Experimental and modeling investigation of the effect of the unsaturation degree on the gas-phase oxidation of fatty acid methyl ester found in biodiesel fuels

Anne Rodriguez¹, Olivier Herbinet¹, Frédérique Battin-Leclerc¹, Alessio Frassoldati², Tiziano Faravelli², Eliseo Ranzi²

 ¹ Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS – Université de Lorraine, 1 rue Grandville, 54000 Nancy, France
 ² Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Supplemental Material

1) Lumped species introduced in the model for the Waddington mechanism	2
2) Stoichiometric oxidation of n-decane/Methyl-Oleate mixture [1]	3
3) Comparison of data computed using the model developed in this study and that of Westbrook et al. [2]	4
4) Comparison with experimental data of the oxidation of neat n-decane and n-decane/benzene mixture in a JSR [3]	?s 5
References	6

1 1) Lumped species introduced in the model for the Waddington mechanism

Table S1:Lumped	species introduce	d in the mode	I for the Waddingto	n mechanism
Tuble Sticumped	species introduce	a m the moue	i ioi uic waaanigto	in meenamoni

Name in the model	Formula	Structure
RMEOLEOH	$C_{19}H_{37}O_3$	
RMEOLEOHOO	C ₁₉ H ₃₇ O ₅	
ALD9	$C_9H_{18}O$	
MEALD9	$C_{10}H_{18}O_{3}$	
RMLIN1OH	$C_{19}H_{33}O_{3}$	
RMLIN10H00	$C_{19}H_{33}O_5$	
MEALDU12	$C_{13}H_{22}O_{3}$	
HEXENAL	C ₆ H ₁₀ O	~~~o

4 2) Stoichiometric oxidation of *n*-decane/Methyl-Oleate mixture [1].

Figure S1:Mole fraction profiles of atmospheric and stoichiometric oxidation of methyl oletate /n-decane (26 mol%/74 mol%) mixtures at 1.5 s ($x_{fuel} = 0.002$). Comparisons of experimental (symbols) and predicted conversions (lines).

3) Comparison of data computed using the model developed in this study andthat of Westbrook et al. [2].

b) Shock tube device, air/fuel mixtures in stoichiometric

16

a) JSR at 1 atm, 1.5 s, 0.2% fuel at φ =1, with He diluent.

20

21

4) Comparison with experimental data of the oxidation of neat n-decane and

n-decane/benzene mixtures in a JSR [3].

25

26

27

Figure S3: Mole fractions of relevant species in the oxidation of the benzene/n-decane mixture at 800 torr and a residence time of 2 s. Experimental (symbols) and model predictions (lines with small symbols)[3].

Figure S4: Mole fractions of relevant species in the oxidation of neat*n*-decane at 800 torr and a residence time of 2
 s. Experimental (symbols) and model predictions (lines with small symbols)[3].

31

32 References

- 33 [1] S. Bax, M.H. Hakka, P.-A. Glaude, O. Herbinet, F. Battin-Leclerc, Combust. Flame 157 (2010) 1220.
- [2] C.K. Westbrook, C.V. Naik, O. Herbinet, W. Pitz, M. Mehl, S.M. Sarathy, H.J. Curran, Combust. Flame 158 (2011)
 742.
- 36 [3] O. Herbinet, B. Husson, M. Ferrari, P.A. Glaude, F. Battin-Leclerc Proc. Combust. Inst., 34 (1) (2013), pp. 297–305]