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SOME APPROXIMATE METHODS FOR COMPUTING ELECTROMAGNETIC FIELDS SCATTERED BY COMPLEX OBJECTS

We discuss several approximate methods for computing electromagnetic scattering by objects of complex shape. Depending on the relative size of the scatterer compared to the incident wavelength, di erent techniques have to be designed. We review some of them which are often used in practice, and present numerical results of scattering by complex objects.

INTRODUCTION

The problem of electromagnetic scattering and absorption by objects of arbitrary shape and arbitrary internal structure is quite di cult and relies heavily on high-performance computing facilities. Exact solutions and algorithms exist for homogeneous particles of de nite shape, such as spheres (Mie-Lorenz theory 1]), spheroids 2], cylinders 3]. For homogeneous particles algorithms also exist for circular disks 4], elliptical cylinders 5] and solids of revolution 6,7,8]. A few inhomogeneous objects such as layered spheres 9] can be treated as well.

The scattering by geometrically and electrically complex, three dimensional objects has driven an intensive e ort to develop approximate numerical methods. The kind of approximation to be used depends highly on the characteristic lengths of the problem, and in particular on the dimensionless parameter ka, where k is the incident wavenumber and a a characteristic length of the scatterer. When ka 1, i.e. for objects small compared to the incident wavelength, Born approximation provides satisfactory results. For larger sizes, the computation of scattering from complex three dimensional bodies involves the numerical solution of Maxwell's equations either in a di erential form or in an integral form. For reasonable values of the parameter ka, say ka 5, low frequency methods may be used. These methods are essentially based on a discretization of the scatterer, and a corresponding approximation of the electromagnetic eld.

The discretization may be achieved in various ways ( nite di erences 10], nite elements 11, 12] (FEM), nite volumes (FVM), method of moments 13] (MoM), coupled dipoles (DDM),...) and in any case results in a large linear system to be solved numerically. Depending on the structure of the matrices obtained after discretization, several strategies may be followed for solving the numerical problem (for example direct inversions if the matrix is sparse enough, iterative schemes such as conjugate or biconjugate gradient methods (CGM), multigrid methods, FFT-based algorithms,...).

For larger scatterers, such approximation methods are not suitable any more, in that they generally yield high dimensional matrix systems whose resolution with acceptable accuracy becomes untractable. In such situations, di erent types of approximations have to be designed, leading to various models such as eikonal models or asymptotic theories such as the geometrical theory of di raction (GTD) [START_REF] Newman | [END_REF]15] or even geometrical optics. These approximations are essentially based upon a careful analysis of the oscillatory nature of the elds within the scatterer.

In the present contribution (which is rather a theoretical one) we aim at describing some of these approximation techniques and corresponding algorithms, focusing on a few ones which are relatively easy to implement practically. Our goal is not to provide an exhaustive account of existing approaches (this would deserve a several hundred pages contribution). Therefore, we apologize in advance for omitting a large number of signi cant contributions to the eld which could easily nd their place here.

Our discussion will be limited to the case of time-independent scattering. However, let us stress that the time-dependent case has been addressed by several authors as well, and that there exists an important literature on the subject. Some of the techniques we are about to review may be extended to the time-dependent situation. This is the case of nite elements methods for example. In this contribution, we refrain from discussing this more general problem.

This contribution is organized as follows. In section 2 we describe a couple of lowfrequency approaches, namely the nite elements methods (FEM) and the coupled dipoles approximations (DDM) and variants. Section 3 is devoted to high-frequency approximations, with a special emphasis on eikonal methods. Section 4 is devoted to conclusions.

Throughout this contribution, we limit ourselves to the case of scattering of monochromatic waves for the sake of simplicity. By convention, we choose a dependence E 0 (r; t) = E 0 expfi(k:r !t)g for the incident wave.

LOW-FREQUENCY APPROXIMATIONS

Let us start with the case of the scattering problem for scatterers whose size is of the same order as the incident wavelength (say, 1 ka 10). As stressed in the introduction, several numerical strategies have been developed to address such a situation. Among them, integral formulations (integral forms of Maxwell's equations, nite elements, nite volumes...) are generally preferred, since they lead to algorithms which are more stable. Formulations based upon the integral form of Maxwell's equations are among the most popular. The three dimensional computer codes available are well adapted for prefectly conducting bodies 16], homogeneous dielectric bodies 17] of small or medium scale compared to the incident wavelength. The direct integral formulation does not seem to be well adapted to composite anisotropic and inhomogeneous scatterers. The advantage of the integral method is to take exactly the geometrical shape in account and the radiation condition is automatically enforced. The disadvantage is that the matrices involved are generally full, which is a severe limitation. Therefore, because of the strong demand for e cient algorithms capable of modeling complex and larger types of scatterer, there is room for alternatives. We describe essentially two of them here. The rst one (the nite elements methods) is based on the mathematical theory of approximation, and expresses the elds as linear combinations of basis functions ( nite elements) which span an approximation space within which the solution is seeked. We cast it here as a low frequency method, but there is hope that it will allow one to address problems involving larger scales than the usual low frequency problems. The second approach (Discrete Dipoles Method) is rather based upon physical considerations, and approximates the scatterer as a superposition of spherical electric dipoles located on the sites of a (cubic) lattice. However, recent results have permitted to make the connexion with integral methods.

2.1. Finite Elements Methods.

2.1.1. Basics We consider the problem of the electromagnetic scattering within a bounded volume V . The considered volume V may contain various scattering objects such as metallic and resistive bodies, homogeneous or inhomogeneous dielectrics, all of which are arbitrarily shaped. The volume V is separated from the exterior domain by a surface = @V and we denote generically by n the exterior normal vector of length unity for each considered boundary. We denote by = 0 r and = 0 r the electric permittivity and magnetic susceptibility of the considered medium, and we use the subscript 0 to refer to free space and the subscript r to refer to relative characteristics of the medium. We also denote by Z 0 = p 0 = 0 the impedance in free space.. The problem consists in solving the vector wave equation for the electric eld, which reads in its most general form

r^( 1 r r^E(r)) k 2 r E(r)=ikZ 0 J(r) (r^1 r M(r)) (1) 
where k = ! p 0 0 is the free space wave vector, and J(r) and M(r) denote the electric and magnetic current densities. The symbol ^stands for the vector product in three dimensions Euclidean space. For the sake of simplicity, we shall refrain from considering the problem in full generality, and from now on we assume J = 0 and M = 0 in our discussion.

Trying to solve Eq. (1) pointwise turns out to yield numerically unstable algorithms. A standard alternative amounts to search for a \weak solution" of the problem, as follows. First, consider a family of vector basis functions `(r); `= 1; : : :L (the test functions), and impose eq. (1) in the sense of scalar productsy with all basis functions `(r). Thanks to Green's equality, we end up with a system of L equations of the form

R V h 1 r (r^E(r)): (r^ `(r)) k 2 r E(r) `(r) i dv = ikZ 0 R (n^H(r)) `(r)ds : (2) 
Here H(r) is the total magnetic eld satisfying Maxwell's equation:

1 r r ^E(r) = ikZ 0 H(r)
(3) To account rigorously for boundary conditions, equation (2) requires the knowledge of n^H(r) on the boundary , which itself requires solving the Stratton-Chu integral equation for H(r): H(r) = H inc (r) + ik Z0 R G(r; r 0 ): E(r 0 ) ^n] r ^G(r; r 0 ): n ^H(r 0 )]ds (4) y That is, impose that for all `= 1;: : : L, the scalar product of the left hand side with `equals the scalar product of the right hand side with `. By scalar product, we mean the Hermitian product on L 2 (I R 3 ; I C 3 ) de ned by hf;gi = R f (r):g(r)dr where the dot stands for Euclidean product in I C 3 , and the bar denotes complex conjugation. where G(r; r 0 ) is the free space matrix-valued Green's function (see eq. ( 25) below for its analytic expression). The solution of (2) and (4) corresponds to the boundary integral formulation (BI).

Alternatively, eq. (2) may be solved in an approximate way (without invoking the Stratton-Chu equation) by introducing arti cial boundary conditions on = @V . The simplest of such conditions is Sommerfeld's radiation condition (which is generally used at in nity), and has been extended by various authors to more general absorbing boundary conditions (ABC). Such conditions (see the discussion in section 2.1.3 below) relate the scattered electric and magnetic elds on the boundary , and are therefore used to eliminate the magnetic eld from (2). Doing so in the simplest case (i.e. with Sommerfeld's radiation condition, see eq. (10) below) for example, we are led to the following equation, in which only the scattered electric eld is involved

Z V 1 r (r^E(r)):(r^ `(r)) k 2 r E(r) `(r) dv = ikZ 0 Z (n ^H0 (r)) `(r)ds ikZ 0 Z n ^(n ^(E(r) E 0 (r))) `(r)ds
(5) (we recall that E 0 (r) and H 0 (r) are the incident electric and magnetic elds respectively). Such a prescription (using Sommerfeld's condition or more general absorbing boundary conditions) is known under the name of ABC formulation.

To solve the weak forms of the wave equation, the next step is to introduce a second family of basis functions `(r) (the so-called trial functions), and to expand the electric eld with respect to such a basis: E(r) = X `e` `(r) Therefore, eq. (2) transforms into a matrix equation, which is to be solved in order to yield the coe cients e `of the electric eld. Clearly, the test and trial functions have to be chosen so as to make the numerical resolution as easy as possible. In that respect, the simplest choice is generally to use the same functions as test and trial functions. A general methodology for choosing such functions is based on nite elements decompositions of the volume V .

2.1.2. Finite elements The basis functions `(r) are generally constructed by discretizing the scattering volume, i.e. subdividing it into a nite number m e of sub-elements V e of de nite shape such as rectangular bricks, tetrahedrals, triangular prisms... The associated surface elements are rectangles or triangles. The eld within each element is expanded over basis functions W e j (r); j = 1; : : :m j depending on the geometry of the nite element:

E(r) = me X e=1 mj X j=1 E e j W e j (r) (6) 
The unknown expansion coe cients E e j represent the electric eld within the e-th element. The simplest choices for the basis functions W j (r) amounts to approximate the eld within each volume V e by a constant function. However, it is often desirable to work with higher order approximations. The next order is obtained as follows. For the sake of simplicity, we limit ourselves to nite elements of rectangular shape. Consider a rectangular box V e of sidelengths L x ; L y and L z respectively. Any component of the electric eld E e (x; y; z) within V e is projected onto the space spanned by four a ne basis functions, which are taken to be functions of two variables only, so as to ful ll the zero divergence property of the electric eld. For example, for the x component, one writes E e x (y; z) = 4 X j=1 E e x;j w e x;j (y; z) :

In such a simple case, we have to deal with 12 (scalar) basis functions within each element (note that with such a de nition, the coe cients in the expansion coincide with the values of the eld at the edges of the volume V e ). For example, for the elements w x;j (y; z):

8 > > > < > > > : w x;1 (y; z) = 1 LyLz (L y y)(L z z); w x;2 (y; z) = 1 LyLz y(L z z); w x;3 (y; z) = 1
LyLz (L y y)z; w x;4 (y; z) = 1 LyLz yz; (7) and similar expressions for w y;j (x; z) and w z;j (x; y), j = 1; : : :4. Many other choices are possible and have been considered. For example, one can choose functions w e such that the corresponding coe cients equal the values of the elds at the vertices of the nite elements grid. Alternatively, one can consider non-rectangular volumes, which allow one to accound more precisely for the geometry of the problem. We will not go into more details at this point. Let us nevertheless stress that whenever the solution is known to have a certain degree of smoothness, higher order schemes are expected to yield more precise approximations of the solution. Unfortunately, the implementation of higher order schemes is generally cumbersome, and lead to slowers algorithms. This is the usual precision-complexity tradeo . For that reason, low order schemes are generally preferred.

Inserting the expansion (6) inside the integral equation of the electric eld, for example eq. ( 5), yields a nite set of linear equations, which may be cast in the form

M V ]E V n + M B ]E B n = f V m ; (8) 
where M V and M B are square matrices, and the superscripts B and V refer to elds E or matrices associated to the boundary surfaces (including the boundary = @V and all the boundaries of scattering elements within V ) and the volume V respectively. The crucial point to notice is that because of the locality of nite elements and associated basis functions, all the matrices involved in (8) are sparse, which makes the numerical resolution much simpler. On the contrary, if the exact BI formulation is used, one obtains a system of the form

M V ]E V n + M B ]E B n + G]E B n = f V m ; (9) 
The extra term G] comes from the presence of the Green's function in the Stratton-Chu equation ( 4). This introduces full matrices, since the decay of their elements is governed by that of Green's function, i.e. 1=r, and is therefore generally quite unconvenient.

2.1.3. Boundary conditions To solve the scattering problem, it is necessary to specify the boundary conditions within the domain V and on its boundary . Within the domain V , the boundary conditions are xed by the physics, for example the vanishing of tangential electric eld E for metallic bodies. The conditions at the boundary = @V are generally more di cult. If the volume V is large enough and if is far away from the scatterers, Sommerfeld's radiation condition ikZ 0 (r ^Hscat (r)) = ikZ 0 r ^(r ^Escat (r)) (10) may be used (actually, Eq. ( 10) gives the so-called Silver-M uller condition, which has been shown to be equivalent to Sommerfeld's condition in 18]). Here, r is the normal to , and E scat = E E 0 and H scat = H H 0 denote the scattered electric and magnetic elds respectively. But large domains require the use of a large number of nite elements, and lead to computer intensive algorithms, which turn out to be untractable in many situations of interest.

Absorbing boundary conditions (ABC) have been shown to provide useful alternatives. ABC methods basically aim at avoiding creating arti cial backscatterings from the boundary . An absorbing boundary condition of degree m is a relation between the scattered electric and magnetic elds that annihilates powers of 1=r of degrees up to 2m + 1 (Sommerfeld's condition is essentially an ABC of degree 0). We won't go into more details about ABC methods. Such methods have been extensively studied in the literature. We refer to 10,[START_REF] Saunders | Proc. Nat. Acad. Sci[END_REF][START_REF] Bayliss | [END_REF]21,22,23] for more details.

2.1.4. Numerical considerations and additional remarks As we have seen, whatever the exact formulation, we are in all cases led to solve numerically a linear system of high dimension. The resolution scheme has to satisfy two constraints: low computational cost, and low memory requirement. In principle, any direct or iterative scheme for such inversion would do the job equally well, but the latter are generally preferred because of their lower computational cost (see for example 24] for a review): they only require matrix-vector multiplications, and not matrix manipulations. For example, biconjugate gradient methods (BCG) have been extensively used, in di erent versions. These have O(N 2 ) complexity.

In addition, the complexity may be signi cantly reduced if the matrices involved in the problem are sparse. Sparse matrices also reduce memory requirement if coded in an adequate way. As we have seen, all the matrices M] involved in ABC method are generally sparse. This is no longer the case with the BI method, because of the matrix G]. However, such a problem may be reduced if the matrix G] is block Toeplitz (which imposes uniform gridding). In such cases, Fast Fourier Transform algorithms may be used for evaluating G]E B n , imposing low memory requirement. Then the iterative methods mentioned above may be used. As shown in 21], the nite element method formulation is relevant for computation of electromagnetic scattering by complex and large non metallic three dimensional structures.

The main drawback of nite elements methods is their di culty for accounting accurately for the surface termination of the nite element volume. Hybrid nite element-integral equation methods have been implemented 26]: the regions of material composition are handled with the nite element method (involving sparse matrices), whereas the structure of the surface is accurately treated using the exact boundary integral equation (requiring a full complex matrix for the surface). The body size limitations are driven by computer speed and storage capacities. This method, previously restricted to dielectric bodies or aperture structures, has recently been extended 27] to many other types of scatterers (such as antennas, composite waveguides) by a curvilinear approach.

2.2. Coupled Dipoles and Related Methods.

We now turn to a di erent kind of approximation. In the same spirit as before, at low energies, the scattering and absorption cross sections can be obtained from a discretization of the scattering potential. Consider a scatterer, acted on by an incident beam, which is a linearly polarized electromagnetic eld E 0 (r) = E 0 exp(ik:r). The coupled dipole model (sometimes called discrete dipole model (DDM)) originates in a paper by Purcell and Pennypacker 28], and may be be brie y summarized as follows.

2.2.1. The Purcell-Pennypacker model In its simplest version, the dielectric scattering object is modelled by an array of polarizable elements, namely electric dipoles, located at the sites of a cubic lattice. Purcell and Pennypacker 28] used the Clausius-Mossoti (or Lorentz-Lorenz) prescription to assign polarisabilities to elementary volumes:

e = 3d 3 0 4 n 2 1 n 2 + 2 ( 11 
)
where n is the complex refractive index of the scatterer and d 0 the cubic lattice spacing. Each element at site i is given a dipole moment, proportional to the electric eld at site i:

d i = e E eff (r i ) (12 
) where E eff (r i ) is the superposition of the incident electric eld and the electric eld radiated by other sites:

E(r i ) = E 0 (r i ) + E rad (r i ) = E 0 (r i ) + N X j=1;j6 =i T (r ij ):d j (13) 
The matrix T is given by T(r)= e ikr r 3 k 2 r 2 (1 r r r 2 ) + (1 ikr)(3 r r r 2 1)] ; [START_REF] Newman | [END_REF] where the symbol refers to Kronecker's product of vector: (r r 0 ) ij = r i r 0 j . In other words, r r=r 2 is nothing but the orthogonal projection operator onto the line de ned by r. This yields a system of 3N complex linear equations to be solved numerically. The method has been extended in many respects since then. More details are given below. Introducing the 3N 3N matrices TT and IM TT ij = e T(r ij ) ; IM = 1 TT (15) we are led to the following system of 3N complex linear equations to be solved numerically: IMIE = IE 0 : [START_REF] Felsen | Radiation and Scattering of Waves[END_REF] where IE and IE 0 are the column vectors whose components are the values E(r i ) and E 0 (r i ) of the elds at sites r i .

Assume for a while that the matrix equation ( 15) has been solved (more details are given in subsection 2.2.3 below). From the dipolar moments one gets the expressions for the integrated absorption and extinction cross sections:

abs = 4 k = ( e ) j e j 2 N X i=1 j d i j 2 j E 0 j 2 (17) ext = 4 k N X i=1 = exp(ik:r i ) d i :E 0 j E 0 j 2 (18) 
where =(z) stands for the imaginary part of the complex number z. The di erential cross sections are also easily computed by applying to the total dipolar moment P N i=1 d i of the scatterer the asymptotic form of the matrix T (r) i. e. :

T(r) ! k 2 exp(ikr) r 1 r r] as r ! 1 [START_REF] Saunders | Proc. Nat. Acad. Sci[END_REF] where r = r=r. The far eld expression of the scattered eld is then given by:

E(r) = k 2 exp(ikr) r N X i=1 exp( ikr i :r) 1 r r]:d i (20) 
From eq. ( 20) one gets the di erential scattering cross section: d d = P:r j P 0 j r 2 (21) where P (resp P 0 ) is the time averaged Poynting vector of the scattered (resp. incident) wave. The intensity functions, corresponding to di erent incident and scattered polarization states (hereafter denoted by i and s ), can be computed from the formulae:

i i s ( ; ) = lim r!1 2k 6 N X i=1 exp( ikr i :r) d i : e s 2 (22) 
Here, the angles ( ; ) are the spherical coordinates of the unit r vector. One is also interested in the corresponding averaged intensity functions:

i s ( ) = 1 2 Z 2 0 i 1 s ( ; ) d (23) 
This approach has been reconsidered by several authors (see 29] for a review of several variations), and has been shown to be particularly e cient in many situations. However, even though the approximation is physically clear and sound, it is not completely satisfactory mathematically since it is not derived from rst principles (i.e. Maxwell's or Helmholtz's equations).

An alternative formulation

The coupled dipole model may be justi ed in some sense as follows (see 30,31,32] for example). Start with the vector Helmholtz's equation, written in integral form

E(r) = E 0 (r) k 2 Z G(r r 0 )(1 (r 0 ))E(r 0 )dr 0 ( 24 
)
where G(r) is the matrix-valued Green's functiony, given by

G(r) = 1 + 1 k 2 rr G 0 (r) (25) 
= G 0 (r) 1 r r r 2 1 k 2 r 2 (1 ikr) 1 3 r r r 2 1 3k 2 (r) [START_REF] Van De Hulst | Light Scattering by Small Particles[END_REF] and G 0 (r) is the free space scalar Green's function

G 0 (r) = 1 4 e ikr r (27) 
Inserting ( 25) into (24) yields the following integral equation:

1 3 ( (r) + 2)E(r) = E 0 (r) k 2 4 R e ikr 0
r 0 (1 (r r 0 ))T(r 0 )E(r r 0 )dr 0 (28)

Now we use the fact that we are at low frequency. The integration domain in (28) may be cut into small cubic subdomains of volume d 3 0 centered at sites denoted by r j , within which the integrand is approximately constanty (or may be replaced by some average value). Then we obtain the following expression for the electric eld at site i:

1 3 ( (r i ) + 2)E(r i ) = E 0 (r) + S i + X j6 =i (r j )T(r j r i )E(r j ) (29) 
where S i is the self-interaction term (see the discussion below), and

(r) = d 3 0 4 ( (r) 1) :

The self-interaction term has been carefully analyzed in 30]. It is easy to verify that for symmetry reasons, S i is proportional to the eld E(r i ). More precisely

S i = (d 0 ) E(r i ) = Z C3(d0) e ikr r dr ! E(r i ) ; (31) 
where

C 3 (d 0 ) is the cube d 0 =2; d 0 =2] d 0 =2; d 0 =2] d 0 =2; d 0 =2]. (d 0 )
is a complex constant which may be computed numerically (see 30] for an estimate of its value). Therefore, up to minor modi cations, we are again led to a problem similar to [START_REF] Felsen | Radiation and Scattering of Waves[END_REF]. The modi cations concern both the self-interaction term, which modi es the denominator in the Clausius-Mossotti relation, and a coe cient in front of the incident electric eld. We shall come back to these variations in subsection 2.2.5 below.

2.2.3. Numerical resolution Direct inversion of the matrix IM is a cumbersome numerical problem, of complexity O(N 3 ), and is better avoided. More reasonable numerical strategies rely on iterative schemes. The rst attempt is due to Purcell and Pennypacker, who proposed an iterative method based on alternate use of equations ( 12) and ( 13). Such a scheme may be proved to converge, but convergence may be rather slow. In fact, the method proved to be relevant in a number of situations 28], but sometimes su ers from unstable behavior as noticed by the authors.

Alternatively, Chiappetta 34] proposed to use the Neumann series (1 TT ) 1 = 1 + TT + TT 2 + TT 3 + : : : to solve (15). For such a series to converge, the norm of TT has to be smaller than unity (which is generally hard to verify a priori). This results in a multiple scattering expansion for the dipole moment at all sites d i = d 0i + e 

which corresponds to a development on successive Born approximations. Here the subscript 0 refers to the Born term: d 0i = e E inc (r i ) :

(33) The interesting point with such iterative schemes is that they never require matrixmatrix manipulations, but rather matrix-vector multiplication, which is of O(N 2 ) complexity (instead of O(N 3 )). This allows one to consider ner approximations for prescribed accuracy. Similar approach was followed by Singham and Bohren 35,36] independently.

Other strategies have also been considered in the literature. Among iterative schemes, which are generally prefered (since they allow a signi cant reduction of computing time and memory storage), (complex) biconjugate gradient solvers (see e.g. 37,24,[START_REF] Press | Numerical Recipes[END_REF] for a simple account) are among the most popular. Let us also quote fast Fourier transform (FFT) based algorithms, which may be used since the matrix TT can be made block-Toeplitz, and lead to O(N log N) schemes. This is a signi cant improvement over iterative methods. Notice however that such an approach is possible only for regularly spaced dipoles in the scatterer, which forbids local re nements such as those examined in 39]. However, let us quote for completeness recent advances in FFT techniques, which make it possible to compute e ciently Fourier transforms for irregularly spaced data 40,41], and could therefore allow combining FFT algorithms with adaptive gridding.

Numerical results

The rst test of accuracy of the coupled dipole method is the comparison to exact theories like spheres and spheroids. This has been done in 42] and several later references. In the case of spheres the comparison of the e ciency factors:

Q i = i A ( 34 
)
(where A is the geometrical cross section of the scatterer and i stands for extinction,absorption and scattered) exhibits a remarkable agreement with the Mie-Lorenz theory up to ka = 2. For a sphere of refractive index n = 1:33 + 0:1i with ka = 1:5 , which is modelled by 305 dipoles, the plot of intensity functions given in g.1 show a very close agreement with exact calculation after 20 iterations.

We have also computed scattering by prolate spheroids and oblate spheroids for di erent values of the parameter c = k p a 2 b 2 ( a and b being the semi axis). The numerical results, shown in g.2 for integrated e ciency factors and in g.3 for intensity functions, t fairly well exact results from Asano and Yamamoto 2]. The coupled dipole model has been compared to experimental data on microwave scattering from a dielectric helix 43]. The right-handed seven turn helix of radius 1.83cm, wire radius 0.24cm and pitch 0.533cm, with refractive index n = 1:626 + i0:012 for an incident wavelength = 3:18cm is modelled by an array of about 600 dipolar subunits. As shown in g.4 the angular distributions of the intensity functions are in reasonable agreement with data. The cross polarized intensities i 12 and i 21 are found to be completely negligible, except in the case where the helical axis is in the scattering plane, perpendicular to the scattering vector. The predictions, given by our model, are closer to data than those obtained in 44].

2.2.5. Miscellaneous remarks The coupled dipole model has been studied by various authors, and modi ed at many points. One of the modi cations concerns the point discussed in subsection 2.2.2, and leads to the so-called digitized Green's funtion (DGF) method 30]. This approach seems particularly interesting in that it derives the model from general principles, and not as an ad hoc model. Also, expressing the model an application of the trapezoidal rule to an integral equation, it suggests other possibilities for generalizations. For example, replace the trapezoidal quadrature with higher order ones, or adaptive integrators (which would be closer to the adaptive scheme suggested in 39]). Another interesting point in that this approach suggests that the Clausius-Mossotti prescription is not the best adapted one. This point also has been studied by various authors (see e.g. 29] for a review).

More recently, Lemaire 45,46] generalized the coupled dipole approach in the following sense: each subunit is not only modelled by an electric dipole but also by an magnetic dipole and an electric quadrupole. Moreover, the Clausius-Mossoti expression for the polarisability being stricly valid only in the limit kd 0 ! 0, has been replaced by a more accurate expression given in 47] di ering from inclusion of powers of kd and n. This model leads to more accurate results compared to Mie-Lorenz theory and allows to reach sizes up to ka = 4:5.

Other variations around this method may be found for example in 48, 49, 50].

HIGH-FREQUENCY APPROXIMATION

In the high frequency domain, the discretization techniques mentioned above don't apply any more, in the sense that the amount of data they would require would exceed by far the capabilities of all present time computers. However, other types of approximations may be used. These approximations are essentially based upon the fact that for scatterers large enough when compared to the incident wavelength, electromagnetic elds present fast oscillations, and are merely generalizations of Rayleigh-Gans and Van de Hulst scattering theories. The simplest of such asymptotic theories is the geometrical optics (or its quantum scattering equivalent, the WKB approximation), which has been re ned to yield the geometrical theory of di raction (GTD). GTD yields asymptotic expansions in powers of the frequency !, which are generally truncated at the leading term (or at least the lowest order terms; in any case, the series is asymptotic and generally divergent). We shall not enter this subject here refering to 14, 15, 51] for detailed accounts. We rather focus on di erent approximations, inherited from quantum scattering theory, refered to as eikonal approximations from now on.

Scalar Eikonal Model

Our presentation follows essentially the discussion of 52], and is based upon the analysis of oscillatory integrals involved in the Lippmann-Schwinger equation.

An alternative way to the eikonal model uses partial waves decomposition (see e.g. [START_REF] Newton | Scattering Theory of Waves and Particles[END_REF][START_REF]Numerical and Asymptotic Techniques in Electromagnetics[END_REF][START_REF] Glauber | Lectures in Theoretical Physics[END_REF]). Let us rst consider the scalar case, and denote by (r; t) the considered eld. Our starting point is Helmholtz's equation, which for harmonic time dependence (r; t) = (r)e i!t may be written as + k 2 n(r) 2 (r) = 0 [START_REF] Chiappetta | [END_REF] or, by setting U(r

) = k 2 (1 n(r) 2 ) + k 2 (r) = U(r) (r) (36) 
Setting (r) = '(r) expfik rg, the latter equation is conveniently rewritten as a Lippmann-Schwinger equation (which takes into account Sommerfeld's radiation condition as well):

'(r) = 1 1
4 Z e i(kr 00 k r 00 ) r 00 ' (r r 00 ) U (r r 00 ) dr 00 (37) We denote by k r = kr=r the di racted wavevector. The asymptotic behavior of the eld (r) is the following

(r) = 1 + f(k r ; k) e ikr r + o 1 kr (38) 
where the function f(k r ; k) is the scattering amplitude f(k r ; k) = k 2 4 Z e i(k k r ) r 0 U(r 0 )'(r 0 )dr 0 [START_REF] Stoer | Introduction to Numerical Analysis[END_REF] Therefore, it may be seen from such an expression that in order to compute the scattered eld at in nity, we need to know its expression within the support of the potential, i.e. inside the scatterer. When the wavenumber is large enough, it is possible to derive an approximate expression for '(r) inside the scatterer, as follows.

Expressing the integration variable r 00 in (37) in polar coordinates r 00 (r 00 ; 00 ; 00 ), set 00 = cos 00 . For the integration wrt , note that the integral is an oscillatory one. Using the integration by part lemma (see e.g. 55]), it is readily seen that up to terms of higher order in 1=(kr 00 ), the integral is dominated by the contributions of integration bounds 00 = 1. In addition, the bound 00 = 1 gives rises to another oscillatory integral when integrating wrt r 00 . Therefore at rst order, one can focus on the rst term, which yields (the integration wrt is a trivial one) '(r) = 1 i 2k Z ' (r r 00 ) U (r r 00 e z ) dr 00 = 1 i 2k

Z z 1 U(x; y; z 00 )'(x; y; z 00 )dz 00 (40) To evaluate the scattering amplitude, set now r = b + ze z . The variable b is called the impact parameter. Integration of equation ( 40) leads to the following expression for '(r):

'(b + ze z ) = exp ik 2 Z z 1 U(b + z 00 e z )dz 00 (41) 
In terms of the impact parameter, the scattering amplitude reads:

f(k r ; k) = k 2 4 R U(r)e i(k k r )(b+ze z ) e i k 2 R z
1 U(b+z 00 e z )dz 00 dbdz (42) Such an expression is suitable for numerical computations, since it essentially involves a Fourier transform. Notice that for homogeneous scatterer, i.e. for U = U 0 inside the scatterer, the eikonal function

(z; b) = k 2 Z z 1 U(x; y; z 00 )dz 00 (43) 
takes a simple form, since the primitive is simply equal to U 0 `(b; z), where `(b; z) is the optical path inside the scatterer along the ray b + z 0 e z ; z 0 z. The expression in (42) may be simpli ed further if one assumes in addition that the potential has a revolution symmetry around the z axis. In such a case, setting U(b; z) = U(b + ze z ), it is readily shown (see e.g. 34] for more details) that the scattering amplitude, which now only depends on the scattering angle , is given by

f( ) k 2 2 Z 1 0 J 0 (kb sin )G(b)bdb (44) 
where G(b) is the opacity function, given by

G(b) = Z U(b; z)e 2ik sin 2 =2 e i k 2 R z(b) 1 U(b;z 0 )dz 0 dz (45) 
where z(b) denotes the height of the boundary of the scatterer for xed impact parameter b. Again, such an expression simpli es in the case of homogeneous scatterers, since the integral inside the scatterer is performed trivially. In order to account exactly for the shape of the scattering surface, one can rst perform the integral over the z variable for a xed value b = b 0 . The problem is now to nd the intersection points between the curve b = S(z), where S(z) is the equation of the boundary, and the line b = b 0 . This may be done analytically for simple geometries, and numerically for more complex scatterers. Notice also the solution proposed in 52], which yields further simpli cations.

Instead of expressing r as r = b + ze z , set u = (k + k r )=jk + k r j and r = b + zu.

Therefore, integration w.r.t. z becomes trivial, and equation ( 42) simpli es to

f(k r ; k) = ik 2 Z e i(k k r )b e i (b) 1 db
where owing to (43) we have set (b) = (1; b). Again, for simple potentials, the eikonal function and therefore the scattering amplitude may be computed explicitely.

Numerical examples

The consistency of the model has been extensively studied on simple geometries, such as spheres or spheroids. Since we are mainly interested in complex objects, we shall not report these tests here, and we refer to [START_REF] Copson | Asymptotic expansions[END_REF]46] for a more complete discussion.

Scattering by rough particle is an important potential application of such approximation techniques. The use of eikonal methods for such a problem has been considered in 57], where rugosity was modelled by a \fractal type" functiony (see the upper right corner of g.5 for the boundary's shape)., and in 58] for complex objects of di erent type. As shown in g.5 the eikonal model predicts an important increase of the backscattered intensity. This trend is in qualitative agreement with experimental measurements of light scattering by a collection of large rough particles (see 60] and references therein). The strong oscillations predicted by the model have not been observed: this is not surprizing since the particles are not identical in shape and the angular resolution of the scattered intensity is much greater than the period of the predicted oscillations.

Di erent tests have been performed on particles whose surface section is made of quarter circles (a global three-dimensional shape of such an object is depicted in g.6). The advantage of such a con guration is that such scatterers can be built and experimental data taken in the microwave range. As shown in gs 7 and 8 one sees the presence of strong oscillations, together with an increase of the backscattered intensity. Moreover one notices a correlation between the number of quarter circles appearing in the surface section b = S(z) and the number of maxima of intensity in the angular domain 85 180 , which can be interpreted as interference phenomena with a frequency of oscillations proportional to the distance between two elementary consecutive patterns.

An experimental check of the model in the microwave regime, using monostatic CW techniques, has only been performed for backscattered intensity 59] for E and H polarizations and di erent orientations of the scattering object. While relaxing the axial symmetry assumption is a straightforward extension (although it yields time consuming algorithms 61]), the main di culty to confront the eikonal model to these measurements comes from the description of polarization e ects. Without including those e ects, a qualitative agreement, concerning the number of oscillations and the localization of the minima, with the component perpendicular to the scattering plane has to be noticed. For a su ciently absorbing sphere, for which multiple re ections may be neglected, it has been shown 62] that the replacement of the coe cient in front of the opacity function :

( ) = 1 m 2 4 sin 2 ( 2 ) (1 m 2 ) ( 46 
)
by the coe cient of re ection:

r 1 = 1 a 0 1 + a 0 with a 0 = s ( m 2 cos 2 ( 2 ) sin 2 ( 2 ) ) (47) 
improves the eikonal formulation away from the forward direction. This analogy has been recently more systematically investigated 63, 64].

Miscellaneous remarks

One of the main shortcomings of the approach described above is the fact that a scalar model cannot account for polarization e ects. Several attempts have been made in order to introduce polarization into the model, with only limited application range.

y Let us stress that the term \fractal" does not exactly match the mathematical de nition. A fractal object is by de nition self similar -in either a deterministic or in a probabilistic way-, which means that it is invariant upon arbitrary rescalings. Since we eliminate uctuations over distances smaller than the incident wavelength, what we consider here is a (deterministic) fractal with cuto .

A possible approach 61] amounts to generalize Van de Hulst's approximations to Mie-Lorenz theory. Mie-Lorenz theory expresses the diagonal components of the scattering matrix as linear combinations of Legendre polynomials. Using approximation techniques similar to those described above, it is easy to get \eikonal" forms for the coe cients of the expansion. The latter turn out to generalize to di erent geometries, such as spheroids or rough spheres. However, the generalization does not go beyond simple perturbations of spheres, which makes the approximation of limited practical interest.

A natural alternative amounts to start from vector Helmholtz's equations and seek a high frequency limit. To do that, let E 0 (r) = E 0 e ik r be the incident electric eld.

To describe polarization, it is convenient to introduce circular polarization vectors as follows. For a given wavevector k, choose two perpendicular unit vectors e 1 and e 2 , perpendicular to k and such that k = e 1 ^e2 . The circular polarization vectors are de ned by e (k) = (e 1 ie 2 )= p 2. To emphasize the decomposition into the two polarization states, we write generically E(r) = E (k;+) (r) + E (k; ) (r) : The far eld expression for a given polarization state of the electric eld reads E (k;p) (r) = E (k;p) 0 (r) + e ikr r P p 0 = f(k r ; p 0 ; k; p)e p 0(k r ) + o 1 r [START_REF] Draine | [END_REF] where f(k r ; p 0 ; k; p) are the four components of the scattering amplitude, and read f(k 0 ; p 0 ; k; p) = 1 4 Z E 0 (k 0 ;p 0 ) (r)U(r)E (k;p) (r)dr (49) Then the same strategy as before may be employed to evaluate the four scattering amplitudes. First, approximate the eld within the scatterer from the vector form of Lippmann-Schwinger equation

E(r) = E 0 (r) Z G(r r 0 )U(r 0 )E(r 0 )dr 0 (50) 
(where G is the dyadic Green's function given in (25)), using the fact that the prominent contribution comes from the forward direction. Then use the approximate expression within (49), to get approximate scattering amplitudes.

To our knowledge, such a method has not been used practically so far, and most of the literature focuses on the scalar case. However, it is clear now that vector formulations are needed.

CONCLUSIONS AND PERSPECTIVES

We have described in the present contribution a number of techniques for solving the scattering problem for complex objects. We have more especially focused on methods based upon approximations, rather than purely numerical approaches. As we have seen, the case of small scatterers is relatively simple to handle, and several powerful algorithms have been designed, based on various discretization schemes. The main limitation is a computational one. Discretization has to be achieved in such a way that the resulting algorithm has acceptable cost. In particular, full matrices have to be avoided as much as possible, unless they may be put in circulant form, suitable for FFT-based techniques. This imposes severe limitations on the possible discretizations, as well as on the overall size of the considered scatterers compared to the wavelength.

For objects whose size is much larger than the incident wavelength (say ka 30), asymptotic methods such as the geometrical theory of di raction or some variants provide accurate asnwers, as long as the geometry of the scatterer is not too complex. Smaller values of the size parameter ka are also tractable using simpler techniques, for instance the eikonal approximations given above, but polarization e ects still have to be analyzed carefully.

The main di culties come from the intermediate domain, for which asymptotic methods are not appropriate, and low-frequency methods yield too large dimensional linear problems. However, it is reasonable to expect that the increase of computing power, together with recent advances in numerical algorithms 65, 66] will soon make it possible to address these problems in a satisfactory way. Fig. 3 Angular distributions of the intensity functions i 1 ( ) (full curve) and i 2 ( ) (dashed curve) for prolate spheroids of refractive index n = 1:33, with a b = 2 for di erent c values: c = 1; 2; 3; 4; 5.

Figure Captions

Fig. 4 Angular distributions of the intensity functions i 11 ( ) (full curve) and i 22 ( ) (dashed curve) for a right-handed seven turn helix of radius 1:83cm, wire radius 0:23 cm and pitch 0:553 cm, with a refractive index n = 1:626 + i0:012 at the wavelength = 3:18 cm, placed in the scattering plane, perpendicular to the incident beam. 

Fig. 1

 1 Figure CaptionsFig.1Angular distributions of the intensity functions i 1 ( ) and i 2 ( ) for a sphere of size ka = 1:5 and index of refraction n = 1:33 + i0:1. Solid curve:Mie-Lorenz result. Dashed curve: coupled dipole method.

Fig. 2

 2 Fig.2 Scattering e ciencies Q sca as a function of the excentricity c for spheroids of refractive index n = 1:33. Full curve: prolate spheroid with a b = 10. Dashed curve: prolate spheroid with a b = 5. Small dashed curve: prolate spheroid with a b = 2, for several values of the incidence angle . Dot dashed curve: oblate spheroid with a b = 2.

Fig. 5

 5 Fig.5Di erential cross-section i( ) for a \fractal" particle of mean radius a = 50 m and refractive index n = 1:1 + i5:10 3 , at the wavelength = 0:62328 m, as a function of the scattering angle . Solid line: object whose boundary is described at the top of the gure. Dashed curve: perfect sphere of same average radius and refractive index.

Fig. 6

 6 Fig.6Global 3-dimensional shape of an object made of quarter circles. Fig.7Di erential cross-section i( ) for an object made of 8 quarter circles of average radius a = 8cm and refractive index n = 1:89 + i10 2 at the wavelength = :86cm. Solid line: object whose boundary is described at the top of the gure. Dashed curve: perfect sphere of same average radius and refractive index.

Fig. 8

 8 Fig.8 Di erential cross-section i( ) for an object made of 16 quarter circles of average radius a = 8cm and refractive index n = 1:89 + i10 2 at the wavelength = :86cm.

y Also at LATP, CMI, 39 rue F. Joliot-Curie, 13453 Marseille cedex 13, France.

y Sometimes called a dyadic Green's function 33]. We recall that G(r) is solution of r^r^G(r) k 2 G(r) = (r) and r:G(r) = 0, and satis es Sommerfeld's radiation condition at in nity. y This is nothing but the trapezoidal rule for evaluating the integral.