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SOME APPROXIMATE METHODS FOR

COMPUTING ELECTROMAGNETIC FIELDS

SCATTERED BY COMPLEX OBJECTS

P. Chiappetta and B. Torr�esani y

CPT, CNRS-Luminy, case 907, 13288 Marseille Cedex 09, France

Abstract. We discuss several approximatemethods for computing electromagnetic

scattering by objects of complex shape. Dependingon the relative size of the scatterer

compared to the incident wavelength, di�erent techniques have to be designed. We

review some of them which are often used in practice, and present numerical results

of scattering by complex objects.

1. INTRODUCTION

The problem of electromagnetic scattering and absorption by objects of arbitrary

shape and arbitrary internal structure is quite di�cult and relies heavily on

high-performance computing facilities. Exact solutions and algorithms exist for

homogeneous particles of de�nite shape, such as spheres (Mie-Lorenz theory [1]),

spheroids [2], cylinders [3]. For homogeneous particles algorithms also exist for circular

disks [4], elliptical cylinders [5] and solids of revolution [6, 7, 8]. A few inhomogeneous

objects such as layered spheres [9] can be treated as well.

The scattering by geometrically and electrically complex, three dimensional objects

has driven an intensive e�ort to develop approximate numerical methods. The kind

of approximation to be used depends highly on the characteristic lengths of the

problem, and in particular on the dimensionless parameter ka, where k is the incident

wavenumber and a a characteristic length of the scatterer. When ka � 1, i.e. for

objects small compared to the incident wavelength, Born approximation provides

satisfactory results. For larger sizes, the computation of scattering from complex three

dimensional bodies involves the numerical solution of Maxwell's equations either in

a di�erential form or in an integral form. For reasonable values of the parameter

ka, say ka � 5, low frequency methods may be used. These methods are essentially

based on a discretization of the scatterer, and a corresponding approximation of the

electromagnetic �eld.

The discretization may be achieved in various ways (�nite di�erences [10], �nite

elements [11, 12] (FEM), �nite volumes (FVM), method of moments [13] (MoM),

coupled dipoles (DDM),...) and in any case results in a large linear system to be solved

numerically. Depending on the structure of the matrices obtained after discretization,

several strategies may be followed for solving the numerical problem (for example

direct inversions if the matrix is sparse enough, iterative schemes such as conjugate or

biconjugate gradient methods (CGM), multigrid methods, FFT-based algorithms,...).
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For larger scatterers, such approximation methods are not suitable any more,

in that they generally yield high dimensional matrix systems whose resolution with

acceptable accuracy becomes untractable. In such situations, di�erent types of

approximations have to be designed, leading to various models such as eikonal models

or asymptotic theories such as the geometrical theory of di�raction (GTD)[14, 15] or

even geometrical optics. These approximations are essentially based upon a careful

analysis of the oscillatory nature of the �elds within the scatterer.

In the present contribution (which is rather a theoretical one) we aim at describing

some of these approximation techniques and corresponding algorithms, focusing on a

few ones which are relatively easy to implement practically. Our goal is not to provide

an exhaustive account of existing approaches (this would deserve a several hundred

pages contribution). Therefore, we apologize in advance for omitting a large number

of signi�cant contributions to the �eld which could easily �nd their place here.

Our discussion will be limited to the case of time-independent scattering. However,

let us stress that the time-dependent case has been addressed by several authors

as well, and that there exists an important literature on the subject. Some of the

techniques we are about to review may be extended to the time-dependent situation.

This is the case of �nite elements methods for example. In this contribution, we refrain

from discussing this more general problem.

This contribution is organized as follows. In section 2 we describe a couple of low-

frequency approaches, namely the �nite elements methods (FEM) and the coupled

dipoles approximations (DDM) and variants. Section 3 is devoted to high-frequency

approximations, with a special emphasis on eikonal methods. Section 4 is devoted to

conclusions.

Throughout this contribution, we limit ourselves to the case of scattering of

monochromatic waves for the sake of simplicity. By convention, we choose a

dependence E

0

(r; t) = E

0

expfi(k:r � !t)g for the incident wave.

2. LOW-FREQUENCY APPROXIMATIONS

Let us start with the case of the scattering problem for scatterers whose size is of

the same order as the incident wavelength (say, 1 � ka � 10). As stressed in

the introduction, several numerical strategies have been developed to address such a

situation. Among them, integral formulations (integral forms of Maxwell's equations,

�nite elements, �nite volumes...) are generally preferred, since they lead to algorithms

which are more stable. Formulations based upon the integral form of Maxwell's

equations are among the most popular. The three dimensional computer codes

available are well adapted for prefectly conducting bodies [16], homogeneous dielectric

bodies [17] of small or medium scale compared to the incident wavelength. The direct

integral formulation does not seem to be well adapted to composite anisotropic and

inhomogeneous scatterers. The advantage of the integral method is to take exactly the

geometrical shape in account and the radiation condition is automatically enforced.

The disadvantage is that the matrices involved are generally full, which is a severe

limitation. Therefore, because of the strong demand for e�cient algorithms capable

of modeling complex and larger types of scatterer, there is room for alternatives. We

describe essentially two of them here. The �rst one (the �nite elements methods) is

based on the mathematical theory of approximation, and expresses the �elds as linear

combinations of basis functions (�nite elements) which span an approximation space
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within which the solution is seeked. We cast it here as a low frequency method, but

there is hope that it will allow one to address problems involving larger scales than

the usual low frequency problems. The second approach (Discrete Dipoles Method)

is rather based upon physical considerations, and approximates the scatterer as a

superposition of spherical electric dipoles located on the sites of a (cubic) lattice.

However, recent results have permitted to make the connexion with integral methods.

2.1. Finite Elements Methods.

2.1.1. Basics We consider the problem of the electromagnetic scattering within a

bounded volume V . The considered volume V may contain various scattering objects

such as metallic and resistive bodies, homogeneous or inhomogeneous dielectrics, all of

which are arbitrarily shaped. The volume V is separated from the exterior domain by

a surface � = @V and we denote generically by n̂ the exterior normal vector of length

unity for each considered boundary. We denote by � = �

0

�

r

and � = �

0

�

r

the electric

permittivity and magnetic susceptibility of the considered medium, and we use the

subscript 0 to refer to free space and the subscript r to refer to relative characteristics

of the medium. We also denote by Z

0

=

p

�

0

=�

0

the impedance in free space.. The

problem consists in solving the vector wave equation for the electric �eld, which reads

in its most general form

r^(

1

�

r

r^E(r))�k

2

�

r

E(r)= ikZ

0

J(r) � (r^

1

�

r

M (r)) (1)

where k = !

p

�

0

�

0

is the free space wave vector, and J(r) and M (r) denote the

electric and magnetic current densities. The symbol ^ stands for the vector product

in three dimensions Euclidean space. For the sake of simplicity, we shall refrain from

considering the problem in full generality, and from now on we assume J = 0 and

M = 0 in our discussion.

Trying to solve Eq. (1) pointwise turns out to yield numerically unstable

algorithms. A standard alternative amounts to search for a \weak solution" of the

problem, as follows. First, consider a family of vector basis functions �

`

(r); ` = 1; : : :L

(the test functions), and impose eq. (1) in the sense of scalar productsy with all basis

functions �

`

(r). Thanks to Green's equality, we end up with a system of L equations

of the form

R

V

h

1

�

r

(r^E(r)):(r^�

`

(r))�k

2

�

r

E(r)��

`

(r)

i

dv

= �ikZ

0

R

�

(n̂^H(r)) ��

`

(r)ds :

(2)

Here H(r) is the total magnetic �eld satisfying Maxwell's equation:

1

�

r

r^E(r) = ikZ

0

H(r) (3)

To account rigorously for boundary conditions, equation (2) requires the knowledge

of n̂^H(r) on the boundary �, which itself requires solving the Stratton-Chu integral

equation for H(r):

H(r) = H

inc

(r) +

ik

Z

0

R

�

G(r; r

0

):[E(r

0

) ^ n̂]

�r^G(r; r

0

):[n̂^H(r

0

)]ds

(4)

y That is, impose that for all ` = 1; : : :L, the scalar product of the left hand side with �

`

equals the

scalar product of the right hand side with �

`

. By scalar product, we mean the Hermitian product

on L

2

(IR

3

; IC

3

) de�ned by hf; gi =

R

f(r):g(r)dr where the dot stands for Euclidean product in IC

3

,

and the bar denotes complex conjugation.
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where G(r; r

0

) is the free space matrix-valued Green's function (see eq. (25) below

for its analytic expression). The solution of (2) and (4) corresponds to the boundary

integral formulation (BI).

Alternatively, eq. (2) may be solved in an approximate way (without invoking

the Stratton-Chu equation) by introducing arti�cial boundary conditions on � = @V .

The simplest of such conditions is Sommerfeld's radiation condition (which is generally

used at in�nity), and has been extended by various authors to more general absorbing

boundary conditions (ABC). Such conditions (see the discussion in section 2.1.3 below)

relate the scattered electric and magnetic �elds on the boundary �, and are therefore

used to eliminate the magnetic �eld from (2). Doing so in the simplest case (i.e. with

Sommerfeld's radiation condition, see eq. (10) below) for example, we are led to the

following equation, in which only the scattered electric �eld is involved

Z

V

�

1

�

r

(r^E(r)):(r^�

`

(r))�k

2

�

r

E(r) ��

`

(r)

�

dv

= �ikZ

0

Z

�

(n̂ ^H

0

(r)) ��

`

(r)ds

� ikZ

0

Z

�

n̂ ^ (n̂ ^ (E(r)� E

0

(r)))�

`

(r)ds

(5)

(we recall that E

0

(r) and H

0

(r) are the incident electric and magnetic �elds

respectively). Such a prescription (using Sommerfeld's condition or more general

absorbing boundary conditions) is known under the name of ABC formulation.

To solve the weak forms of the wave equation, the next step is to introduce a

second family of basis functions 	

`

(r) (the so-called trial functions), and to expand

the electric �eld with respect to such a basis:

E(r) =

X

`

e

`

	

`

(r)

Therefore, eq. (2) transforms into a matrix equation, which is to be solved in order

to yield the coe�cients e

`

of the electric �eld. Clearly, the test and trial functions

have to be chosen so as to make the numerical resolution as easy as possible. In

that respect, the simplest choice is generally to use the same functions as test and

trial functions. A general methodology for choosing such functions is based on �nite

elements decompositions of the volume V .

2.1.2. Finite elements The basis functions 	

`

(r) are generally constructed by

discretizing the scattering volume, i.e. subdividing it into a �nite number m

e

of

sub-elements V

e

of de�nite shape such as rectangular bricks, tetrahedrals, triangular

prisms... The associated surface elements are rectangles or triangles. The �eld within

each element is expanded over basis functions W

e

j

(r); j = 1; : : :m

j

depending on the

geometry of the �nite element:

E(r) =

m

e

X

e=1

m

j

X

j=1

E

e

j

W

e

j

(r) (6)

The unknown expansion coe�cients E

e

j

represent the electric �eld within the e-th

element. The simplest choices for the basis functions W

j

(r) amounts to approximate

the �eld within each volume V

e

by a constant function. However, it is often desirable to

work with higher order approximations. The next order is obtained as follows. For the
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sake of simplicity, we limit ourselves to �nite elements of rectangular shape. Consider

a rectangular box V

e

of sidelengths L

x

; L

y

and L

z

respectively. Any component of the

electric �eld E

e

(x; y; z) within V

e

is projected onto the space spanned by four a�ne

basis functions, which are taken to be functions of two variables only, so as to ful�ll

the zero divergence property of the electric �eld. For example, for the x component,

one writes

E

e

x

(y; z) =

4

X

j=1

E

e

x;j

w

e

x;j

(y; z) :

In such a simple case, we have to deal with 12 (scalar) basis functions within each

element (note that with such a de�nition, the coe�cients in the expansion coincide

with the values of the �eld at the edges of the volume V

e

). For example, for the

elements w

x;j

(y; z):

8

>

>

>

<

>

>

>

:

w

x;1

(y; z) =

1

L

y

L

z

(L

y

� y)(L

z

� z);

w

x;2

(y; z) =

1

L

y

L

z

y(L

z

� z);

w

x;3

(y; z) =

1

L

y

L

z

(L

y

� y)z;

w

x;4

(y; z) =

1

L

y

L

z

yz;

(7)

and similar expressions for w

y;j

(x; z) and w

z;j

(x; y), j = 1; : : :4. Many other choices

are possible and have been considered. For example, one can choose functions w

e

such that the corresponding coe�cients equal the values of the �elds at the vertices

of the �nite elements grid. Alternatively, one can consider non-rectangular volumes,

which allow one to accound more precisely for the geometry of the problem. We will

not go into more details at this point. Let us nevertheless stress that whenever the

solution is known to have a certain degree of smoothness, higher order schemes are

expected to yield more precise approximations of the solution. Unfortunately, the

implementation of higher order schemes is generally cumbersome, and lead to slowers

algorithms. This is the usual precision-complexity tradeo�. For that reason, low order

schemes are generally preferred.

Inserting the expansion (6) inside the integral equation of the electric �eld, for

example eq. (5), yields a �nite set of linear equations, which may be cast in the form

[M

V

]E

V

n

+ [M

B

]E

B

n

= f

V

m

; (8)

whereM

V

andM

B

are square matrices, and the superscripts B and V refer to �elds E

or matrices associated to the boundary surfaces (including the boundary � = @V and

all the boundaries of scattering elements within V ) and the volume V respectively. The

crucial point to notice is that because of the locality of �nite elements and associated

basis functions, all the matrices involved in (8) are sparse, which makes the numerical

resolution much simpler.

On the contrary, if the exact BI formulation is used, one obtains a system of the

form

[M

V

]E

V

n

+ [M

B

]E

B

n

+ [G]E

B

n

= f

V

m

; (9)

The extra term [G] comes from the presence of the Green's function in the Stratton-

Chu equation (4). This introduces full matrices, since the decay of their elements

is governed by that of Green's function, i.e. 1=r, and is therefore generally quite

unconvenient.
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2.1.3. Boundary conditions To solve the scattering problem, it is necessary to

specify the boundary conditions within the domain V and on its boundary �. Within

the domain V , the boundary conditions are �xed by the physics, for example the

vanishing of tangential electric �eld E for metallic bodies.

The conditions at the boundary � = @V are generally more di�cult. If the volume

V is large enough and if � is far away from the scatterers, Sommerfeld's radiation

condition

ikZ

0

(r̂ ^H

scat

(r)) = ikZ

0

r̂ ^ (r̂ ^E

scat

(r)) (10)

may be used (actually, Eq. (10) gives the so-called Silver-M�uller condition, which has

been shown to be equivalent to Sommerfeld's condition in [18]). Here, r̂ is the normal

to �, and E

scat

= E � E

0

and H

scat

= H � H

0

denote the scattered electric and

magnetic �elds respectively. But large domains require the use of a large number

of �nite elements, and lead to computer intensive algorithms, which turn out to be

untractable in many situations of interest.

Absorbing boundary conditions (ABC) have been shown to provide useful

alternatives. ABC methods basically aim at avoiding creating arti�cial backscatterings

from the boundary �. An absorbing boundary condition of degree m is a relation

between the scattered electric and magnetic �elds that annihilates powers of 1=r of

degrees up to 2m+ 1 (Sommerfeld's condition is essentially an ABC of degree 0). We

won't go into more details about ABC methods. Such methods have been extensively

studied in the literature. We refer to [10, 19, 20, 21, 22, 23] for more details.

2.1.4. Numerical considerations and additional remarks As we have seen, whatever

the exact formulation, we are in all cases led to solve numerically a linear system of high

dimension. The resolution scheme has to satisfy two constraints: low computational

cost, and low memory requirement. In principle, any direct or iterative scheme for

such inversion would do the job equally well, but the latter are generally preferred

because of their lower computational cost (see for example [24] for a review): they only

require matrix-vector multiplications, and not matrix manipulations. For example,

biconjugate gradient methods (BCG) have been extensively used, in di�erent versions.

These have O(N

2

) complexity.

In addition, the complexity may be signi�cantly reduced if the matrices involved in

the problem are sparse. Sparse matrices also reduce memory requirement if coded in

an adequate way. As we have seen, all the matrices [M] involved in ABC method are

generally sparse. This is no longer the case with the BI method, because of the matrix

[G]. However, such a problemmay be reduced if the matrix [G] is block Toeplitz (which

imposes uniform gridding). In such cases, Fast Fourier Transform algorithms may be

used for evaluating [G]E

B

n

, imposing low memory requirement. Then the iterative

methods mentioned above may be used. As shown in [21], the �nite element method

formulation is relevant for computation of electromagnetic scattering by complex and

large non metallic three dimensional structures.

The main drawback of �nite elements methods is their di�culty for accounting

accurately for the surface termination of the �nite element volume. Hybrid �nite

element-integral equation methods have been implemented [26]: the regions of

material composition are handled with the �nite element method (involving sparse

matrices), whereas the structure of the surface is accurately treated using the exact

boundary integral equation (requiring a full complex matrix for the surface). The
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body size limitations are driven by computer speed and storage capacities. This

method, previously restricted to dielectric bodies or aperture structures, has recently

been extended [27] to many other types of scatterers (such as antennas, composite

waveguides) by a curvilinear approach.

2.2. Coupled Dipoles and Related Methods.

We now turn to a di�erent kind of approximation. In the same spirit as before,

at low energies, the scattering and absorption cross sections can be obtained from a

discretization of the scattering potential. Consider a scatterer, acted on by an incident

beam, which is a linearly polarized electromagnetic �eld E

0

(r) = E

0

exp(ik:r). The

coupled dipole model (sometimes called discrete dipole model (DDM)) originates in a

paper by Purcell and Pennypacker [28], and may be be briey summarized as follows.

2.2.1. The Purcell-Pennypacker model In its simplest version, the dielectric

scattering object is modelled by an array of polarizable elements, namely electric

dipoles, located at the sites of a cubic lattice. Purcell and Pennypacker [28] used

the Clausius-Mossoti (or Lorentz-Lorenz) prescription to assign polarisabilities to

elementary volumes:

�

e

=

3d

3

0

4�

n

2

� 1

n

2

+ 2

(11)

where n is the complex refractive index of the scatterer and d

0

the cubic lattice spacing.

Each element at site i is given a dipole moment, proportional to the electric �eld at

site i:

d

i

= �

e

E

eff

(r

i

) (12)

where E

eff

(r

i

) is the superposition of the incident electric �eld and the electric �eld

radiated by other sites:

E(r

i

) = E

0

(r

i

) +E

rad

(r

i

) = E

0

(r

i

) +

N

X

j=1;j 6=i

T (r

ij

):d

j

(13)

The matrix T is given by

T (r)=

e

ikr

r

3

[k

2

r

2

(1�

r 
 r

r

2

) + (1� ikr)(3

r 
 r

r

2

�1)] ; (14)

where the symbol 
 refers to Kronecker's product of vector: (r 
 r

0

)

ij

= r

i

r

0

j

. In

other words, r 
 r=r

2

is nothing but the orthogonal projection operator onto the line

de�ned by r.

This yields a system of 3N complex linear equations to be solved numerically. The

method has been extended in many respects since then. More details are given below.

Introducing the 3N � 3N matrices TT and IM

TT

ij

= �

e

T (r

ij

) ; IM = 1� TT (15)

we are led to the following system of 3N complex linear equations to be solved

numerically:

IM IE = IE

0

: (16)
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where IE and IE

0

are the column vectors whose components are the values E(r

i

) and

E

0

(r

i

) of the �elds at sites r

i

.

Assume for a while that the matrix equation (15) has been solved (more details are

given in subsection 2.2.3 below). From the dipolar moments one gets the expressions

for the integrated absorption and extinction cross sections:

�

abs

= 4�k

= (�

e

)

j �

e

j

2

N

X

i=1

j d

i

j

2

j E

0

j

2

(17)

�

ext

= � 4�k

N

X

i=1

=

�

exp(ik:r

i

) d

i

:E

0

�

j E

0

j

2

(18)

where =(z) stands for the imaginary part of the complex number z. The di�erential

cross sections are also easily computed by applying to the total dipolar moment

P

N

i=1

d

i

of the scatterer the asymptotic form of the matrix T (r) i. e. :

T (r)! k

2

exp(ikr)

r

[1� r̂ 
 r̂] as r!1 (19)

where r̂ = r=r. The far �eld expression of the scattered �eld is then given by:

E(r) = k

2

exp(ikr)

r

N

X

i=1

exp(�ikr

i

:r̂)[1� r̂ 
 r̂]:d

i

(20)

From eq. (20) one gets the di�erential scattering cross section:

d�

d


=

P:r̂

j P

0

j

r

2

(21)

where P (resp P

0

) is the time averaged Poynting vector of the scattered (resp. incident)

wave. The intensity functions, corresponding to di�erent incident and scattered

polarization states (hereafter denoted by �

i

and �

s

), can be computed from the

formulae:

i

�

i

�

s

(�; �) = lim

r!1

2k

6

�

�

�

�

�

N

X

i=1

exp(�ikr

i

:r̂) d

i

: e

�

s

�

�

�

�

�

2

(22)

Here, the angles (�; �) are the spherical coordinates of the unit r̂ vector. One is also

interested in the corresponding � averaged intensity functions:

i

�

s

(�) =

1

2�

Z

2�

0

i

1�

s

(�; �) d� (23)

This approach has been reconsidered by several authors (see [29] for a review of

several variations), and has been shown to be particularly e�cient in many situations.

However, even though the approximation is physically clear and sound, it is not

completely satisfactory mathematically since it is not derived from �rst principles

(i.e.Maxwell's or Helmholtz's equations).

2.2.2. An alternative formulation The coupled dipole model may be justi�ed in

some sense as follows (see [30, 31, 32] for example). Start with the vector Helmholtz's

equation, written in integral form

E(r) = E

0

(r)� k

2

Z

G(r � r

0

)(1� �(r

0

))E(r

0

)dr

0

(24)
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where G(r) is the matrix-valued Green's functiony, given by

G(r) =

�

1 +

1

k

2

rr

�

G

0

(r) (25)

= G

0

(r)

�

�

1�

r 
 r

r

2

�

�

1

k

2

r

2

(1� ikr)

�

1� 3

r 
 r

r

2

�

�

�

1

3k

2

�(r) (26)

and G

0

(r) is the free space scalar Green's function

G

0

(r) =

1

4�

e

ikr

r

(27)

Inserting (25) into (24) yields the following integral equation:

1

3

(�(r) + 2)E(r) = E

0

(r)

�

k

2

4�

R

e

ikr

0

r

0

(1� �(r � r

0

))T (r

0

)E(r � r

0

)dr

0

(28)

Now we use the fact that we are at low frequency. The integration domain in (28)

may be cut into small cubic subdomains of volume d

3

0

centered at sites denoted by r

j

,

within which the integrand is approximately constanty (or may be replaced by some

average value). Then we obtain the following expression for the electric �eld at site i:

1

3

(�(r

i

) + 2)E(r

i

) = E

0

(r) + S

i

+

X

j 6=i

�(r

j

)T (r

j

� r

i

)E(r

j

) (29)

where S

i

is the self-interaction term (see the discussion below), and

�(r) =

d

3

0

4�

(�(r) � 1) : (30)

The self-interaction term has been carefully analyzed in [30]. It is easy to verify

that for symmetry reasons, S

i

is proportional to the �eld E(r

i

). More precisely

S

i

= �(d

0

)E(r

i

) =

 

Z

C

3

(d

0

)

e

�ikr

r

dr

!

E(r

i

) ; (31)

where C

3

(d

0

) is the cube [�d

0

=2; d

0

=2] � [�d

0

=2; d

0

=2] � [�d

0

=2; d

0

=2]. �(d

0

) is a

complex constant which may be computed numerically (see [30] for an estimate of its

value). Therefore, up to minor modi�cations, we are again led to a problem similar

to (16). The modi�cations concern both the self-interaction term, which modi�es the

denominator in the Clausius-Mossotti relation, and a coe�cient in front of the incident

electric �eld. We shall come back to these variations in subsection 2.2.5 below.

2.2.3. Numerical resolution Direct inversion of the matrix IM is a cumbersome

numerical problem, of complexity O(N

3

), and is better avoided. More reasonable

numerical strategies rely on iterative schemes. The �rst attempt is due to Purcell

y Sometimes called a dyadic Green's function [33]. We recall that G(r) is solution of r^r^G(r)�

k

2

G(r) = �(r) and r:G(r) = 0, and satis�es Sommerfeld's radiation condition at in�nity.

y This is nothing but the trapezoidal rule for evaluating the integral.
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and Pennypacker, who proposed an iterative method based on alternate use of

equations (12) and (13). Such a scheme may be proved to converge, but convergence

may be rather slow. In fact, the method proved to be relevant in a number of

situations [28], but sometimes su�ers from unstable behavior as noticed by the authors.

Alternatively, Chiappetta [34] proposed to use the Neumann series (1 � TT )

�1

=

1 + TT + TT

2

+ TT

3

+ : : : to solve (15). For such a series to converge, the norm of TT

has to be smaller than unity (which is generally hard to verify a priori). This results

in a multiple scattering expansion for the dipole moment at all sites

d

i

= d

0i

+ �

e

P

N

j=1;j 6=i

T (r

ij

):d

0j

+ �

2

e

P

N

j=1;j 6=i

P

N

l=1;l6=j

T (r

ij

)T (r

jl

):d

0l

+ : : : ;

(32)

which corresponds to a development on successive Born approximations. Here the

subscript 0 refers to the Born term:

d

0i

= �

e

E

inc

(r

i

) : (33)

The interesting point with such iterative schemes is that they never require matrix-

matrix manipulations, but rather matrix-vector multiplication, which is of O(N

2

)

complexity (instead of O(N

3

)). This allows one to consider �ner approximations for

prescribed accuracy. Similar approach was followed by Singham and Bohren [35, 36]

independently.

Other strategies have also been considered in the literature. Among iterative

schemes, which are generally prefered (since they allow a signi�cant reduction of

computing time and memory storage), (complex) biconjugate gradient solvers (see

e.g. [37, 24, 38] for a simple account) are among the most popular. Let us also quote

fast Fourier transform (FFT) based algorithms, which may be used since the matrix

TT can be made block-Toeplitz, and lead to O(N logN ) schemes. This is a signi�cant

improvement over iterative methods. Notice however that such an approach is possible

only for regularly spaced dipoles in the scatterer, which forbids local re�nements such

as those examined in [39]. However, let us quote for completeness recent advances in

FFT techniques, which make it possible to compute e�ciently Fourier transforms for

irregularly spaced data [40, 41], and could therefore allow combining FFT algorithms

with adaptive gridding.

2.2.4. Numerical results The �rst test of accuracy of the coupled dipole method is

the comparison to exact theories like spheres and spheroids. This has been done in [42]

and several later references. In the case of spheres the comparison of the e�ciency

factors:

Q

i

=

�

i

A

(34)

(where A is the geometrical cross section of the scatterer and i stands for

extinction,absorption and scattered) exhibits a remarkable agreement with the Mie-

Lorenz theory up to ka = 2. For a sphere of refractive index n = 1:33 + 0:1i with

ka = 1:5 , which is modelled by 305 dipoles, the plot of intensity functions given in

�g.1 show a very close agreement with exact calculation after 20 iterations.

We have also computed scattering by prolate spheroids and oblate spheroids for

di�erent values of the parameter c = k

p

a

2

� b

2

( a and b being the semi axis).

The numerical results, shown in �g.2 for integrated e�ciency factors and in �g.3 for

intensity functions, �t fairly well exact results from Asano and Yamamoto [2]. The
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coupled dipole model has been compared to experimental data on microwave scattering

from a dielectric helix [43]. The right-handed seven turn helix of radius 1.83cm, wire

radius 0.24cm and pitch 0.533cm, with refractive index n = 1:626 + i0:012 for an

incident wavelength � = 3:18cm is modelled by an array of about 600 dipolar subunits.

As shown in �g.4 the angular distributions of the intensity functions are in reasonable

agreement with data. The cross polarized intensities i

12

and i

21

are found to be

completely negligible, except in the case where the helical axis is in the scattering

plane, perpendicular to the scattering vector. The predictions, given by our model,

are closer to data than those obtained in [44].

2.2.5. Miscellaneous remarks The coupled dipole model has been studied by various

authors, and modi�ed at many points. One of the modi�cations concerns the point

discussed in subsection 2.2.2, and leads to the so-called digitized Green's funtion (DGF)

method [30]. This approach seems particularly interesting in that it derives the model

from general principles, and not as an ad hoc model. Also, expressing the model an

application of the trapezoidal rule to an integral equation, it suggests other possibilities

for generalizations. For example, replace the trapezoidal quadrature with higher order

ones, or adaptive integrators (which would be closer to the adaptive scheme suggested

in [39]). Another interesting point in that this approach suggests that the Clausius-

Mossotti prescription is not the best adapted one. This point also has been studied

by various authors (see e.g. [29] for a review).

More recently, Lemaire [45, 46] generalized the coupled dipole approach in the

following sense: each subunit is not only modelled by an electric dipole but also

by an magnetic dipole and an electric quadrupole. Moreover, the Clausius-Mossoti

expression for the polarisability being stricly valid only in the limit kd

0

! 0, has been

replaced by a more accurate expression given in [47] di�ering from inclusion of powers

of kd and n. This model leads to more accurate results compared to Mie-Lorenz theory

and allows to reach sizes up to ka = 4:5.

Other variations around this method may be found for example in [48, 49, 50].

3. HIGH-FREQUENCY APPROXIMATION

In the high frequency domain, the discretization techniques mentioned above don't

apply any more, in the sense that the amount of data they would require would

exceed by far the capabilities of all present time computers. However, other types

of approximations may be used. These approximations are essentially based upon

the fact that for scatterers large enough when compared to the incident wavelength,

electromagnetic �elds present fast oscillations, and are merely generalizations of

Rayleigh-Gans and Van de Hulst scattering theories. The simplest of such asymptotic

theories is the geometrical optics (or its quantum scattering equivalent, the WKB

approximation), which has been re�ned to yield the geometrical theory of di�raction

(GTD). GTD yields asymptotic expansions in powers of the frequency !, which

are generally truncated at the leading term (or at least the lowest order terms;

in any case, the series is asymptotic and generally divergent). We shall not enter

this subject here refering to [14, 15, 51] for detailed accounts. We rather focus on

di�erent approximations, inherited from quantum scattering theory, refered to as

eikonal approximations from now on.
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3.1. Scalar Eikonal Model

Our presentation follows essentially the discussion of [52], and is based upon

the analysis of oscillatory integrals involved in the Lippmann-Schwinger equation.

An alternative way to the eikonal model uses partial waves decomposition (see

e.g. [53, 52, 54]). Let us �rst consider the scalar case, and denote by  (r; t) the

considered �eld. Our starting point is Helmholtz's equation, which for harmonic time

dependence  (r; t) =  (r)e

�i!t

may be written as

�

�+ k

2

n(r)

2

�

 (r) = 0 (35)

or, by setting U(r) = k

2

(1 � n(r)

2

)

�

�+ k

2

�

 (r) = U(r) (r) (36)

Setting  (r) = '(r) expfik � rg, the latter equation is conveniently rewritten as

a Lippmann-Schwinger equation (which takes into account Sommerfeld's radiation

condition as well):

'(r) = 1�

1

4�

Z

e

i(kr

00

�k�r

00

)

r

00

' (r � r

00

)U (r � r

00

) dr

00

(37)

We denote by k

r

= kr=r the di�racted wavevector. The asymptotic behavior of the

�eld  (r) is the following

 (r) = 1 + f(k

r

; k)

e

ikr

r

+ o

�

1

kr

�

(38)

where the function f(k

r

; k) is the scattering amplitude

f(k

r

; k) = �

k

2

4�

Z

e

i(k�k

r

)�r

0

U(r

0

)'(r

0

)dr

0

(39)

Therefore, it may be seen from such an expression that in order to compute the

scattered �eld at in�nity, we need to know its expression within the support of

the potential, i.e. inside the scatterer. When the wavenumber is large enough, it is

possible to derive an approximate expression for '(r) inside the scatterer, as follows.

Expressing the integration variable r

00

in (37) in polar coordinates r

00

� (r

00

; �

00

; �

00

),

set �

00

= cos �

00

. For the integration wrt �, note that the integral is an oscillatory

one. Using the integration by part lemma (see e.g. [55]), it is readily seen that up

to terms of higher order in 1=(kr

00

), the integral is dominated by the contributions of

integration bounds �

00

= �1. In addition, the bound �

00

= �1 gives rises to another

oscillatory integral when integrating wrt r

00

. Therefore at �rst order, one can focus on

the �rst term, which yields (the integration wrt � is a trivial one)

'(r) = 1�

i

2k

Z

' (r � r

00

)U (r � r

00

e

z

) dr

00

= 1�

i

2k

Z

z

�1

U(x; y; z

00

)'(x; y; z

00

)dz

00

(40)

To evaluate the scattering amplitude, set now r = b + ze

z

. The variable b is called

the impact parameter. Integration of equation (40) leads to the following expression

for '(r):

'(b+ ze

z

) = exp

�

�

ik

2

Z

z

�1

U(b+ z

00

e

z

)dz

00

�

(41)
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In terms of the impact parameter, the scattering amplitude reads:

f(k

r

; k) = �

k

2

4�

R

U(r)e

i(k�k

r

)(b+ze

z

)

e

�i

k

2

R

z

�1

U(b+z

00

e

z

)dz

00

dbdz

(42)

Such an expression is suitable for numerical computations, since it essentially involves

a Fourier transform. Notice that for homogeneous scatterer, i.e. for U = U

0

inside the

scatterer, the eikonal function

�(z; b) =

k

2

Z

z

�1

U(x; y; z

00

)dz

00

(43)

takes a simple form, since the primitive is simply equal to U

0

`(b; z), where `(b; z) is

the optical path inside the scatterer along the ray b+ z

0

e

z

; z

0

� z.

The expression in (42) may be simpli�ed further if one assumes in addition that

the potential has a revolution symmetry around the z axis. In such a case, setting

U(b; z) = U(b + ze

z

), it is readily shown (see e.g. [34] for more details) that the

scattering amplitude, which now only depends on the scattering angle �, is given by

f(�) � �

k

2

2

Z

1

0

J

0

(kb sin �)G(b)bdb (44)

where G(b) is the opacity function, given by

G(b) =

Z

U(b; z)e

�2ik sin

2

�=2

e

i

k

2

R

z(b)

�1

U(b;z

0

)dz

0

dz (45)

where z(b) denotes the height of the boundary of the scatterer for �xed impact

parameter b. Again, such an expression simpli�es in the case of homogeneous

scatterers, since the integral inside the scatterer is performed trivially. In order to

account exactly for the shape of the scattering surface, one can �rst perform the

integral over the z variable for a �xed value b = b

0

. The problem is now to �nd the

intersection points between the curve b = S(z), where S(z) is the equation of the

boundary, and the line b = b

0

. This may be done analytically for simple geometries,

and numerically for more complex scatterers.

Notice also the solution proposed in [52], which yields further simpli�cations.

Instead of expressing r as r = b + ze

z

, set u = (k + k

r

)=jk + k

r

j and r =

~

b + ~zu.

Therefore, integration w.r.t. z becomes trivial, and equation (42) simpli�es to

f(k

r

; k) = �

ik

2�

Z

e

i(k�k

r

)b

�

e

i�(b)

� 1

�

db

where owing to (43) we have set �(b) = �(1; b). Again, for simple potentials, the

eikonal function and therefore the scattering amplitude may be computed explicitely.

3.2. Numerical examples

The consistency of the model has been extensively studied on simple geometries, such

as spheres or spheroids. Since we are mainly interested in complex objects, we shall

not report these tests here, and we refer to [56, 46] for a more complete discussion.

Scattering by rough particle is an important potential application of such

approximation techniques. The use of eikonal methods for such a problem has been
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considered in [57], where rugosity was modelled by a \fractal type" functiony (see

the upper right corner of �g.5 for the boundary's shape)., and in [58] for complex

objects of di�erent type. As shown in �g.5 the eikonal model predicts an important

increase of the backscattered intensity. This trend is in qualitative agreement with

experimental measurements of light scattering by a collection of large rough particles

(see [60] and references therein). The strong oscillations predicted by the model have

not been observed: this is not surprizing since the particles are not identical in shape

and the angular resolution of the scattered intensity is much greater than the period

of the predicted oscillations.

Di�erent tests have been performed on particles whose surface section is made

of quarter circles (a global three-dimensional shape of such an object is depicted in

�g.6). The advantage of such a con�guration is that such scatterers can be built

and experimental data taken in the microwave range. As shown in �gs 7 and 8 one

sees the presence of strong oscillations, together with an increase of the backscattered

intensity. Moreover one notices a correlation between the number of quarter circles

appearing in the surface section b = S(z) and the number of maxima of intensity in the

angular domain 85

�

� � � 180

�

, which can be interpreted as interference phenomena

with a frequency of oscillations proportional to the distance between two elementary

consecutive patterns.

An experimental check of the model in the microwave regime, using monostatic

CW techniques, has only been performed for backscattered intensity [59] for E and

H polarizations and di�erent orientations of the scattering object. While relaxing

the axial symmetry assumption is a straightforward extension (although it yields time

consuming algorithms [61]), the main di�culty to confront the eikonal model to these

measurements comes from the description of polarization e�ects. Without including

those e�ects, a qualitative agreement, concerning the number of oscillations and the

localization of the minima, with the component perpendicular to the scattering plane

has to be noticed. For a su�ciently absorbing sphere, for which multiple reections

may be neglected, it has been shown [62] that the replacement of the coe�cient in

front of the opacity function :

(�) =

1�m

2

4 sin

2

(

�

2

) � (1�m

2

)

(46)

by the coe�cient of reection:

r

1

=

1� a

0

1 + a

0

with a

0

=

s

(

m

2

� cos

2

(

�

2

)

sin

2

(

�

2

)

) (47)

improves the eikonal formulation away from the forward direction. This analogy has

been recently more systematically investigated [63, 64].

3.3. Miscellaneous remarks

One of the main shortcomings of the approach described above is the fact that a scalar

model cannot account for polarization e�ects. Several attempts have been made in

order to introduce polarization into the model, with only limited application range.

y Let us stress that the term \fractal" does not exactly match the mathematical de�nition. A fractal

object is by de�nition self similar -in either a deterministic or in a probabilistic way-, which means

that it is invariant upon arbitrary rescalings. Since we eliminate uctuations over distances smaller

than the incident wavelength, what we consider here is a (deterministic) fractal with cuto�.
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A possible approach [61] amounts to generalize Van de Hulst's approximations

to Mie-Lorenz theory. Mie-Lorenz theory expresses the diagonal components of

the scattering matrix as linear combinations of Legendre polynomials. Using

approximation techniques similar to those described above, it is easy to get \eikonal"

forms for the coe�cients of the expansion. The latter turn out to generalize to di�erent

geometries, such as spheroids or rough spheres. However, the generalization does not

go beyond simple perturbations of spheres, which makes the approximation of limited

practical interest.

A natural alternative amounts to start from vector Helmholtz's equations and seek

a high frequency limit. To do that, let E

0

(r) = E

0

e

ik�r

be the incident electric �eld.

To describe polarization, it is convenient to introduce circular polarization vectors

as follows. For a given wavevector k, choose two perpendicular unit vectors e

1

and

e

2

, perpendicular to k and such that k = e

1

^ e

2

. The circular polarization vectors

are de�ned by e

�

(k) = (e

1

� ie

2

)=

p

2. To emphasize the decomposition into the two

polarization states, we write generically

E(r) = E

(k;+)

(r) + E

(k;�)

(r) :

The far �eld expression for a given polarization state of the electric �eld reads

E

(k;p)

(r) = E

(k;p)

0

(r)

+

e

ikr

r

P

p

0

=�

f(k

r

; p

0

; k; p)e

p

0

(k

r

) + o

�

1

r

�

(48)

where f(k

r

; p

0

; k; p) are the four components of the scattering amplitude, and read

f(k

0

; p

0

; k; p) =

1

4�

Z

E

0

(k

0

;p

0

)

(r)U(r)E

(k;p)

(r)dr (49)

Then the same strategy as before may be employed to evaluate the four scattering

amplitudes. First, approximate the �eld within the scatterer from the vector form of

Lippmann-Schwinger equation

E(r) = E

0

(r)�

Z

G(r � r

0

)U(r

0

)E(r

0

)dr

0

(50)

(where G is the dyadic Green's function given in (25)), using the fact that the

prominent contribution comes from the forward direction. Then use the approximate

expression within (49), to get approximate scattering amplitudes.

To our knowledge, such a method has not been used practically so far, and most

of the literature focuses on the scalar case. However, it is clear now that vector

formulations are needed.

4. CONCLUSIONS AND PERSPECTIVES

We have described in the present contribution a number of techniques for solving the

scattering problem for complex objects. We have more especially focused on methods

based upon approximations, rather than purely numerical approaches. As we have

seen, the case of small scatterers is relatively simple to handle, and several powerful

algorithms have been designed, based on various discretization schemes. The main

limitation is a computational one. Discretization has to be achieved in such a way

that the resulting algorithm has acceptable cost. In particular, full matrices have to

be avoided as much as possible, unless they may be put in circulant form, suitable for
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FFT-based techniques. This imposes severe limitations on the possible discretizations,

as well as on the overall size of the considered scatterers compared to the wavelength.

For objects whose size is much larger than the incident wavelength (say ka � 30),

asymptotic methods such as the geometrical theory of di�raction or some variants

provide accurate asnwers, as long as the geometry of the scatterer is not too complex.

Smaller values of the size parameter ka are also tractable using simpler techniques,

for instance the eikonal approximations given above, but polarization e�ects still have

to be analyzed carefully.

The main di�culties come from the intermediate domain, for which asymptotic

methods are not appropriate, and low-frequency methods yield too large dimensional

linear problems. However, it is reasonable to expect that the increase of computing

power, together with recent advances in numerical algorithms [65, 66] will soon make

it possible to address these problems in a satisfactory way.
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Figure Captions

Fig.1 Angular distributions of the intensity functions i

1

(�) and i

2

(�) for a sphere of

size ka = 1:5 and index of refraction n = 1:33 + i0:1. Solid curve:Mie-Lorenz result.

Dashed curve: coupled dipole method.

Fig.2 Scattering e�ciencies Q

sca

as a function of the excentricity c for spheroids

of refractive index n = 1:33. Full curve: prolate spheroid with

a

b

= 10. Dashed curve:

prolate spheroid with

a

b

= 5. Small dashed curve: prolate spheroid with

a

b

= 2, for

several values of the incidence angle �. Dot dashed curve: oblate spheroid with

a

b

= 2.

Fig.3 Angular distributions of the intensity functions i

1

(�) (full curve) and i

2

(�)

(dashed curve) for prolate spheroids of refractive index n = 1:33, with

a

b

= 2 for

di�erent c values: c = 1; 2; 3; 4; 5.

Fig.4 Angular distributions of the intensity functions i

11

(�) (full curve) and i

22

(�)

(dashed curve) for a right-handed seven turn helix of radius 1:83cm, wire radius 0:23

cm and pitch 0:553 cm, with a refractive index n = 1:626 + i0:012 at the wavelength

� = 3:18 cm, placed in the scattering plane, perpendicular to the incident beam.

Fig.5 Di�erential cross-section i(�) for a \fractal" particle of mean radius a =

50�m and refractive index n = 1:1 + i5:10

�3

, at the wavelength � = 0:62328�m, as

a function of the scattering angle �. Solid line: object whose boundary is described

at the top of the �gure. Dashed curve: perfect sphere of same average radius and

refractive index.

Fig.6 Global 3-dimensional shape of an object made of quarter circles.

Fig.7 Di�erential cross-section i(�) for an object made of 8 quarter circles of

average radius a = 8cm and refractive index n = 1:89 + i10

�2

at the wavelength

� = :86cm. Solid line: object whose boundary is described at the top of the �gure.

Dashed curve: perfect sphere of same average radius and refractive index.

Fig.8 Di�erential cross-section i(�) for an object made of 16 quarter circles of

average radius a = 8cm and refractive index n = 1:89 + i10

�2

at the wavelength

� = :86cm.
















