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Abstract. In this paper, we study an integrated production scheduling
and delivery routing problem. The manufacturer has to schedule a set
of jobs on a single machine without preemption and to deliver them to
multiple customers. A single vehicle with limited capacity is used for the
delivery. For each job are associated: a processing time, a size and a
specific customer location. The problem consists then to determine the
production sequence, to constitute batches and to find the best delivery
sequence for each batch. The objectives of the proposed problems are to
find a coordinated production and a delivery schedule that minimizes the
total completion time (makespan) or the sum of the delivery times of the
products. We present complexity results for particular cases and a column
generation scheme to solve a relaxed version of the problem, leading to
a lower bound of high quality. Some computational results show the good
performances of the method.

Keywords: Integrated production and distribution; Complexity; Column gen-
eration

1 Introduction

This paper considers an integrated model of scheduling and delivery, where jobs
are scheduled on a single machine and finished products are delivered from the
manufacturer to multiple customer locations. The relationship between produc-
tion and distribution being strong, an increasing amount of research has been
devoted to this field during the last years. The problem has been largely anal-
ysed and reviewed in [4], where the author proposes a classification scheme for
a variety of issues reflected by these models.

In this paper, jobs are scheduled on a single machine and preemption is not
allowed. Different processing times, sizes and delivery destinations are associated
to the jobs. Distribution is performed by a single vehicle with a limited capacity
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and can be seen as a variant of the multitrip vehicle routing problem [15], in
which deliveries are ensured by a single vehicle and with a constrained batching
phase. Delivery costs are not taken into account in this paper but the total
time required to complete the production and the delivery of the products and
the total delivery time are both meaningful indicators of the overall efficiency
of the delivery process. Therefore, the objectives of the proposed problems are
to find a coordinated production and delivery schedule that minimize the total
completion time (makespan) or the sum of the delivery times of the products.

We review below a few relevant papers.
In [13], a similar model is considered but the size of jobs is not included and

the authors propose a polynomial time algorithm in the case of a fixed number of
distinct destinations. In [6], the authors consider the problem of minimizing the
makespan on a single machine scheduling problem with a unique capacitated
vehicle and a no wait constraint. No wait constraints implies that the batch
must be delivered at its completion time. In [8], an heuristic method is proposed
for minimizing the makespan when lifespan constraints are introduced for the
products. Most of the models presented in the literature explicitly take into
account transportation times to reach the customer’s location, but there are no
proper routing decisions, since the number of distinct customers is typically very
small. Hence, the focus of the analysis is often on scheduling and batching. In
[10], the authors consider the problem in which the delivery dates are fixed in
advance and in [5], there are various destinations but a batch must contain jobs
of the same destination. Complexity results are given by [3] for the problem with
a single vehicle, a storage area and one or two customers. In [12], the authors
minimize the makespan for the one machine scheduling problem with pickup
and delivery in which a single vehicle travels between the machines and the
warehouse, whereas in [17], the authors study a similar problem in which three
different locations and two vehicles are considered. The first vehicle transports
unprocessed jobs between the warehouse and the factory and the second one
transports finished jobs between the factory and the customer. Some models
in the literature treat a coordinating problem in which the customer sequence
is fixed. For example, in [1] and [16], the authors minimize the total satisfied
demand in a single round trip, the authors consider that the products expire in
a constant time after their completion time and a time window delivery for each
product.

The problem is formally defined in section 2. We present in Section 3 some
complexity results for particular cases and in section 4 a column generation
scheme to solve a relaxed version of the problem, leading to a lower bound of
high quality. Computational results are given in Section 5.

2 Problem definition and notations

We consider a set of n jobs J = {J1, J2, . . . , Jn} to be processed on a sin-
gle machine and delivered to a set of n corresponding customers. Each job Jj ,
j = 1, . . . , n, requires a certain processing time pj . Delivery is performed by a
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single vehicle with capacity c. As mentioned before, there is a set of n customer
locations and each job Jj , j = 1, . . . , n, is additionally characterized by its loca-
tion j and its size sj where 0 ≤ sj ≤ c. We denote by tij the transportation time
from location i to location j and Dj the arrival time (decision variable) to the
location j ,i.e. the delivery time of Jj . We use M to denote the machine and, by
analogy with vehicle routing problems, we refer to the machine location as the
depot.

The vehicle loads a certain number of jobs which have been processed and
starts the round trip to deliver them at their respective locations. The set of
jobs delivered during a single round trip is called a batch. The problem is then
to determine the scheduling sequence, cluster the jobs into batches and determine
the best route for each batch. Using the notation introduced by [11], the general
problem considered here with one machine, several customers, one vehicle and
a limited capacity is denoted by 1 → D, k ≥ 1|v = 1, c|Dmax for the makespan
objective and 1→ D, k ≥ 1|v = 1, c|

∑
Dj for the total completion time (1→ D

means ”one machine to delivery”, k is the number of customers, v is the number
of vehicles, c indicates that a capacity is considered). An illustration for the
problem with n = 7 jobs and n customers is given in Fig. 1.
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Fig. 1. An illustration for problems 1→ D, k ≥ 1|v = 1, c|Dmax or
∑

Dj

We first discuss the complexity of special cases of the problem. Then we pro-
pose extended formulations and a column generation framework for the general
case.

3 Particular cases

In this section, we consider two special cases of the problem for both objectives
functions. We give complexity results for the single customer case and some
remarks for the fixed-batches case.

3.1 One customer case

In [3], the authors prove that the problem 1 → D, k = 1|v = 1, c|Dmax is
equivalent to the NP-hard Bin Packing problem when the processing times pj = 0
for all j. Note that this reasoning becomes invalid for the total delivery time
objective. However, we prove that problem 1 → D, k = 1|v = 1, c|

∑
j Dj is
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strongly NP-hard by reduction from 3-PARTITION problem. For our purpose, we
introduce the 3-PARTITION problem.

3-PARTITION. Given 3h integers a1, . . . , a3h, so that
∑
ai = hb, and such

that b/4 < ai < b/2 for all i, is it possible to partition them into h disjoint sets
each summing up to b ?

Theorem 1. Problem 1 → D, k = 1|v = 1, c = z|
∑
j Dj is NP-hard in the

strong sense.

Proof. Given a 3-PARTITION instance, we construct an instance for our problem
as follows:

n = 3h jobs, c = b, tM1 = t1M = t and t > 0

For each job Jj : pj = 0, sj = aj

Sum of the delivery times y = 3th2

From there, the problem consists in determining whether a solution exists such
that

∑
j Dj ≤ y.

→ If there is 3-PARTITION, then there exists a feasible schedule to our prob-
lem with

∑
j Dj ≤ y. Let H1, H2,. . . , Hh be a solution of 3-PARTITION. Then,

we construct a schedule to our problem by setting each batch bi to the triple
Hi. The vehicle starts the tour at time zero, delivers the first three jobs at time
t and is back at the depot at 2t. Since the processing times are equal to zero,
the vehicle restarts immediately and the second batch is delivered at time 3t.
Following this reasoning (see Fig. 2), a batch bi is delivered at time (2i−1)t and

the total delivery time
∑
j Dj = 3

∑h
i=1(2i− 1)t = y.

-
t 3t0

.... R
Hh

5t (2h− 1)t
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R �
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Fig. 2. 3-PARTITION solution

← Suppose that a schedule S for our problem exists in which
∑
j Dj ≤ y.

According to the generated instance, the number of batches in S cannot be
smaller than h, the number of jobs in each batch cannot exceed 3 and the vehicle
is never idle at the depot in an optimal solution. We denote by h′ the number of
batches in S. Firstly, we suppose that h′ = h and denote by S1 the corresponding
schedule. This implies that each batch b1, b2, . . . , bh of S1 contains exactly three
jobs and for each batch

∑
j∈bi sj = b. Thus, b1, . . . , bh define a solution of the

3-PARTITION problem. Suppose now that there exists a schedule S2 for which∑
j Dj ≤ y and h′ > h. Let n1 the number of jobs in b1, . . . , bh and n2 the

number of jobs in bh+1, . . . , bh′ . We denote by σS1
j and σS2

j the jobs scheduled
at position j in the schedule S1 and S2 respectively. Due to the fact that each
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batch in S1 contains three jobs, one can see that
∑n1

j=1Dσ
S2
j
≥
∑n1

j=1Dσ
S1
j

. In

the schedule S2, the remaining n2 jobs are delivered after the time (2h − 1)t
which represents the delivery time of J

σ
S2
n1

and the last job J
σ
S1
n

in S1. So,∑n
j=n1+1Dσ

S2
j
>
∑n
j=n1+1Dσ

S1
j

which implies
∑
j Dj > y on the solution S2.

Remark 1. Problem 1→ D, k = 1|v = 1, c|
∑
j Dj is polynomially solvable when

all jobs have the same size [13]. The authors propose a polynomial time algorithm
with a complexity in O(n2) to solve the problem.

3.2 Fixed-batch case

In this case, we consider that the jobs are already clustered into batches and
that, for each one, the delivery route is known. We consider below the makespan
criterion and the sum of delivery times criterion.

1→ D, k = 1|v = 1, c, fixed− batches|Dmax problem

Proposition 1. Problem 1 → D, k ≥ 1|v = 1, c = z, fixed − batches|Dmax is
polynomially solvable.

If we consider a batch as a job, this problem becomes equivalent to the well-
known polynomial two-machine flow shop problem with makespan criterion [9].
In the resulting problem, we consider the duration of the batch on the machine
as the processing time of the corresponding job on the first machine and the
duration of the route of the batch as the processing time on the second machine.

1→ D, k = 1|v = 1, c, fixed− batches|
∑

j Dj problem

Proposition 2. Problem 1 → D, k ≥ 1|v = 1, c = z, fixed− batches|
∑
j Dj is

NP-hard.

We consider the case in which each batch contains exactly one job and we denote
by C ′j the time at which the vehicle is back at the depot after the delivery of

job Jj . The delivery time Dj of a job Jj is then Dj = C ′j − tjM and
∑n
j=1Dj =∑n

j=1 C
′
j −

∑n
j=1 tjM , with

∑n
j tjM a constant. This problem is equivalent to

solving the NP-hard two-machine flow shop problem with the sum of completion
times criterion [7], in which the processing times of a job Jj on the first machine
is equal to pj , equal to tMj + tjM on the second machine and a completion time
on the second machine equal to C ′j .

4 General case

For the general case, we first establish the following fundamental dominance
property. As there are no release dates for the jobs, from any solution, the ma-
chine sequence can obviously be reordered according to the routing sequence
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and the jobs can be scheduled at the earliest without increasing the objective
function for both the Dmax and

∑
j Dj criteria. The property then follows:

Property 1. There exists an optimal solution satisfying the following conditions:

– Jobs are processed on the machine without idle time,

– Production sequence and routing sequence are the same.

This implies that when the round trip of a batch is given, the sequence on
the machine can be deduced. For both objective functions, one can see that
the optimal solution of the problem can be obtained by combining batches and
the problems are able to be modeled as a set covering problem. Hence, extended
formulations and column generation approaches can be considered for both prob-
lems. Note that if there was no machine scheduling phase, the problem would
resort to the multi-trip travelling salesman problem. Below, we detail these ap-
proaches for each criterion. Note that column generation and branch-and-price
are techniques of choice for the related multi-trip vehicle routing problem [2],[15].
However, we have in our case a single vehicle and a preliminary constrained
batching phase due to the machine sequencing sub-problem. It is thus relevant
to wonder whether a column generation approach can still be successfully applied
or not.

4.1 1→ D, k ≥ 1|v = 1, c|Dmax problem

We introduce in this section a set covering formulation for the master problem.
A column represents a batch and its position on the delivery sequence. The set
of feasible batches is denoted as β. For each batch b ∈ β, its duration on the
machine and its round trip duration are known. We denote by Pb,1 =

∑
j∈b pj

the duration of the batch b on the machine and, Pb,2 the duration of the round
trip that delivers the batch b. Since the jobs contained in a batch are known,
ai,b takes the value 1 if the job Ji is in the batch b and 0 otherwise. A unique set
of variables xb,k is used to minimize the Dmax objective. Variables xb,k ∈ {0, 1}
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indicates if the batch b at the position k is selected.

min Dmax (1)

Dmax ≥
l∑

k=1

∑
b∈β

Pb,1xb,k +

n∑
k=l

∑
b∈β

Pb,2xb,k, ∀l ∈ {1, ..., n} (2)

∑
b∈β

xb,k ≤ 1, ∀k ∈ {1, ..., n} (3)

∑
b∈β

(ai,b

n∑
k=1

xb,k) = 1, ∀i ∈ {1, ..., n} (4)

∑
b∈β

xb,k ≥
∑
b∈β

xb,k+1, ∀k ∈ {1, ..., n− 1} (5)

∑
b∈β

xb,k = 1, ∀k ∈ {1, ..., δ} (6)

xb,k ∈ {0, 1} ∀k ∈ {1, ..., n},∀b ∈ β (7)

The first set of constraints (2) is equivalent to the fixed-batches case presented
above. It ensures that the processing of a batch on the machine starts after the
completion of the previous one and that the vehicle starts the delivery of a batch
after its completion on the machine, and the end of the previous tour. Constraints
(3) state that a position can contain at most one batch and constraints (4) en-
sure that each job is contained in exactly one selected batch. Constraints (5) are
symmetry breaking constraints that enforce that all selected columns (batches)
appear consecutively at the first positions. Constraints (6) sets a minimum num-
ber of batches using a lower bound δ of the number of round trips to deliver all
the jobs. To obtain δ, we use the First Fit Decreasing rule which is a 3/2
approximation for the Bin Packing problem. Let τ the number of bins obtained
by the FFD algorithm. A lower bound of the minimum number of batches δ is
then equal to 2/3τ .

Following a standard column generation scheme, the master problem is re-
stricted to a subset of variables (columns) β̃ ⊆ β and a pricing problem is needed
to find new non basic variables that can improve the solution for the LP relax-
ation of model (1–7).

The pricing problem This sub-problem searches for an element of β \ β̃ such
that the reduced cost of the new column is negative. We denote by c̄b,k the
reduced cost of xb,k and, one has:

c̄b,k ≤ 0⇔
∑n
i=1

pi
∑n
l=k αl − γi∑k
l=1 αl︸ ︷︷ ︸
li

ai,b + Pb,2 <
βk − σk−1 + σk + ξk∑k

l=1 αl︸ ︷︷ ︸
rk

where αl, βk, γi, σk and ξk denote the dual values associated to the constraints
(2), (3),(4), (5), (6) respectively. Note that the dual values ξk exist only for
k ≤ δ, σk−1 for k ≥ 2 and σk for k ≤ n− 1.
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We define an auxiliary directed graph G = (V,A) in which V = N ∪ {vs, vd}
where nodes N = {v1, . . . , vn} represent the locations 1, . . . , n and nodes {vs, vd}
the duplicated depot. The set of arcs is A = {(vi, vj)|vi ∈ N ∪ {vs}, vj ∈
N ∪ {vd}, vi 6= vj}. Finally, the sub-problem consists in solving an elementary
shortest path problem with resource constraints (ESPPRC) on graph G, in which
the distance value dij of an arc (vi, vj) is equal to li + tij for vi ∈ V − {vs},
dsj = tMj for each arc (vs, vj), and dsd = rk for arc (vs, vd). The constraints
concern the capacity of the vehicle. A column xbk corresponding to an elemen-
tary shortest path in G is introduced in the restricted master problem only if
the length of such path is smaller than rk. From the resulting path and given
that the jobs sequence on the machine and the delivery sequence are the same,
the round trip length and the batch processing on the machine can be obtained.
An exact method is used to solve the elementary shortest path problem with
resource constraints. The interested reader will find more details about the used
algorithm in [14].

Starting from the first position, the sub-problem searches for a new column
to add by scanning all positions and stops when a column with negative reduced
cost is found. The new column is then added. We propose below a heuristic to
initiate the column generation process, taking account of this particularity.

Initial solution heuristic In order to accelerate the sub-problem solution
phase by using a minimal number of positions, we propose the following initial
solution heuristic:

(1) The first step is to assign jobs into batches according to their sizes. The
First Fit Decreasing rule is used for this purpose.

(2) Given a constitution of the batches, the route is determined using the nearest
neighbor search rule.

(3) As soon as the duration of the batch on the machine and the duration of
the routes are known, the Johnson’s rule (known to solve the two-machine
flow-shop problem to optimality) is used to optimally order the batches.

4.2 1→ D, k ≥ 1|v = 1, c|
∑

j Dj problem

In this part, a formulation for the general problem with a cumulative objective
function

∑
j Dj is suggested. In order to obtain the delivery time of each job,

the new columns of the master problem must take the departure time of a batch
into account. Hence, we define binary variables ybkt, which take the value 1 if
the batch b is delivered at position k and starts to deliver it at time t if selected,
0 otherwise. For each position k, the departure time is given by variable Sk ≥ 0.
As the considered objective needs the exact delivery time of each job, we denote
by Rib the time between the departure time of the vehicle and the arrival time
to location i. This value is known once a batch b is given. Let T be an upper
bound on the latest possible departure time of the vehicle for the last batch. As
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long as the triangle inequality holds, this is given by:

T =

n∑
i=1

(pi + 2t0,i)

The other notations remain the same as those used for the formulation with the
Dmax objective function. Let β′ denote the set of feasible batches.

Minimize
∑
b∈β′

n∑
k=1

T∑
t=1

∑
i∈b

ai,b(t+Ri,b)yb,k,t (8)

Sk′ ≥
l∑

k=1

∑
b∈β′

T∑
t=1

Pb,1yb,k,t +

k′−1∑
k=l

∑
b∈β′

T∑
t=1

Pb,2yb,k,t,

∀k′ ∈ {1, ..., n}, ∀l ∈ {1, ..., k′} (9)∑
b∈β′

T∑
t=1

yb,k,t ≤ 1, ∀k ∈ {1, ..., n} (10)

∑
b∈β′

T∑
t=1

(ai,b

n∑
k=1

yb,k,t) ≥ 1, ∀i ∈ {1, ..., n} (11)

∑
b∈β′

T∑
t=1

tyb,k,t ≥ Sk, ∀k ∈ {1, ..., n} (12)

∑
b∈β′

T∑
t=1

yb,k,t ≥
∑
b∈β′

T∑
t=1

yb,k+1,t, ∀k ∈ {1, ..., n− 1} (13)

∑
b∈β′

T∑
t=1

yb,k,t = 1, ∀k ∈ {1, ..., δ} (14)

yb,k,t ∈ {0, 1} ∀b ∈ β′,∀k ∈ {1, ..., n},∀t ∈ {1, . . . , T} (15)

The delivery time of a job Ji is given by the addition of the departure time
of the batch which contains it and the transportation time between the depot
and the location i (9). The other constraints are similar to those used for the
previous formulation.

We denote by ¯c′bkt the reduced cost of variable ybkt. Let β̃′ ⊆ β′. The sub-

problem searches for an element of β′ \ β̃′ such that the reduced cost of a new
column is negative.
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¯c′bkt ≤ 0⇔
n∑
i=1

(t+Ri,b)︸ ︷︷ ︸
di

ai,b +

n∑
i=1

(pi,1(

n∑
k′=1

k′∑
l=k

αl,k′)− γi)︸ ︷︷ ︸
l
′
i

ai,b +

+Pb,2 (

n∑
k′=k+1

k∑
l=1

αl,k′)︸ ︷︷ ︸
q

≤ βk + tδk − σk−1 + σk + ξk︸ ︷︷ ︸
r
′
kt

where αlk′ , βk, γi, δk, σk and ξk the dual values associated to the constraints
(9), (10),(11),(12),(13) and (14) respectively. The dual values ξk exists only for
k ≤ δ, σk−1 for k ≥ 2 and σk for k ≤ n− 1.

An auxiliary graph G′ is defined in the same way as the one defined above
so that the sub-problem consists in finding an elementary shortest path with
resource constraints (ESPPRC) on graph G′ in which the distance dij of an arc

(vi, vj) is equal to l
′

i+ q · tij . However, a new label is introduced in order to store
the elapsed time Rib between the departure time of the vehicle and the arrival
time to location i. To optimally solve the (ESPPRC), Lozano et al algorithm is
also used.

5 Computational Results

The results are performed on a set of data generated as follows. For each job, pro-
cessing times and the size follow a sets of discrete uniform distribution U(1, 100)
and U(1, 10) respectively. For a location j, integer coordinates (Xj , Yj) are ran-
domly generated in the interval [1, 40] and the distances between the locations
are obtained by computing the classical euclidean distance.

ti,j = tj,i = E

(√
(Xi −Xj)2 + (Yi − Yj)2

)
Note that the processing times, locations and sizes of the jobs are generated inde-
pendently of each other. Capacity c of the vehicle is fixed to 20 and 5 instances are
generated for each number of jobs n ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100}. Hence,
the experiments are performed on 45 instances.

The column generation process could be carried out efficiently only for the
Dmax criterion. Indeed, for the

∑
Dj model, the need to explicitly represent time

makes the convergence much slower as the number of variables becomes huge in
the master problem.

The experiments have been implemented for the 45 instances on a Xeon 3.20GHz
computer with 8GB using ILOG CPLEX 12.6 to solve the LPs. We evaluate and
compare the solutions obtained by the column generation which represents a lower
bound (LB) for the problem with the integer solution obtained by branch and bound
on the generated columns, which represents an upper bound (UB). In order to obtain
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n LB(sec) #col %GAPinit %GAPUB

20 1.1 203 21.14 4.62

30 4.6 363 13.67 1.83

40 12.1 595 9.94 0.99

50 46.4 954 10.34 0.88

60 86.4 1136 10.21 0.69

70 215.1 1670 7.30 0.57

80 383.7 1963 7.67 0.42

90 804.8 2637 5.44 0.39

100 1181.9 3041 5.06 −
Table 1. Computational results for 1→ D, k ≥ 1|v = 1, c|Dmax problem

an upper bound in a reasonable time, the sub-problem add a single column at each
time. Therefore, to obtain a good upper bound, all columns with negative reduced
costs are integrated to the master problem which has the advantage of providing good
upper bounds and the disadvantage of a larger execution times.

In table 1, we were interested on the aggregate results for each value of n. The
statistics take into account the average CPU times for the column generation (column
LB(sec)). The number of columns generated during the process is given in column
#col. The gap between the initial solution and the relaxed solution is given in column
(%GAPinit). Finally, the gap between UB solution and the relaxed solution is given by
column (%GAPUB). The results show a gap lower than 1% for instances with n ≥ 40,
which proves the very good quality of the bounds. The computational times remain
lower than 1200s for instances with up to 100 jobs.

6 Conclusions

In this paper we presented an integrated production scheduling and delivery routing
problem that can be seen as a variant of the multi-trip traveling salesman problem with
a constrained batching phase due to machine sequencing constraints. We presented
complexity results for particular cases and an efficient column generation scheme for
the makespan criterion. In the near future, we shall focus on the implementation of a
branch-and-price algorithm to close the remaining gap. We will also focus on finding a
better decomposition scheme for the sum of deliveries criterion.
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