBS.

2. Materials and methodology

2.1. Cathode preparation

A bilirubin oxidase-based cathode was prepared as previously de-

scribed [10]. Briefly, carbon cloth wet proof (30 wt.% PTFE, Fuel Cell

Earth) was used as current collector and teflonized carbon black (load-

ing 60 mg cm−2, Vulcan XR 72 with 35% PTFE), referred as XC35, was

hydraulically pressed on it (500 psi) and playing the role of gas-

diffusion layer (GDL). Isopropanol (loading 40 μl cm−2) was then

added to insert a hydrophobic/hydrophilic gradient from the outside

of the GDL to the internal side facing the catalytic layer. On the inner

side of the GDL, a multi-walled carbon nanotube paper (MWBP, Buck-

eye Composite) was placed and all together was pressed at 500 psi for

5 min. Bilirubin oxidase from Myrothecium verrucaria in quantity of

10 mg was dissolved in 1 ml of PBS (50 mM, pH 7.5), then deposited

on the MWBP and left over night (at least 16 h) at 4 °C to allow the en-

zyme immobilization [10]. Additionally, in the specified case, bilirubin

oxidase cathode has been also immobilized using silica encapsulation

technique in order to form a physical barrier for avoiding direct contact

with solids [46]. The cathode geometric area, exposed to the solution,

was 2.25 cm2.

A control abiotic cathode has been prepared following the same pro-

tocol without the last step involving the enzyme addition and

immobilization.

2.2. Cell configurations and test conditions

Single chamber glass MFC was modified with a lateral hole where

the cathode was screwed (Fig. 1) [49]. The chamber was filled with

100 ml of different electrolytes. The solutions were made of: i) 50 mM

phosphate buffer saline (PBS) solution, pH 7.5 (Fig. 1.a); ii) activated

sludge (AS, 50 ml) and 50 ml of 50 mM PBS, pH 7.5 (named as

PBS + AS) (Fig. 1.b); iii) autoclaved activated sludge (P, 50 ml) and

50ml PBS, pH7.5 (named as PBS+P) (Fig. 1.c); and iv)washed bacteria

and suspended solids from 50ml of activated sludge (B) and 50 ml PBS,

pH 7.5 (named as PBS + B) (Fig. 1.d).

In order to discriminate the effect of dissolved pollutants from the

effect of the solid non-biological particles, the cathodes have been en-

capsulated with a protective layer of silica to avoid the direct contact

and interaction of solid particles with the enzyme. It has been shown

previously that the silica layer is permeable to soluble compounds

[46] and thus allowing studying the influence of thepollutants dissolved

in the electrolyte.

Bacteria were collected from the AS by a centrifugation at

10,000 rpm for 10 min of 50 ml of activated sludge. The supernatant

has been removed and PBS has been added. This procedure has been re-

peated 3 times in order to wash the bacteria from possible soluble

pollutants.

In all cases, PBS contained 0.1 M KCl for increasing the conductivity.

All the resulting solutions had similar pH corresponding to 7.5 ± 0.15

and remained similar during the experimental time.

2.3. Electrochemical measurements

The electrochemical measurementswere performed in three stages:

i) 1 h in open circuit potential (OCP); ii) linear sweep voltammetry from

theOCP to 0mV(vs Ag/AgCl) at 0.2mVs−1 scan rate [49]; and iii) 22.5 h

of chronoamperometry at 300 mV (vs. Ag/AgCl). All measurements

were done using a potentiostat (Gamry 300). Three-electrode configu-

ration was used for the electrochemical tests, as shown in Fig. 1 [50].

Platinum net, with comparable surface area to the working electrode,

was used as counter electrode [49]. Saturated Ag/AgCl was used as the

reference electrode and the BOx cathode was used as the working elec-

trode. A homemade Luggin capillary was used to reduce the ohmic

resistance [49].

2.4. Water analysis

For the elemental composition analysis, water samples were firstly

homogenized and then filtered using 0.45 μm filter. For ICP-OES analy-

sis, the samples were acidified using Ultra High Purity nitric acid (UHP

HNO3) by adding 2 drops for 100 mL sample. The samples were diluted

to acceptable rangewithin the calibration standards using 2% nitric acid.

Samples were transferred into ICP-OES autosampler tubes and then

placed for the auto sampler setup. The instrument optics was optimized

using Hg and Mn view alignment for the wavelengths. The system was

then calibrated using a blank and three point calibration standards di-

luted sequentially. Samples were then analyzed after the calibration

curve was validated using QC check solutions. The data obtained were

then validated, verified, and exported.

For the ions analysis, samples were analyzed using Ion Chromatog-

raphy (IC). None acidified filtered samples (0.45 μm filter) were used

in this analysis. The samples were diluted to acceptable range within

the calibration standards using 18 MΩ water. Samples were then



transferred into IC autosampler tubes and placed in their locations for

the auto sampler setup. The system was then calibrated using a blank

and three point calibration standards diluted sequentially. Samples

were then analyzed after the calibration curve was validated using QC

check solutions. The data obtained were then validated, verified, and

exported.

3. Results and discussion

3.1. BOx electrochemical response in PBS solution

The continuous operation of the BOx-based gas-diffusion cathode

was first studied in PBS (pH 7.5), as a reference test with the goal of

evaluating the operation of this cathode in the absence of interferences

from soluble pollutants, bacteria and suspended solids. Fig. 2.a shows

the current densities generated by the cathode over 45 days of a con-

stant polarization at 300 mV vs. Ag/AgCl. A continuous decrease in the

current produced by BOx-cathode was recorded over time. The current

density/time dependence can be separated into three different succes-

sive regions based on the rate of current decrease that can be considered

linear for each distinct region. Region I comprises the first three days of

operation where a sharp decrease in the generated current was ob-

served. The current density decreased at a rate of approximately

60 μAcm−2day−1, starting from a value of ~350 μAcm−2, and decreas-

ing to ~175 μAcm−2 during this initial period. The second region (Re-

gion II) includes the performance from days 3 to 9, when an average

current decay of ~10 μAcm−2day−1 was detected. Region III comprised

between days 9 and 45 where the decrease in the current densities was

continuous with a rate of ~1.5 μAcm−2day−1. Similar trend was

achieved by BOx cathode encapsulatedwith silica indicating that the sil-

ica encapsulation did not have effect on the current output performance

(results not showed). A linear decrease in the current density of BOx-

based bio-cathode was also observed from Mano et al. who studied

the operation of wired-BOx cathode [17]. Mano et al. reported loss of

around 50% of cathode activity in 20 mM PBS (pH 7.4) with 0.15 M

NaCl, at 37.5 °C, in 6 days, whichwas similar to the current decrease ob-

served in this study [17].

To study the cathode degradation, potentiodynamic polarization

curves were carried out each day after 1 h at open circuit conditions.

Fig. 2.b shows polarization curves at selected days, representing the

three regions with different rates of current decrease. Particularly, it

can be noticed that while theOCP decreased slowly, the limiting current

instead had a fast drop, especially in the initial days, stabilizing over

time.

Fig. 1. Cell configuration, with the details of the four different electrolytes tested: a) PBS, b) PBS and activated sludge (50/50mixture), c) PBS and autoclaved activated sludge (50/50mix-

ture) with only pollutants (P) and d) PBS and “washed” bacteria.

Fig. 2. Long-termoperation of BOx cathode over 45dayswhenpolarizedwith constant po-

tential of 300mV vs. Ag/AgCl using PBS as electrolyte (two replicates) (a) and representa-

tive potentiodynamic polarization curves of theBOx cathode in PBS, taken each day ofMFC

operation (b). Green line indicates cathode without BOx.



No cathodic current has been generated at 300mVvs. Ag/AgCl in ab-

sence of BOx (control abiotic cathode). The OCP of the control electrode

appeared to be 246 mV vs. Ag/AgCl therefore ORR on this electrode at

potentials higher than OCP could not be performed. It has to be noted

that the OCP of the BOx containing cathode has never reached the OCP

of the control electrode (475mVvs Ag/AgCl) indicating (residual or par-

tial) BOx activity along the 45 days of operation. Singh et al. measured

the electrocatalytic activity of adsorbed BOx along with the stiffness of

the protein layer and concluded that structural rearrangements and

water loss are the primary culprits in activity loss in these cathodes. It

was also established that this effect is not a result of enzyme attachment

but rather to the applied potential [47]. The latter can explain the fast

current drop during the initial stages of the cathode operation.

3.2. BOx electrochemical response in PBS + AS

Continuous operational analysis has been also carried out introduc-

ing 50% of activated sludge, naturally containing pollutants, suspended

solid matters and mixed culture of bacteria. This aspect is important

for examining the effect of additional abiotic and biotic matters on the

long-term operation of the BOx cathode. The same polarization set of

experiments was carried out using the configuration shown in Fig. 1b.

The decrease in performance of the BOx cathode exposed to the ac-

tivated sludge followed the same general trend as observed for the BOx

cathode in clean PBS, but the current densities generated in presence of

activated sludge were significantly lower (Fig. 3.a) indicating an imme-

diate inhibition of the enzyme. In fact, at day 3, the operational charac-

teristics of the cathode immersed in the PBS + AS electrolyte were

already similar to the operational characteristics of the same cathode

exposed only to PBS for 45 days. In the presence of AS, the first current

drop was almost linear until day 3 with a rate of approximately

65 μA cm−2 day−1 similar to the one determined for BOx in PBS but

with a different starting current. The initial current (day 0)was roughly

100 μA cm−2 lower suggesting an instantaneous degradation/inhibition

of the enzymeor enzymepollution by a polluting layer of adsorbed low-

molecular weight soluble contaminants limiting O2 transport to the ac-

tive site of the BOx. From day 3 to day 45, the current drop was much

lower and could be linearized with a current decreased estimated in

1.4 μA cm−2 similar to the decrease measured in PBS solution from

day 9 to day 45.

3.3. Electrochemical characterization carried out combining

chronoamperometry, polarization curves and open circuit potential

A comparison between the current recorded during the

chronoamperometry study and the current generated during the poten-

tiodynamic polarization of the electrode was carried out. Moreover, the

changes in OCPs were monitored over the 45 days experiment (Fig. 4).

The currents obtained during the polarization curves at 0 mV and

300mVvs. Ag/AgClwere used for the comparison. Fig. 4.a shows the be-

havior of the BOx cathode in PBS while Fig. 4.b shows the trend of the

cathode operation in PBS + AS. As it can be seen, the current obtained

from the polarization curves is always higher than the one from the

chronoamperometry, despite the fact that they follow similar pattern

(Fig. 4). In the case of PBS, the OCP slightly decreased over time from

520 mV to 475 mV (Fig. 4.a). Moreover, it can be noticed that the OCP

remained above 500 mV till day 32. To the best of our knowledge, this

high cathode potential has never been recorded for any cathode work-

ing continuously at neutral conditions for 45 days. The high OCP value

can be explained by the preserved BOx activity along the 45 days (Fig.

4.a). At the same time the BOx cathode in AS solution had initially

high OCP close to 500 mV but the value dropped constantly until

reaching 375 mV at day 45 (Fig. 4.b). Looking at the shape of the polar-

ization curves (Figs. 2.b and 3.b) and the potential at which the diffu-

sional limitation starts, it can be concluded that the gas-diffusion layer

of the cathodes does not change over time. In fact, the slope of I/E is

decreasing in Figs. 2.b and 3.b confirming that is the catalyst, mainly

quantity and activity, responsible for this phenomenon. In other

words, it is not a problem of mass transfer (like oxygen diffusion

through the GDL or at the gas/liquid/solid interface) because the first

part of the curves between OCP and 300mV/AgAgCl are the one chang-

ing over time. In addition, it has to bepointed out that the OCP of the en-

zymatic cathodes never reached the lowvalueOCP of the abiotic control

electrode, which is another indication of enzyme activity along the

course of the experiment.

Since theOCP indicates the existence of active enzyme and enzymat-

ically catalyzed ORR and at the same time the current obtained from the

polarization curves show preserved structure of the GDL, we can as-

sume that the observed decrease in the cathode performance over

time (Fig. 4) is due to a decreasing quantity of active enzyme units,

which decrease occurs with much faster rate in presence of AS. The de-

crease of the cathode enzyme quantity/activity regardless of the solu-

tion can be explained by: i) enzyme natural deactivation; ii) leaching

or release of enzyme from the surface to the bulk (non-covalent immo-

bilization); iii) H2O accumulation that stops the gaseous oxygen (sub-

strate accessibility). Our results indicate strong and fast inhibition

effect of the activated sludge content on the enzymatic activity. In

Fig. 3. Long-termoperation of BOx cathode over 45dayswhenpolarizedwith constant po-

tential of 300mV vs. Ag/AgCl using PBS and activated sludge (AS) as electrolyte (two rep-

licates), with comparison to PBS-only runs (a). Representative potentiodynamic

polarization curves of the BOx cathode in PBS+AS (b). Green line indicates cathodewith-

out BOx.



presence of AS, the additional possibilities for decayed cathode perfor-

mance are i) enzyme deactivation by soluble inhibitors and ii) indirect

deactivation of enzyme by bacterial attachment on electrode surface.

The presence of a variety of compounds in the AS (especially oxidizable

compounds) can causemixed potential at the cathode, which apparent-

ly leds to a decrease in the OCP of the electrode over time. Also, the var-

iation of pH toward alkaline values could impact negatively theOCP but,

as mentioned before, the pH of the bulk remained constant along the

duration of the experiment not ensuring that the local pH at the elec-

trode surface is not different if microorganisms colonized the surface

[51–52]. The OCP values may be considered as a good indicator of en-

zyme activity and long-term electrode operation.

3.4. BOx electrochemical response as a function of pollutants, solids and

bacteria presence

Activated sludge is a complex matrix, which contains not only dis-

solved organic and inorganic compounds but also bacteria and solid

non-biological particles. In order to discriminate the effects of the dis-

solved compounds in the AS from those of suspended solids and bacte-

ria, three additional experiments were performed (Fig. 5). The first

experiment used autoclaved activated sludge mixed with PBS as elec-

trolyte to eliminate the effects of the bacterial activity and study the in-

fluence of both, the soluble pollutants and the solid particles in the

sludge (named as PBS + P). The second experiment used, BOx enzyme

encapsulated in a silica gelmatrix on the electrode surface. This testwas

conducted in PBS+ AS (named as PBS+ P encaps). The silica gel plays

the role of a physical barrier and prevents the interaction of the enzyme

with the solid particles and bacteria present in the AS and allows the sol-

uble pollutants to penetrate the silica matrix and interact with the en-

zyme. Thus only the contribution of soluble pollutants can be studied.

Encapsulation of biological specimens in silica matrix has been demon-

strated to prolong the activity of the biological species and at the same

time allows the penetration of water and ions [10]. The third experi-

ment used a re-suspension of mixed culture bacteria and solid particles

in a phosphate buffer (named as PBS+ B). The latter allowsmonitoring

the influence of bacteria on the cathode performance.

The current generated by the BOx cathode in activated sludge

(PBS + AS) and autoclaved activated sludge with inactivated bacteria

(PBS+P)was identical. Furthermore, the utilization of silica encapsula-

tion (PBS + P encaps) for protecting the enzyme from a direct contact

with the solid particles and bacteria did not change the current output

that resulted similar to PBS + AS and PBS + P. This indicates that the

presence of bacteria along with the solid particles in the electrolyte

did not have a negative effect on the cathodes activity and the reason

for the decreasing over time performance of the enzymatic electrodes

was more probably due to soluble pollutants present in the AS.

The decay of current densities over time for the BOx cathode ex-

posed only to PBS and to bacteria in presence of suspended solids

(PBS+ B) were also similar but higher than the rest of the experiments

carried out (Fig. 5). The latter confirmed that neither bacteria nor the

present solid particles in the AS negatively affected the current output

of the BOx cathode. The reduction in the overall enzyme activity by

the autoclaved activated sludge occurred at virtually the same rate as

by live activated sludge as a result of the dissolved pollutants in both.

Analysis of the autoclaved activated sludge+PBS solutionwere car-

ried out to determine the elemental and ion content (Table 1).

As expected, many different moieties were identified in the

PBS+AS solution (Table 1). High concentrations of phosphate, potassi-

um and chloride were due to the PBS + KCl solution added. Other de-

tected anions were contributed by the activated sludge, including

nitrate, sulfate and fluoride (Table 1). The presence of sulfate in an acti-

vated sludge has been previously reported [53–56], and it was sug-

gested to be one reason for the deactivation of platinum cathodes

utilized in MFC for wastewater treatment and electricity production

[55–56]. It is also well known that the presence of halogens impacts

the activity ofmulticopper oxidases [17]. The negative effect of halogens

is farmore pronouncedwhen laccase is used [17]. The order of inhibito-

ry effect of halogens on the enzymatic cathode has been found to be the

following: F− N Cl− N Br− [17]. Fluoride anion was reported to

Fig. 4.OCP, current from the chronoamperometry at 300mV vs. Ag/AgCl and current from

the polarization curves at 300 mV and 0 mV for the BOx cathode in PBS (a) and PBS+ AS

(b).

Fig. 5. BOx cathode performance (current density) over 9 days when polarized with con-

stant potential of 0.3 V vs. Ag/AgCl using PBS (red), PBS+ AS (blue), PBS + P (pollutants,

black), PBS + P with encapsulated BOx cathode (gray) and PBS + B (“washed” bacteria,

green) as electrolyte. Only one replicate is shown in the figure.



completely inhibit laccase activity, while the inhibition effect of chloride

was less pronounced [17]. It has been widely discussed that the strong

inhibition effect of F− is due to attachment of this anion to the T2/T3

center, blocking the internal electron transfer from the T1 center to

the TNC [17,57–58]. It was suggested that contrary to fluoride, Cl−

binds to the T1 center blocking the access to the substrate-bindingpock-

et and suppressing electron transfer carried out through the utilization

of mediators, but when direct electron transfer occurs, the influence of

the chloride is small. Negligible influence of Cl− in the range of 0-1 M

on the activity of BOx was demonstrated by Mano et al. [17]. The con-

centration of Cl− added in the electrolyte in our experiment was

0.1 M, proposing that the Cl−most likely is not the ion decreasing the

cathodes output. Mano et al. also observed that 0.5 M fluoride addition

decreased the current density of BOx cathode about 30%, and about 90%

was lost at fluoride concentrations above 1M [17]. The concentration of

F− in AS used in the current studywas determined to be 0.9M. This con-

centration could impose huge negative effect on the BOx activity as pre-

viously demonstrated [17]. Recently, it has been shown that also

hydrogen peroxide has a negative influence on the BOx performance

[59–60]. Detailed investigation needs to be done to study the effect of

each pollutant on the activity of BOx and the designed enzymatic

cathode.

At the end of the experiments, macroscopic images of the cathode

surfaces exposed to the electrolyte were taken (Fig. 6). As expected,

no biofilm formation was detected on the BOx cathode exposed to PBS

for 45 days (Fig. 6.a) and to the autoclaved AS for 9 days (Fig. 6.d). In

fact in both cases, the color remained black as for the origin cathode.

Biofilms clearly had developed after 45 days in contact with the electro-

lyte containing active AS (Fig. 6.b) and also after 9 days on the BOx cath-

ode in contact with resting bacterial cells and suspended solids (Fig.

6.c). Despite all these macroscopic deposits, there were no phenomena

of transport limitations observed as indicated by the polarization curves

carried out and as we already discusses, no negative effect was occur-

ring due to the presence of bacteria and solid particles.

4. Conclusion

Continuous operation of bilirubin oxidase cathode was investigated

by placing the cathode in “clean” conditions and exposed to activated

sludge. The cathodes in PBS only and in PBS supplemented with

mixed culture of bacteria demonstrated higher performance than the

cathodes in contact with soluble pollutants, naturally present in the ac-

tivated sludge. OCP higher than 500 mV vs. Ag/AgCl over 32 days have

been observed. The results demonstrated that the lost in the enzyme

catalytic activity was due to the presence of dissolved inhibitors. Biofilm

formation on the cathode and the presence of suspended particles did

not affect the ORR rate. Generally, the OCP of the BOx cathode was a

very significant parameter, and it may be used as an indicator of the en-

zyme activity.
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