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The HTML5 standard is wide-spread on mobile devices. In combination with the Web Audio API, it allows for massively distributed real-time audio rendering. But timing issues exist, mainly because of the lack of standard inter-device synchronisation. This paper proposes a synchronisation solution based on HTML5. Using a shared reference time, we achieved the distributed rendering of audio events with an individual accuracy of 1 to 10 ms, 5 ms in standard deviation, which is more accurate than the audio block duration, for any device that we measured.

INTRODUCTION

The generalisation of mobile devices that embed facilities for real-time audio, processing, motion sensors, and networking, has made it easy to use them for a wide range of applications. The fifth major revision of the Hypertext Markup Language (HTML5) [START_REF]W3C[END_REF] grants access to these features in a Web page from a standard Web browser, instead of developing native applications. Massively distributed applications are now within the reach of anyone, and this is of particular interest for audio applications, as one can distribute a complete audio process to a mobile device, up to an integrated speaker.

However, various platforms exhibit various behaviours. First, the devices are very heterogeneous in their hardware and software capabilities. They are also subject to complex and live interactions of the system and the user, such as software updates, messaging, and energy-saving. different browsers provide different support of the standard [2,19], that is wide-spread but still evolving.

In a situation that brings a lot of participants to the same physical space, like in a concert, the organisation of sounds in time and space is important. In this paper, among the various sound qualities, we focus on the timing in such a situation. There are different orders of magnitude for accuracy, depending on the usage. For multi-channel rendering, we need to be sample-accurate, which translates to around 20 µs for a common sample-rate. The human threshold of sensitivity is 1 ms for clicks and trained listeners [START_REF] Lunney | Time as heard in speech and music[END_REF]6]. Two coherent speech sounds of the same level appear as echoes when their difference of time is more than 30 ms [1, p. 224], and the accuracy of the violin section of an orchestra is around 40 ms [15, p. 86]. While the sample-accuracy is beyond our reach for now, we aim at the perceptive coherency of distributed sound events. To achieve that, we need synchronisation.

In an orchestra, the conductor provides the synchronisation, while for most specialised audio devices, a cable transmits the word clock. However, mobile browsers can not use a cable, nor a standard facility for a reference time or synchronisation, yet [START_REF]Multi-device Timing Community Group. Multi-device Timing for Web, Community Group Charter[END_REF]. The synchronisation of clocks and devices is not a new problem, and the Network Time Protocol (NTP) [7] is a well-established solution used by millions of servers [START_REF] Mills | Executive Summary: Computer Network Time Synchronization[END_REF]. While it requires a specific server, it has proved to be robust over the years.

Our contribution is based on the HTML5 standard, with a focus on real-time audio rendering, with the Web Audio application programming interface (API). We target any user-agent that supports the standard. Within this context, we propose a pure JavaScript (JS) solution, that runs in any standard browser, or server. We track the timing issues in Section 2, then we propose a synchronisation solution in Section 3, and we evaluate the resulting implementation in Section 4. The relevant source code is libre.1 

LATENCY

The devices played the sound with the Web Audio API as soon as possible upon receipt of this message. With both devices at the same distance of the ears (or of the microphones), one could manually adjust the delay of the test device, to try to play simultaneously with the reference device. We experienced a lot of jitter for some devices, especially noticeable for those with a delay over 200 ms: in this case, we selected an approximate mean delay value over time. Figure 1 shows the histogram of these relative delays. While the values are specific to this experiment, they give an order of the magnitude of the problem: around 400 ms of relative time difference across the extrema.2 And, for precise timing, we also need to address the jitter.

Delay (milliseconds)

From our previous example, we track the delays, and note them with arrows on Figure 2. We call host the software that is either a browser or a server, that runs in an operating system (OS), and that allows to run our application code. On the server, we wait until the host schedules our sender's code for execution. Then, we send a message via the Web-Socket API, that goes through the host, the OS, and the hardware, before leaving the server. After the transport, it arrives to the receiver's hardware, OS, and host, before our code is called. Then, the renderer's code schedules a sound via the Web Audio API, to the next audio block. Then the host outputs the sound through the OS, and the hardware. In the air, the transmission delay depends on the distance of the listener.

We split the problem in two parts. From the sender to the receiver, we use a shared synchronised time, in order to compensate the total variable delay (see Section 3); in the renderer, we calibrate and compensate the fixed audio latency (see Section 3.2); and we keep a constant distance from the

SYNCHRONISATION

With a shared reference time, we can compensate any delay from a sender to a receiver, providing that the sender anticipates the total accumulated delay. 3 For example, one can use a look-ahead scheduler [START_REF] Wilson | A Tale of Two Clocks -Scheduling Web Audio with Precision -HTML5 Rocks[END_REF] based on a reference time. It is also possible to use multiple schedulers, all based on the same reference time, even on distributed devices. The question is how to get a shared reference time.

While we follow the same principles as NTP, we do not use it directly for several reasons. First we need a solution that works without a specific server, as our reference possibly comes from a browser. And we adapt the solution to our particular context, Web pages, that need a quick start-up and stabilisation (in seconds, or minutes, instead of hours for NTP). Finally, we integrate all the constraints inherent to the HTML5 environment.

Variable Latency

We follow the principles of NTP [START_REF]How does it work?[END_REF]: in a continuous process, we exchange the times between a client and the reference, we filter the transfers to keep only the quickest ones [START_REF] Mills | Clock Filter Algorithm[END_REF] and we estimate the reference clock, according to a local clock. It is a continuous process, as every clock varies over time.

Clocks

We need a precise reference clock, to get a precise reference time for scheduling audio events. In an HTML5 environment, performance.now is adapted, 4,5 while Date.now should only be used as a last resort. 6Within an AudioContext, it is possible to schedule events according to an absolute currentTime [16] with a resolution of 1 sample. However, as the standard does not requires it to be strictly monotonic, currentTime advances by steps that correspond to the audio block duration. Then, to measure or schedule any event relative to an other time reference like performance.now, or to an external event, its precision is as low as the audio block duration. 7 The mapping of currentTime to performance.now in the standard will hopefully solve this issue for any compliant browser [START_REF] Audio | Need a way to determine AudioContext time of currently audible signal • Issue #12 • WebAudio/web-audio-api[END_REF].

While currentTime is a bad choice as a reference clock, it is a good candidate for a local clock, as we ultimately use it in order to render audio with the Web Audio API. The synchronisation process that we propose does not imply the 3 as there is no way to reduce the intrinsic latency 4 The resolution of performance.now is 1 µs, as it returns a DOMHighResTimeStamp, and it is monotonic. However, "If the User Agent is unable to provide a time value accurate to a thousandth of a millisecond due to hardware or software constraints, the User Agent can represent a DOMHighRes-TimeStamp as a number of milliseconds accurate to a millisecond." [17]. 5 performance.now does not exist for our server that runs Node.js, but we then use process.hrtime, as it is monotonic with a resolution of 1 ns [START_REF] Deveria | Support tables for HTML5[END_REF]. use of the audio clock, 8 but is tolerant to it. Moreover, by directly estimating the reference time from the currentTime, we maximise the resulting audio scheduling accuracy. From now, we focus on the audio clock as the local clock and on performance.now as the reference clock.

Ping-Pong Scheme

The algorithm is developed around a ping-pong scheme, where a client sends a time-stamp tping to a reference, that applies its own time-stamps: Tping on the reception, and Tpong on the emission of its reply. The client then applies a final time-stamp tpong. 9 T is used for reference time, while t is used for local time. Given that both times are expressed with the same unit, this allows the following estimations:

T ping T reference T pong t ping t pong t local
T = T reference = (Tpong + Tping)/2
(1)

t = t local = (tpong + tping)/2 (2) offset = t local -T reference (3) travel duration = tpong -tping -(Tpong -Tping) (4)
This relies on the hypothesis that the network delay is symmetrical, which is never exact, but acceptable when the transmission delay is short, because it bounds the introduced bias. The design of the algorithm favours that.

First, instead of a single ping-pong probe, we send a series of them and we keep only the ones with the shortest travel duration .

To minimise the network congestion, we only send a ping after a pong arrived, or after a time-out. Moreover, the timeout duration increases on any delayed pong (and decreases on arrival, for responsiveness). Finally, there is a random delay in-between the ping-pong series, to spread over time the network usage of the multiple clients.

There is also an implication of our use-case, that brings several mobile devices in the same physical space: we use a wireless local area network (WLAN), for direct connection between devices.

Estimation of the Reference Time

We assume that the reference clock T can be expressed linearly from the local clock t with an offset T0 and a frequency ratio R, like NTP.

T (t) = T0 + R(t -t0) ( 5 
)
8 performance.now is a perfectly adapted local clock, too. 9 It is not possible to issue an accurate time-stamp within the browser environment, because it is set in the JS event loop and not by the hardware when it is actually sent or received [9]. Then, the transport duration de facto includes the variable duration between our JS code and the hardware (see Figure 2). Moreover, if we use the low precision audio clock to issue a time-stamp, its precision is also low.

To directly use the audio time, as the local time to synchronise with the reference time, we need to take care about its low precision. To compensate that, the time-span of the observations must we long enough for an accurate estimation of R. On the other hand, it should be short enough to quickly adapt to varying clocks, and to start. One last consideration is that we need enough samples to be able to accurately estimate t0, in order to get a more precise reference than the audio block duration. To mitigate these constraints, we split our synchronisation process in two stages, so as it starts quickly, and it then uses long-term data for better accuracy.

During the training stage, we only adjust the offset of the local clock, after each ping-pong series. We take the mean offset over the 3 quickest travel duration of the last series, to compensate for jitter.

T (t) = t -offset (6)
The heuristic driving the transition to the synchronised stage is that the estimation of the reference clock, that uses R, should be at least as accurate as in the training, despite the errors on R and t0. 10 Then, given a set of measurements (ti, Ti), obtained after the ping-pong series and the filtering, we estimate R with a simple linear regression, which is adapted for a real-time context, as it requires little processing [4].

R = Cov[t, T ] Var[t] = t.T -t.T t 2 -t 2 (7) 
While T0 = T and t0 = t are computed at the same time.

As the process is continuous, it is important to monitor it, for reporting purposes, but also to react on unexpected changes. We go back to the training stage any time the estimation of R deviates too much. 11

Fixed Audio Latency

There is no standard way to query the additional latency added after our renderer code (see Figure 2) schedules audio via the Web Audio API, yet [20]. We also measured that guessing the audio block duration is not providing enough information to determine the total added latency. So the only choice for now is to measure it, for any type of device (software and hardware), in order to compensate it later.

We run two audio processes that use a shared synchronised clock. One, that is always the same and that we chose because it is the most stable, serves as a reference. In rendered audio, we measure the difference in time of the device to calibrate from the reference. (See Section 4 for the measurements.)

To get per-device calibration, we store it on the device with localStorage. We also store it on a server, to be able to reproduce a calibration on devices of the same type, with the user-agent 12 as the fuzzy key 13 of the data-base. Of course, this introduces inaccuracy. 10 After measuring devices with a block duration of 5.8 to 85 ms, we chose the following values as a good trade-off between speed, memory, computation, and the necessary data for an accurate estimation: series of 10 ping-pong probes occur every 10 to 15 s; the training lasts for 2 min; the linear regression is computed over a time-span of 15 min, on the quickest travel duration of each series. 11 We use 500 PPM, which is 0.05 %, or the precision of an old mechanical clock [13]. 12 While it is fine for most phones and tablets, it provides no hardware information for the desktop or laptop devices. 13 In order to accommodate to the variations and to still be able to apply the calibration to most devices, we use a Although this works in practice, it is long, error-prone, and an endless effort to integrate new devices and updates, so the integration of such a feature to the standard is eagerly waited.

MEASUREMENTS

On a desktop computer, a Node.js server is running to provide a reference time. It also emits a request each second, for any client to output a click scheduled one second in the future, according to the current reference time. On the same computer, a multi-track recorder records the sound outputs of all the browsers, local or connected via the WLAN.

The time of each measurement starts with the synchronisation processes. In Table 1 we list the devices that we used for this set of measurements. From now on, to refer a particular device type, we only use a distinct letter arbitrarily chosen. Each time the server triggered a click, we make a group by selecting one click of each device. For each group over time, we measure the total time-span, noted range in the figures. We also compute the mean time, the difference of each click from the mean, and their standard deviation, noted stddev. (See Figure 4.)

Device

Homogeneous Devices

For various reasons, some clicks were not rendered by the devices and these are ignored here. Some other clicks rendered too late and they appear as outliers.

We start by measuring 8 local browser windows (type A), that use the same hardware sound interface as the multi-track recorder, so they all share the same audio clock. In Figure 5, we observe that even during the training stage, the accuracy is better than the audio block duration, mainly because of Levenshtein distance, which is the sum of added and removed characters. the mean offset over 3 values. 14 After quick stabilisation, the accuracy is always better than 0.8 ms. This confirms that the reference time is precise, and its estimation correct.

One of these windows serves as the audio reference process in Section 4.2.

Time (minutes:seconds) 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Standard deviation (milliseconds) -Range (milliseconds) Then we measure 8 mobile devices (type B), that use the WLAN, and their own local clock. In Figure 6, we observe that after 2 min the devices start the estimation of the reference clock's frequency. These estimations get better and better over time, as the local drift (seen as the local slope) progressively diminishes. We also note that the local drifts do not imply a loss of accuracy comparing to the training stage. The synchronisation process is stable and the most accurate after 15 min, 15 and the range is approximately equals to the audio block duration, while the standard deviation is onethird of it.

Time (minutes:seconds) 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00

Standard deviation (milliseconds) -Range (milliseconds) Then, we measure that the accuracy is not directly bounded by the audio block duration, by measuring 8 devices of type C, with a long block (85 ms). In Figure 7, after stabilisation, the range is approximately one-quarter of the audio block duration, while the standard deviation is around one tenth of it. 2 clicks rendered too late, at 10 and 29 min.

On this long-term observation, we note a discontinuity around 19 min: by looking at the individual recordings and after investigation, we found out that there is a discontinuity in the audio rendering, and time. This seems to sporadically happen on all of the mobile devices that we studied (one device at a time). While the synchronisation process recovers from it, this is still bad for audio rendering. We did not experience such a problem on desktop or laptop devices.

Heterogeneous Devices

To measure heterogeneous devices, we use a local browser as a reference (of type A, as in Figure 5), that always stays synchronised to our reference clock. After the synchronisation of the different devices, we calibrate their relative delays, in order to compensate them during the next measurement. All devices of the same type share the same calibration. Then, we restart the synchronisation process to measure it (except for the reference). The analysis of the data is the same as before for the range, but we measure the difference of each device from the reference, for each click, and we compute the standard deviation from it (see Figure 8).

We mix up devices of type B and of type C, and we measure them with a reference of type A, to check that we obtain the same results as before, with only devices of type C (see Figure 7). Looking at the individual delays from the reference, we confirm that the the overall accuracy is bounded by the less accurate devices, of type C. We note that the different types exhibit different long-term patterns.

Time (minutes:seconds) 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00 33:00 Then, with the same reference of type A, we measured 7 other devices, of various platforms and characteristics, with an audio block duration ranging from 2.9 to 93 ms. In Figure 9, we observe that during the training the range is under 30 ms, while in the long term it oscillates between 5 and 10 ms, with a standard deviation between 1 and 3 ms. Time (minutes:seconds) 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00 33:00 Delay from reference (milliseconds) Looking at the individual delays, in Figure 10, we note that the very accurate value around 16 min is an effect of the individual long-term oscillations. While some devices are more accurate, all of them are accurate by 5 ms around the reference after stabilisation. They exhibit various long-term patterns, but all of their local discontinuities is under 2 ms.

CONCLUSIONS

We showed that it is already possible to use heterogeneous devices for distributed audio rendering, providing they support standard HTML5 browsers, despite their differences. The requirement on the reference is very light, as it only needs to be able to answer to a ping, so it runs on any standard browser, or server.

We developed a synchronisation solution that is valid for the rendering of audio events, by sharing a reference time, with an individual accuracy of 1 to 10 ms, 20 ms in range, and 0.2 to 5 ms in standard deviation, for all the devices that we measured. This is below their audio block duration.

We successfully used it for a number of realisations, including a distributed loop sequencer, a distributed reverberation processor, and individual instruments sharing a common musical time.

However, some late scheduling may happen, due to network, computation, or unrelated causes on the device. Moreover, we will need to investigate the discontinuities that seem to happen sometimes in the Web Audio rendering on all mobile devices.

As the standard is evolving, it will hopefully solve the calibration step by allowing to directly query the latency added after the Web Audio currentTime. And the overall accuracy will improve with a native correspondence between performance.now and currentTime.
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Figure 1 :

 1 Figure 1: Histogram of relative overall delays (including network and audio) of various devices. Android 4.1, 4.2, 4.3, 4.4, 5.0; FirefoxOS 2.1; iOS 7, 8.

Figure 2 :

 2 Figure 2: Accumulation of multiple delays from a remote sender to a listener.

Figure 3 :

 3 Figure 3: Exchange of time-stamps during a pingpong round-trip.

Figure 4 :

 4 Figure 4: Mean, range, and standard deviation of clicks within a group.

Figure 5 :

 5 Figure 5: Synchronisation of 8 browser windows on a single desktop computer (type A), also running the server, and the recorder. 11.6 ms audio block.

Figure 6 :

 6 Figure 6: Beginning of synchronisation of 8 devices of type B. 5.8 ms audio block.

Figure 7 :

 7 Figure 7: Synchronisation of 8 devices of type C, over long-term. 85 ms audio block.

Figure 8 :

 8 Figure 8: Range of clicks within a group, and standard deviation from reference.

Figure 9 :

 9 Figure 9: Synchronisation of 7 heterogeneous devices. Standard deviation from reference (type A). 2.9 to 93 ms audio block, 0 to 398 ms calibration.

Figure 10 :

 10 Figure 10: Synchronisation of 7 heterogeneous devices. Individual delays from reference (type A). 2.9 to 93 ms audio block, 0 to 398 ms calibration.

Table 1 : Devices used for measurements.

 1 

		OS	Browser
	Galaxy A3 (mobile)	Android 5.0.2 Chrome 45
	Galaxy S3 Mini (mobile) Android 4.2.2 Chrome 44
	iMac (desktop)	OS X 10.9.5	Chrome 45
	iPad Mini 3 (mobile)	iOS 9.0.2	Safari 9
	iPhone 4 (mobile)	iOS 7.1.2	Safari 7
	iPod touch 5 (mobile)	iOS 8.4.1	Safari 8
	MacBook Pro (laptop)	OS X 10.9.5	Firefox 41
	Nexus 4 (mobile)	Android 5.1.1 Chrome 45
	StarAddict III (mobile)	Android 4.2.2 Chrome 39
	XPS 12 (laptop)	Windows 10.0 Edge 12

The source code used for clock synchronisation is published at https://github.com/collective-soundworks/ sync/, and the source code used for device calibration and measurements is published at https://github.com/ collective-soundworks/soundworks-calibration/.

It is a lot: in the air, sound travels 130 m during this time.audio output, or we use a cable, to ignore the position of the listener.

Date.now resolution is 1 ms [3], and it is not monotonic, as it follows the OS time, with its adjustments.

While the audio block duration is not directly available in HTML5, we measured it by requesting a series of time and by looking at the advances. We measured values from 2.9 to

We tried removing it. See Section 3.1.3 
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