
HAL Id: hal-01304889
https://hal.science/hal-01304889

Submitted on 25 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Synchronisation for Distributed Audio Rendering over
Heterogeneous Devices, in HTML5

Jean-Philippe Lambert, Sébastien Robaszkiewicz, Norbert Schnell

To cite this version:
Jean-Philippe Lambert, Sébastien Robaszkiewicz, Norbert Schnell. Synchronisation for Distributed
Audio Rendering over Heterogeneous Devices, in HTML5. 2nd Web Audio Conference, Apr 2016,
Atlanta, GA, United States. �hal-01304889�

https://hal.science/hal-01304889
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Synchronisation for Distributed Audio Rendering over
Heterogeneous Devices, in HTML5

Jean-Philippe Lambert
UMR STMS

IRCAM-CNRS-UPMC
Sorbonne Universités
UPMC Univ Paris 06
lambert@ircam.fr

Sébastien Robaszkiewicz
UMR STMS

IRCAM-CNRS-UPMC
Sorbonne Universités
UPMC Univ Paris 06

robaszkiewicz@ircam.fr

Norbert Schnell
UMR STMS

IRCAM-CNRS-UPMC
Sorbonne Universités
UPMC Univ Paris 06
schnell@ircam.fr

ABSTRACT
The HTML5 standard is wide-spread on mobile devices. In
combination with the Web Audio API, it allows for massively
distributed real-time audio rendering. But timing issues
exist, mainly because of the lack of standard inter-device
synchronisation. This paper proposes a synchronisation
solution based on HTML5. Using a shared reference time, we
achieved the distributed rendering of audio events with an
individual accuracy of 1 to 10ms, 5ms in standard deviation,
which is more accurate than the audio block duration, for
any device that we measured.

CCS Concepts
•Applied computing→ Sound and music computing;
•Networks→ Time synchronization protocols; •Computer
systems organization → Distributed architectures; Real-
time systems;

Keywords
Synchronisation, HTML5, Web Audio API, Audio, Dis-
tributed

1. INTRODUCTION
The generalisation of mobile devices that embed facilities

for real-time audio, processing, motion sensors, and network-
ing, has made it easy to use them for a wide range of applica-
tions. The fifth major revision of the Hypertext Markup Lan-
guage (HTML5) [18] grants access to these features in a Web
page from a standard Web browser, instead of developing na-
tive applications. Massively distributed applications are now
within the reach of anyone, and this is of particular interest
for audio applications, as one can distribute a complete au-
dio process to a mobile device, up to an integrated speaker.
However, various platforms exhibit various behaviours.

First, the devices are very heterogeneous in their hardware
and software capabilities. They are also subject to complex
and live interactions of the system and the user, such as
software updates, messaging, and energy-saving. Finally, the

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA.

c© 2016 Copyright held by the owner/author(s).

different browsers provide different support of the standard [2,
19], that is wide-spread but still evolving.

In a situation that brings a lot of participants to the same
physical space, like in a concert, the organisation of sounds
in time and space is important. In this paper, among the
various sound qualities, we focus on the timing in such a sit-
uation. There are different orders of magnitude for accuracy,
depending on the usage. For multi-channel rendering, we
need to be sample-accurate, which translates to around 20µs
for a common sample-rate. The human threshold of sensitiv-
ity is 1ms for clicks and trained listeners [5,6]. Two coherent
speech sounds of the same level appear as echoes when their
difference of time is more than 30ms [1, p. 224], and the accu-
racy of the violin section of an orchestra is around 40ms [15,
p. 86]. While the sample-accuracy is beyond our reach for
now, we aim at the perceptive coherency of distributed sound
events. To achieve that, we need synchronisation.
In an orchestra, the conductor provides the synchronisa-

tion, while for most specialised audio devices, a cable trans-
mits the word clock. However, mobile browsers can not use
a cable, nor a standard facility for a reference time or syn-
chronisation, yet [11]. The synchronisation of clocks and de-
vices is not a new problem, and the Network Time Protocol
(NTP) [7] is a well-established solution used by millions of
servers [8]. While it requires a specific server, it has proved
to be robust over the years.
Our contribution is based on the HTML5 standard, with

a focus on real-time audio rendering, with the Web Audio
application programming interface (API). We target any
user-agent that supports the standard. Within this context,
we propose a pure JavaScript (JS) solution, that runs in
any standard browser, or server. We track the timing issues
in Section 2, then we propose a synchronisation solution in
Section 3, and we evaluate the resulting implementation in
Section 4. The relevant source code is libre.1

2. LATENCY
We conducted a simple experiment at the Web Audio Con-

ference (WAC) 2015. On a laptop, we ran a Node.js server,
and we set-up a local WiFi network with an external router.
Every second, the server sent a message via a WebSocket on
two connected devices: a reference device and a test device.
1The source code used for clock synchronisation is pub-
lished at https://github.com/collective-soundworks/
sync/, and the source code used for device calibration
and measurements is published at https://github.com/
collective-soundworks/soundworks-calibration/.

https://github.com/collective-soundworks/sync/
https://github.com/collective-soundworks/sync/
https://github.com/collective-soundworks/soundworks-calibration/
https://github.com/collective-soundworks/soundworks-calibration/


The devices played the sound with the Web Audio API as
soon as possible upon receipt of this message. With both de-
vices at the same distance of the ears (or of the microphones),
one could manually adjust the delay of the test device, to try
to play simultaneously with the reference device. We experi-
enced a lot of jitter for some devices, especially noticeable
for those with a delay over 200ms: in this case, we selected
an approximate mean delay value over time.

Delay (milliseconds)

10 50 90 130 170 210 250 290 330 370 410

N
u
m
b
er

o
f
d
ev
ic
es

0

2

4

6

8

Figure 1: Histogram of relative overall delays (in-
cluding network and audio) of various devices. An-
droid 4.1, 4.2, 4.3, 4.4, 5.0; FirefoxOS 2.1; iOS 7, 8.

Figure 1 shows the histogram of these relative delays.
While the values are specific to this experiment, they give
an order of the magnitude of the problem: around 400ms of
relative time difference across the extrema.2 And, for precise
timing, we also need to address the jitter.
From our previous example, we track the delays, and note

them with arrows on Figure 2. We call host the software
that is either a browser or a server, that runs in an operating
system (OS), and that allows to run our application code.

host OSapplication hardware

transport

transport

host OSapplication hardware

host OS hardware

sender

receiver

renderer

data network

air/cable

listener
variable delay

fixed delay

Figure 2: Accumulation of multiple delays from a
remote sender to a listener.

On the server, we wait until the host schedules our sender ’s
code for execution. Then, we send a message via the Web-
Socket API, that goes through the host, the OS, and the hard-
ware, before leaving the server. After the transport, it arrives
to the receiver ’s hardware, OS, and host, before our code is
called. Then, the renderer ’s code schedules a sound via the
Web Audio API, to the next audio block. Then the host out-
puts the sound through the OS, and the hardware. In the air,
the transmission delay depends on the distance of the listener.
We split the problem in two parts. From the sender to

the receiver, we use a shared synchronised time, in order to
compensate the total variable delay (see Section 3); in the
renderer, we calibrate and compensate the fixed audio latency
(see Section 3.2); and we keep a constant distance from the
2It is a lot: in the air, sound travels 130m during this time.

audio output, or we use a cable, to ignore the position of the
listener.

3. SYNCHRONISATION
With a shared reference time, we can compensate any

delay from a sender to a receiver, providing that the sender
anticipates the total accumulated delay.3 For example, one
can use a look-ahead scheduler [22] based on a reference time.
It is also possible to use multiple schedulers, all based on
the same reference time, even on distributed devices. The
question is how to get a shared reference time.
While we follow the same principles as NTP, we do not

use it directly for several reasons. First we need a solution
that works without a specific server, as our reference possibly
comes from a browser. And we adapt the solution to our
particular context, Web pages, that need a quick start-up
and stabilisation (in seconds, or minutes, instead of hours
for NTP). Finally, we integrate all the constraints inherent
to the HTML5 environment.

3.1 Variable Latency
We follow the principles of NTP [14]: in a continuous

process, we exchange the times between a client and the
reference, we filter the transfers to keep only the quickest
ones [10] and we estimate the reference clock, according to a
local clock. It is a continuous process, as every clock varies
over time.

3.1.1 Clocks
We need a precise reference clock, to get a precise reference

time for scheduling audio events. In an HTML5 environment,
performance.now is adapted,4,5 while Date.now should only
be used as a last resort.6
Within an AudioContext, it is possible to schedule events

according to an absolute currentTime [16] with a resolution
of 1 sample. However, as the standard does not requires it to
be strictly monotonic, currentTime advances by steps that
correspond to the audio block duration. Then, to measure
or schedule any event relative to an other time reference
like performance.now, or to an external event, its precision
is as low as the audio block duration.7 The mapping of
currentTime to performance.now in the standard will hope-
fully solve this issue for any compliant browser [21].
While currentTime is a bad choice as a reference clock, it

is a good candidate for a local clock, as we ultimately use
it in order to render audio with the Web Audio API. The
synchronisation process that we propose does not imply the
3as there is no way to reduce the intrinsic latency
4The resolution of performance.now is 1 µs, as it returns a
DOMHighResTimeStamp, and it is monotonic. However, “If
the User Agent is unable to provide a time value accurate to
a thousandth of a millisecond due to hardware or software
constraints, the User Agent can represent a DOMHighRes-
TimeStamp as a number of milliseconds accurate to a mil-
lisecond.” [17].
5performance.now does not exist for our server that runs
Node.js, but we then use process.hrtime, as it is monotonic
with a resolution of 1 ns [12].
6Date.now resolution is 1ms [3], and it is not monotonic, as
it follows the OS time, with its adjustments.
7While the audio block duration is not directly available in
HTML5, we measured it by requesting a series of time and
by looking at the advances. We measured values from 2.9 to
93ms.



use of the audio clock,8 but is tolerant to it. Moreover, by
directly estimating the reference time from the currentTime,
we maximise the resulting audio scheduling accuracy. From
now, we focus on the audio clock as the local clock and on
performance.now as the reference clock.

3.1.2 Ping-Pong Scheme
The algorithm is developed around a ping-pong scheme,

where a client sends a time-stamp tping to a reference, that
applies its own time-stamps: Tping on the reception, and
Tpong on the emission of its reply. The client then applies a
final time-stamp tpong.9

Tping Treference Tpong

tping tpongtlocal

Figure 3: Exchange of time-stamps during a ping-
pong round-trip.

T is used for reference time, while t is used for local time.
Given that both times are expressed with the same unit, this
allows the following estimations:

T = Treference = (Tpong + Tping)/2 (1)
t = tlocal = (tpong + tping)/2 (2)

offset = tlocal − Treference (3)
travelduration = tpong − tping − (Tpong − Tping) (4)

This relies on the hypothesis that the network delay is
symmetrical, which is never exact, but acceptable when the
transmission delay is short, because it bounds the introduced
bias. The design of the algorithm favours that.
First, instead of a single ping-pong probe, we send a se-

ries of them and we keep only the ones with the shortest
travelduration .

To minimise the network congestion, we only send a ping
after a pong arrived, or after a time-out. Moreover, the time-
out duration increases on any delayed pong (and decreases
on arrival, for responsiveness). Finally, there is a random
delay in-between the ping-pong series, to spread over time
the network usage of the multiple clients.
There is also an implication of our use-case, that brings

several mobile devices in the same physical space: we use a
wireless local area network (WLAN), for direct connection
between devices.

3.1.3 Estimation of the Reference Time
We assume that the reference clock T can be expressed lin-

early from the local clock t with an offset T0 and a frequency
ratio R, like NTP.

T (t) = T0 + R(t− t0) (5)
8performance.now is a perfectly adapted local clock, too.
9It is not possible to issue an accurate time-stamp within
the browser environment, because it is set in the JS event
loop and not by the hardware when it is actually sent or
received [9]. Then, the transport duration de facto includes
the variable duration between our JS code and the hardware
(see Figure 2). Moreover, if we use the low precision audio
clock to issue a time-stamp, its precision is also low.

To directly use the audio time, as the local time to synchro-
nise with the reference time, we need to take care about its
low precision. To compensate that, the time-span of the ob-
servations must we long enough for an accurate estimation of
R. On the other hand, it should be short enough to quickly
adapt to varying clocks, and to start. One last considera-
tion is that we need enough samples to be able to accurately
estimate t0, in order to get a more precise reference than
the audio block duration. To mitigate these constraints, we
split our synchronisation process in two stages, so as it starts
quickly, and it then uses long-term data for better accuracy.
During the training stage, we only adjust the offset of the

local clock, after each ping-pong series. We take the mean
offset over the 3 quickest travelduration of the last series, to
compensate for jitter.

T (t) = t− offset (6)

The heuristic driving the transition to the synchronised
stage is that the estimation of the reference clock, that uses R,
should be at least as accurate as in the training, despite the er-
rors on R and t0.10 Then, given a set of measurements (ti, Ti),
obtained after the ping-pong series and the filtering, we esti-
mate R with a simple linear regression, which is adapted for
a real-time context, as it requires little processing [4].

R = Cov[t, T ]
Var[t] = t.T − t.T

t2 − t
2 (7)

While T0 = T and t0 = t are computed at the same time.
As the process is continuous, it is important to monitor

it, for reporting purposes, but also to react on unexpected
changes. We go back to the training stage any time the
estimation of R deviates too much.11

3.2 Fixed Audio Latency
There is no standard way to query the additional latency

added after our renderer code (see Figure 2) schedules audio
via the Web Audio API, yet [20]. We also measured that
guessing the audio block duration is not providing enough
information to determine the total added latency. So the
only choice for now is to measure it, for any type of device
(software and hardware), in order to compensate it later.

We run two audio processes that use a shared synchronised
clock. One, that is always the same and that we chose because
it is the most stable, serves as a reference. In rendered audio,
we measure the difference in time of the device to calibrate
from the reference. (See Section 4 for the measurements.)
To get per-device calibration, we store it on the device

with localStorage. We also store it on a server, to be able
to reproduce a calibration on devices of the same type, with
the user-agent12 as the fuzzy key13 of the data-base. Of
course, this introduces inaccuracy.

10After measuring devices with a block duration of 5.8 to
85ms, we chose the following values as a good trade-off
between speed, memory, computation, and the necessary
data for an accurate estimation: series of 10 ping-pong probes
occur every 10 to 15 s; the training lasts for 2min; the linear
regression is computed over a time-span of 15min, on the
quickest travelduration of each series.

11We use 500PPM, which is 0.05%, or the precision of an
old mechanical clock [13].

12While it is fine for most phones and tablets, it provides no
hardware information for the desktop or laptop devices.

13In order to accommodate to the variations and to still
be able to apply the calibration to most devices, we use a



Although this works in practice, it is long, error-prone, and
an endless effort to integrate new devices and updates, so the
integration of such a feature to the standard is eagerly waited.

4. MEASUREMENTS
On a desktop computer, a Node.js server is running to

provide a reference time. It also emits a request each second,
for any client to output a click scheduled one second in the
future, according to the current reference time. On the same
computer, a multi-track recorder records the sound outputs
of all the browsers, local or connected via the WLAN.
The time of each measurement starts with the synchroni-

sation processes.

Device OS Browser
Galaxy A3 (mobile) Android 5.0.2 Chrome 45
Galaxy S3 Mini (mobile) Android 4.2.2 Chrome 44
iMac (desktop) OS X 10.9.5 Chrome 45
iPad Mini 3 (mobile) iOS 9.0.2 Safari 9
iPhone 4 (mobile) iOS 7.1.2 Safari 7
iPod touch 5 (mobile) iOS 8.4.1 Safari 8
MacBook Pro (laptop) OS X 10.9.5 Firefox 41
Nexus 4 (mobile) Android 5.1.1 Chrome 45
StarAddict III (mobile) Android 4.2.2 Chrome 39
XPS 12 (laptop) Windows 10.0 Edge 12

Table 1: Devices used for measurements.

In Table 1 we list the devices that we used for this set of
measurements. From now on, to refer a particular device
type, we only use a distinct letter arbitrarily chosen.

4.1 Homogeneous Devices

mean

range
stddev

Figure 4: Mean, range, and standard deviation of
clicks within a group.

Each time the server triggered a click, we make a group by
selecting one click of each device. For each group over time,
we measure the total time-span, noted range in the figures.
We also compute the mean time, the difference of each click
from the mean, and their standard deviation, noted stddev.
(See Figure 4.)

For various reasons, some clicks were not rendered by
the devices and these are ignored here. Some other clicks
rendered too late and they appear as outliers.
We start by measuring 8 local browser windows (type A),

that use the same hardware sound interface as the multi-track
recorder, so they all share the same audio clock. In Figure 5,
we observe that even during the training stage, the accuracy
is better than the audio block duration, mainly because of
Levenshtein distance, which is the sum of added and removed
characters.

Time (minutes:seconds)

0:00 3:00 6:00 9:00 12:00 15:00

S
ta
n
d
a
rd

d
ev
ia
ti
o
n
(m

il
li
se
co
n
d
s)

–
R
a
n
g
e
(m

il
li
se
co
n
d
s)

0

0.2

0.4

0.6

0.8

1

1.2

range
stddev

Figure 5: Synchronisation of 8 browser windows on
a single desktop computer (type A), also running
the server, and the recorder. 11.6 ms audio block.

the mean offset over 3 values.14 After quick stabilisation,
the accuracy is always better than 0.8ms. This confirms
that the reference time is precise, and its estimation correct.
One of these windows serves as the audio reference process
in Section 4.2.

Time (minutes:seconds)

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

S
ta
n
d
a
rd

d
ev
ia
ti
o
n
(m

il
li
se
co
n
d
s)

–
R
a
n
g
e
(m

il
li
se
co
n
d
s)

0

2

4

6

8

10

12

14

16

range
stddev

Figure 6: Beginning of synchronisation of 8 devices
of type B. 5.8 ms audio block.

Then we measure 8 mobile devices (type B), that use
the WLAN, and their own local clock. In Figure 6, we
observe that after 2min the devices start the estimation of
the reference clock’s frequency. These estimations get better
and better over time, as the local drift (seen as the local slope)
progressively diminishes. We also note that the local drifts do
not imply a loss of accuracy comparing to the training stage.
The synchronisation process is stable and the most accurate
after 15min,15 and the range is approximately equals to the

14We tried removing it. See Section 3.1.3
15See Figure 7 for an equivalent long-term measurement.



audio block duration, while the standard deviation is one-
third of it.

Time (minutes:seconds)

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00

S
ta
n
d
a
rd

d
ev
ia
ti
o
n
(m

il
li
se
co
n
d
s)

–
R
a
n
g
e
(m

il
li
se
co
n
d
s)

5

10

15

20

25

30

35

40

45

50 range
stddev

Figure 7: Synchronisation of 8 devices of type C,
over long-term. 85 ms audio block.

Then, we measure that the accuracy is not directly bounded
by the audio block duration, by measuring 8 devices of type
C, with a long block (85ms). In Figure 7, after stabilisation,
the range is approximately one-quarter of the audio block
duration, while the standard deviation is around one tenth
of it. 2 clicks rendered too late, at 10 and 29min.
On this long-term observation, we note a discontinuity

around 19min: by looking at the individual recordings and
after investigation, we found out that there is a discontinuity
in the audio rendering, and time. This seems to sporadically
happen on all of the mobile devices that we studied (one
device at a time). While the synchronisation process recovers
from it, this is still bad for audio rendering. We did not
experience such a problem on desktop or laptop devices.

4.2 Heterogeneous Devices
To measure heterogeneous devices, we use a local browser

as a reference (of type A, as in Figure 5), that always stays
synchronised to our reference clock. After the synchroni-
sation of the different devices, we calibrate their relative
delays, in order to compensate them during the next mea-
surement. All devices of the same type share the same cal-
ibration. Then, we restart the synchronisation process to
measure it (except for the reference).

reference

range

stddev

Figure 8: Range of clicks within a group, and stan-
dard deviation from reference.

The analysis of the data is the same as before for the
range, but we measure the difference of each device from
the reference, for each click, and we compute the standard
deviation from it (see Figure 8).
We mix up devices of type B and of type C, and we

measure them with a reference of type A, to check that we
obtain the same results as before, with only devices of type
C (see Figure 7). Looking at the individual delays from
the reference, we confirm that the the overall accuracy is
bounded by the less accurate devices, of type C. We note
that the different types exhibit different long-term patterns.

Time (minutes:seconds)

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00 33:00

S
ta
n
d
a
rd

d
ev
ia
ti
o
n
(m

il
li
se
co
n
d
s)

–
R
a
n
g
e
(m

il
li
se
co
n
d
s)

0

5

10

15

20

25

range
stddev

Figure 9: Synchronisation of 7 heterogeneous de-
vices. Standard deviation from reference (type A).
2.9 to 93 ms audio block, 0 to 398 ms calibration.

Then, with the same reference of type A, we measured
7 other devices, of various platforms and characteristics,
with an audio block duration ranging from 2.9 to 93ms. In
Figure 9, we observe that during the training the range is
under 30ms, while in the long term it oscillates between 5
and 10ms, with a standard deviation between 1 and 3ms.

Time (minutes:seconds)

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00 33:00

D
el
ay

fr
o
m

re
fe
re
n
ce

(m
il
li
se
co
n
d
s)

-5

0

5

10

15

20

D
E
F
G
H
I
J

Figure 10: Synchronisation of 7 heterogeneous de-
vices. Individual delays from reference (type A). 2.9
to 93 ms audio block, 0 to 398 ms calibration.



Looking at the individual delays, in Figure 10, we note
that the very accurate value around 16min is an effect of
the individual long-term oscillations. While some devices are
more accurate, all of them are accurate by 5ms around the
reference after stabilisation. They exhibit various long-term
patterns, but all of their local discontinuities is under 2ms.

5. CONCLUSIONS
We showed that it is already possible to use heterogeneous

devices for distributed audio rendering, providing they sup-
port standard HTML5 browsers, despite their differences.
The requirement on the reference is very light, as it only
needs to be able to answer to a ping, so it runs on any stan-
dard browser, or server.
We developed a synchronisation solution that is valid for

the rendering of audio events, by sharing a reference time,
with an individual accuracy of 1 to 10ms, 20ms in range,
and 0.2 to 5ms in standard deviation, for all the devices that
we measured. This is below their audio block duration.

We successfully used it for a number of realisations, includ-
ing a distributed loop sequencer, a distributed reverberation
processor, and individual instruments sharing a common mu-
sical time.
However, some late scheduling may happen, due to net-

work, computation, or unrelated causes on the device. More-
over, we will need to investigate the discontinuities that seem
to happen sometimes in the Web Audio rendering on all mo-
bile devices.
As the standard is evolving, it will hopefully solve the

calibration step by allowing to directly query the latency
added after the Web Audio currentTime. And the overall
accuracy will improve with a native correspondence between
performance.now and currentTime.

6. ACKNOWLEDGEMENTS
We conducted this work in the context of the CoSiMa

project, which is supported by the French National Research
Agency (http://cosima.ircam.fr/, ANR-13-CORD-0010).
The authors warmly thank their colleagues Olivier Warusfel,
Benjamin Matuszewski, and Samuel Goldszmidt, for their
precious contributions, and all the people who let us use
their personal device.

7. REFERENCES
[1] J. Blauert. Spatial Hearing: The Psychophysics of

Human Sound Localization. The MIT Press, revised
edition, 1997. 1

[2] A. Deveria. Can I use... Support tables for HTML5,
CSS3, etc. http://caniuse.com/, 2015. Accessed
2015-10-14. 1

[3] Ecma International. ECMAScript 2015 Language
Specification – ECMA-262 6th Edition.
http://www.ecma-international.org/ecma-262/6.
0/#sec-time-values-and-time-range, June 2015.
Accessed 2015-09-28. 6

[4] D. Fober, Y. Orlarey, and S. Letz. Real time clock skew
estimation over network delays. Technical report,
Grame, 2005. 3.1.3

[5] H. W. M. Lunney. Time as heard in speech and music.
Nature, 249:592, June 1974. 1

[6] J. A. Michon. Studies on subjective duration: I.
Differential sensitivity in the perception of repeated

temporal intervals. Acta Psychologica, 22:441–450, 1964.
1

[7] Mills, Delaware, Martin, Burbank, and Kasch. Network
Time Protocol Version 4: Protocol and Algorithms
Specification. Standards Track RFC 5905, Internet
Engineering Task Force (IETF), June 2010. 1

[8] D. L. Mills. Executive Summary: Computer Network
Time Synchronization.
http://www.eecis.udel.edu/~mills/exec.html, May
2012. Accessed 2015-02-13. 1

[9] D. L. Mills. Timestamp Capture Principles.
http://www.eecis.udel.edu/~mills/stamp.html,
May 2012. Accessed 2015-02-16. 9

[10] D. L. Mills. Clock Filter Algorithm. https://www.
eecis.udel.edu/~mills/ntp/html/filter.html, Mar.
2014. Accessed 2015-09-17. 3.1

[11] Multi-device Timing Community Group. Multi-device
Timing for Web, Community Group Charter.
https://webtiming.github.io/, 2015. Accessed
2015-09-29. 1

[12] Node.js Foundation. process Node.js v4.1.1 Manual &
Documentation. https://nodejs.org/api/process.
html#process_process_hrtime, Aug. 2015. Accessed
2015-09-28. 5

[13] NTP.org. Clock Quality. http://www.ntp.org/
ntpfaq/NTP-s-sw-clocks-quality.htm, Mar. 2014.
Accessed 2015-02-13. 11

[14] NTP.org. How does it work?
http://www.ntp.org/ntpfaq/NTP-s-algo.htm, 2014.
Accessed 2015-10-06. 3.1

[15] J. Pätynen. A Virtual Symphony Orchestra for Studies
on Concert Hall Acoustics. PhD thesis, Aalto University
School of Science, Espoo, Finland, Nov. 2011. 1

[16] W3C. Web Audio API. https://webaudio.github.io/
web-audio-api/#widl-AudioContext-currentTime.
Accessed 2015-09-29. 3.1.1

[17] W3C. High Resolution Time. http://www.w3.org/TR/
hr-time/#sec-DOMHighResTimeStamp, Dec. 2012.
Accessed 2015-09-28. 4

[18] W3C. HTML5. http://www.w3.org/TR/html5/, Oct.
2014. Accessed 2015-10-14. 1

[19] W3C. Test the Web Forward.
http://testthewebforward.org/, 2014. Accessed
2015-10-14. 1

[20] W3C Audio WG. Map AudioContext times to DOM
timestamps · Issue #340 · WebAudio/web-audio-api ·
GitHub. https://github.com/WebAudio/web-audio-
api/issues/340, 2015. Accessed 2015-10-12. 3.2

[21] W3C Audio WG. Need a way to determine
AudioContext time of currently audible signal · Issue
#12 · WebAudio/web-audio-api · GitHub. https://
github.com/WebAudio/web-audio-api/issues/12,
2015. Accessed 2015-09-28. 3.1.1

[22] C. Wilson. A Tale of Two Clocks - Scheduling Web
Audio with Precision - HTML5 Rocks. http://www.
html5rocks.com/en/tutorials/audio/scheduling/,
Jan. 2013. Accessed 2015-02-02. 3

http://cosima.ircam.fr/
http://caniuse.com/
http://www.ecma-international.org/ecma-262/6.0/#sec-time-values-and-time-range
http://www.ecma-international.org/ecma-262/6.0/#sec-time-values-and-time-range
http://www.eecis.udel.edu/~mills/exec.html
http://www.eecis.udel.edu/~mills/stamp.html
https://www.eecis.udel.edu/~mills/ntp/html/filter.html
https://www.eecis.udel.edu/~mills/ntp/html/filter.html
https://webtiming.github.io/
https://nodejs.org/api/process.html#process_process_hrtime
https://nodejs.org/api/process.html#process_process_hrtime
http://www.ntp.org/ntpfaq/NTP-s-sw-clocks-quality.htm
http://www.ntp.org/ntpfaq/NTP-s-sw-clocks-quality.htm
http://www.ntp.org/ntpfaq/NTP-s-algo.htm
https://webaudio.github.io/web-audio-api/#widl-AudioContext-currentTime
https://webaudio.github.io/web-audio-api/#widl-AudioContext-currentTime
http://www.w3.org/TR/hr-time/#sec-DOMHighResTimeStamp
http://www.w3.org/TR/hr-time/#sec-DOMHighResTimeStamp
http://www.w3.org/TR/html5/
http://testthewebforward.org/
https://github.com/WebAudio/web-audio-api/issues/340
https://github.com/WebAudio/web-audio-api/issues/340
https://github.com/WebAudio/web-audio-api/issues/12
https://github.com/WebAudio/web-audio-api/issues/12
http://www.html5rocks.com/en/tutorials/audio/scheduling/
http://www.html5rocks.com/en/tutorials/audio/scheduling/

	Introduction
	Latency
	Synchronisation
	Variable Latency
	Clocks
	Ping-Pong Scheme
	Estimation of the Reference Time

	Fixed Audio Latency

	Measurements
	Homogeneous Devices
	Heterogeneous Devices

	Conclusions
	Acknowledgements
	References

