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Abstract. The reuse of libraries of classes by client applications is an
interesting issue quite difficult to achieve, especially when modification of
the class tree is needed but not possible because of the context. We pro-
pose a solution which is based on the presence of both specialisation and
generalisation relationships in an object-oriented programming language.
The specification of both relationships is based on a meta-model called
OFL which provides a support for describing the operational semantics
of a language through the definition of parameters and semantical ac-
tions. We propose an overview of the expressiveness of OFL and of its
implementation and we give also some other interesting applications.

1 Introduction

In this paper we address the problem of the reuse of libraries of classes by client
applications when modifications of the class tree is needed. We propose a solu-
tion which is based on the introduction of both specialisation and generalisation
relationships in future object-oriented programming langages. This idea to com-
bine both relationships altogether is also pointed out in [5] which focuses more
on the integration feasibility within existing OOPL. According to the handling
of libraries of classes there are other problems to solve like the maintenance of
classes (removal of deprecated features, redefinitions, etc.) that may be solved
using interclassing [4]. Even if those approaches deal with the use of libraries
of classes by client applications, the philosophy is quite different: our approach
deals with existing libraries that may not be modified by client applications
whereas the other approach is related to the modification of libraries of classes
themselves and their consequences in client applications.

To develop this idea, we present two main parts. Firstly, in section 2, we
describe a very pragmatic situation where specialisation and generalisation are
useful in the graph of types. You will see that the use of only one of them would
lead to only a poor approximation.

Secondly, in section 3, we present a practical solution to define a new pro-
gramming language with both specialisation and generalisation, or to improve an
existing language with a reverse inheritance. This solution is based on the OFL



Model (“Open Flexible Languages”) [2]. The section 4 presents some implemen-
tation issues which handle principles of the OFL Model. Then, we conclude the
paper in the last section, 5.

2 Why both Specialisation and Generalisation?

Our approach is defined in the context where a programmer uses a software
library of components (these components could be classes). He may have written
this library or not, but he cannot modify it. This situation happens very often,
for instance when the code is not provided, when it is copyrighted, when it has
to be left unchanged for existing applications, and so on. The figure 1 give an
example of such a very simple library with two very typical classes.

Parallelogram

Square

Fig. 1. An existing and unmodifiable hierarchy of classes

Now, for a specific program need or to make the library evolve, we want to
add a component in the library (i. e. a class in the graph). This fact is illustrated
in figure 2.

Parallelogram

Rectangle . =

Square

Fig. 2. A new class in the unmodifiable hierarchy

We can imagine three solutions to integrate Rectangle in the hierarchy:

1. The first is the most simple: “If we want to add a class, we must reorganise
all the hierarchy!” This solution, illustrated in figure 3, is obviously the best
one. But the best one if we can modify the hierarchy and an impossible



one otherwise. And even if we could modify the existing classes, it could be
a bad idea: we could add some bugs in some other applications which use
these existing library and, in the example, the stability of Square is called
into doubt by introducing Rectangle.

/ Parallelogram

Rectangle

\ Square

Fig. 3. The first solution: a total reorganisation of the hierarchy

2. A second solution respects the constraint of the unmodifiable existing hi-
erarchy. The idea is to insert Rectangle as a specialisation of Parallelogram,
as you can see in figure 4. Here there is no problem with existing classes
and the relationship between Parallelogram and Rectangle is correct. But the
instances of Square logically have to be instances of Rectangle and this is not

the case here.
Parallelogram

Square Rectangle

Fig. 4. The second solution: Rectangle specialises Parallelogram

3. The third solution is to take advantage of the fact that Rectangle is closer
from Square than from Parallelogram. So, the idea is to specialise Square
rather than Parallelogram as it is shown in figure 5. This solution is valid
as long as polymorphism capabilities between Square and Rectangle are not
used. The instances of Square logically have to be instances of Rectangle and
this is the contrary here.

As we just see, if we have only specialisation (the problem is the same if we
have only generalisation), we can make evolution of a graph of classes without
risk (e.g. without modifying existing classes) but we can’t have, simultaneously,
a valid behaviour of the types (e.g. correct polymorphism capabilities) in the
resulting graph.



Rectangle | Square —»| Paralelogram

Fig. 5. The third solution: Rectangle specialises Square

Our proposition is to add a generalisation relationship in order to have both
specialisation and generalisation in the same language. Generalisation is only the
reverse link of specialisation so, theoretically, only one of them is sufficient. But
practically, we could perfectly resolve our evolution problem with both. Let’s
show you a new figure, 6. It demonstrates a good way to handle evolution in our
graph of classes. Rectangle is integrated as a specialisation of Parallelogram and
a generalisation of Square. But what are the advantages in comparison with the
three previous solutions?

pseudo-code associated to classes Class Parallelogram

close from Java {
int surfaceArea(){ ... general implementation... }

! ClassrRectanQIe a(ténds ) Parélldogfam 7 /) .
" “generalizes” Square’! -
L__without edge |
{ :
Parallelogram
int surfaceArea (){ ... Rectangleimplementation ...} . / .
} Caption
. Rectangle Accmmmm B
B generaises A

Rectangler = new Rectangle ();

Square s = new Square (); BRREEN Square
Parallelogramp ;
... Object initialisation ....
p=s; p.surfaceArea (); /I Square implementation Class Squaré extends Parallelogram
p=r; p.surfaceArea(); /I Rectangle implementation {
r =s; r.surfaceArea(); /I Square implementation int edgeLength () { edge length isthe samefor all  }
r =s; r.edgelength(); /I Not allowed int surfaceArea () ... squareimplementation ... }
}

Fig. 6. A satisfactory integration of Rectangle with possible pseudo-code

The advantage of our solution in relation to the first one is that no class is
modified in the initial graph. If we haven’t the code or the right to modify it,
we can nevertheless apply a relevant adaptation of the graph. And even if we
can modify the initial graph, our solution protects the quality of Square since
the new Rectangle must be compatible with the well-tried Square and not the
contrary. In comparison with the second proposition, to use both links allows
to make capital out of a correct behaviour of polymorphism between Square
and Rectangle. In relation with the third approximative solution, the idea to use
generalisation is better because the graph of types is relevant : a square is a
rectangle and not the contrary! Obviously the pseudo-code inserted in figure 6
is not self-sufficient to explain the semantics and it should be deeply discussed.



Particularly, he has to be linked to the possible parameter values presented in
3.2 and should be further specified by assertions built on the model reification.
However, in order to give a flavour of the capabilities which may be provided
to programmers, we could say that in a Java-like language, the two keywords
extends and generalizes are strongly related to lookup operation (see 3.3) in order
to implement polymorphism and to allow to access to class instances as if the
class hierarchy was the one described in figure 3.

3 How? The Model Open Flexible Languages

3.1 OFL in a nutshell

This section presents the OFL model (Open Flexible Languages) and its capa-
bility to define easily both specialisation and generalisation.

The OFL Model aims to describe the main object-oriented programming
languages (such as Java, C++, Eiffel, ...) to allow their evolution and their
adaptation to specific programmer’s needs. To reach this goal, OFL reifies all
elements of an object-oriented programming language in a set of components
of a language. Thus classes, methods, expressions, messages, and so on are the
OFL-components and are integrated in a specific MOP (Meta-Object Protocol)
which is self-extendable and contains the set of entities needed for the reification
of both languages and user applications.

The meta-programmer creates a language by selecting adequate OFL-compo-
nents in predefined libraries. He can also specialise a given OFL-component in
order to generate one dedicated to some specific uses.

Classes are reified by OFL-components. Take the example of Java. We have
ComponentJavaClass, ComponentJavalnterface, ComponentJavaArray, ... An orig-
inality of OFL is that relationships are also reified. So, we have for Java: Com-
ponentJavaExtendsBetweenClasses, ComponentJavalmplements, etc!.

To facilitate the creation of an OFL-component, OFL provides some meta-
components, called OFL-concepts. So, we have a ConceptRelationship and a Con-
ceptDescription (the word description has been chosen to represent classes and
all entities which look like classes, such as interfaces). Thus, ConceptDescription
as well as ConceptRelationship are equivalent to meta-meta-classes. In each con-
cept, a set of parameters gives the meta-programmer necessary expressiveness
to create or adapt an OFL-component.

3.2 Hyper-Generic Parameters

But how can the meta-programmer easily define the OFL-components for the
language he wants to create or adapt? In fact, this work may be very difficult and
tedious because he would have to rewrite a lot of algorithms such as type controls,
dynamic links, use-of-polymorphism verifications, inheritance rules, etc..

! The full list of OFL-components for Java is given in [1].



In OFL, we provide a way to simplify this task: hyper-generic parameters. All
the algorithms are predefined and are customized by hyper-generic parameters
which have a value in each OFL-components.

In the sequel, we illustrate a subset of the hyper-generic parameters which
can be applied to an OFL-component reifying a relationship to customize it.
We explain each parameter and its capabilities of customization, and we give
its value when it is mandatory for the definition of ComponentSpecialisation and
ComponentGeneralisation.

Kind In OFL, we handle four kinds of relationships: import for inheritance and
all other importation links between descriptions, use for aggregation, compo-
sition, and all other use links between descriptions, type-object for all links
between types and objects such as instantiation, and objects for all links
between objects. Its value for ComponentSpecialisation and ComponentGen-
eralisation is import.

Cardinality It defines the maximal cardinality of a relationship. For example,
the value of Cardinality is 1 — 1 for a single inheritance and 1 — co for a
multiple one. We want to specify single links, so its value is 1 — 1 for Com-
ponentSpecialisation and ComponentGeneralisation.

Repetition It is useful if and only if Cardinality is not 1 — 1 (to implement
repeated inheritance, for example). For ComponentSpecialisation and Com-
ponentGeneralisation, the value of Repetition is ignored.

Circularity It expresses if the OFL-component admits a circular graph (it is use-
ful mainly for use relationships). Circularity is forbidden for ComponentSpe-
cialisation and ComponentGeneralisation.

Symmetry This parameter points out if the OFL-component provides relation-
ships that are symmetrical (e.g. a is-a-kind-of relationship). Neither Compo-
nentSpecialisation nor ComponentGeneralisation is symmetrical.

Opposite We may have, in a language, two OFL-components with reversed se-
mantics. This is an essential information for all actions which need to nav-
igate through the graph of descriptions (e.g. to ensure type conformance).
ComponentSpecialisation and ComponentGeneralisation are opposites.

Direct_access and Indirect_access These parameters give the capability to choose
the policy of this visibility. In traditional inheritance, features of the ancestor
are directly visible in the heir, as if they are declared in it. Some languages
propose also to name the target-description for example to access to the
old-version of a redefined method. For ComponentSpecialisation and Compo-
nentGeneralisation it may be allowed or not?.

Polymorphism_implication It can take four values: up means that all instances of
the source-description must be also instances of the target-description; down
points out the contrary (very useful to specify a generalisation); both means
that source-description and target-description have the same instances (it is
useful to describe versionning); none allows for example to define relation-

2 All languages may not provide the same expressiveness. Just think about the differ-
ence about the handling of inheritance in Java, C++, Eiffel or Sather, etc.



ships dedicated to code reuse. The value for ComponentSpecialisation is up
and it is down for ComponentGeneralisation.

Polymorphism_policy It indicates if a new declaration of attribute or method
in the source-description hides the feature in target-description or overrides
it. For ComponentSpecialisation and ComponentGeneralisation, we can use a
traditional value: hiding for attributes and overriding for methods®.

Feature_variance It proposes three kinds of variance rule for the redefinition of
features : covariant like in Eiffel (the type indicated in the source-description
must be the same or a subtype according to Polymorphism_implication), con-
travariant as in Sather [6] (this is the reverse), nonvariant as in Java® (the
type indicated in the source-description must be the same than the one in
the target-description). ComponentSpecialisation and ComponentGeneralisa-
tion do not impose a specific value but their status of opposite means a
coordinated choice.

Assertion_variance It takes into account languages with assertions like Eiffel.
It indicates the kind of variance for assertions: weakened (the assertion of
source-description must be implicated by the assertion of target-description),
strengthened (this is the reverse), unchanged (they must be equivalent).

Renaming, Adding, ... The First one is dealing with the right to rename a
feature through a relationship defined by the OFL-component®. OFL also
provides parameters to customize the capability to add, to remove, or to re-
define assertions, method’s signatures, method’s bodies, and method’s quali-
fiers, but also to mask, to show, to abstract, or to make effective the imported
features. For example, according to ComponentSpecialisation, it is relevant to
add a feature to a specialised class but not to remove any of them. To re-
define a feature is also possible. ComponentGeneralisation should have the
opposite semantics : for instance we should be able to remove but not add
some feature.

3.3 Actions

To associate values to a set of parameters may be appropriate for describing
the customized behaviour of a sort of relationship. But we need more to allow
relevant control and execution of these links so that OFL includes a list of actions.

Each action defines the operational semantics of a part of work traditionally
handled during the compilation or execution time. And each action takes into
account the value of the hyper-generic parameters. So the behaviour of the de-
fined language is adapted to the value of each parameter of each component. We
have classified our actions in seven categories: actions to search a feature
(e.g. lookup to find the relevant feature in the graph of descriptions according to
a message), actions to execute a feature such as execute which allows to per-
form a routine call, actions to make a control like are_valid_parameters which

3 In OFL, overloading is not handled by relationships but by descriptions.

4 If type of parameters of methods are not exactly the same, in Java this is overloading
and not overriding.

® Renaming is possible in Eiffel but not in Java or C++.



controls the compatibility between effective and formal parameters, actions to
handle instances of descriptions (e.g. create_instance or destroy.instance),
actions to handle extension of descriptions or Base operation such as
assign or copy.

How to write an action? An action could be simple such as verify_circularity
which controls that all relationships with the parameter Circularity not set don’t
make circular graph. The algorithm of this action is simple: to go all over the
graph for this relationship and to verify that none of the descriptions is direct
or indirect target of itself. The moment to execute verify_circularity is also easy
to imagine: it could be launch once in a static tool like a compiler or a code
checker.

But other actions are a lot intricate! For example, let’s examine the action
lookup. To find the relevant feature in accordance with a message, the task may
be difficult and the algorithm complicated. We have to take the value of many
parameters into account. The value of Polymorphism_implication is used to build
a graph of types. Polymorphism_implication will help to determine which policy
(hiding or overriding) have to be considered. With Cardinality and Circularity,
we can choose an efficient way to go all over the graph. Symmetry could help
us to adopt a two-direction route. Direct_access and Indirect_access give infor-
mation about the visibility of the target-description. Finally, Feature_variance,
Assertion_variance, Adding, Removing, and so on, allow to know how features are
imported. Furthermore, the moment when it is correct to execute the lookup is
also not obvious. We can easily imagine that a first part of this task is static (de-
termination of all unambiguous calls for example) and another one is dynamic
(dynamic linkage at runtime for example).

Then we may understand that it is possible to write the code of lookup.
But if we want to provide some useful model to the programmer, it is obviously
necessary to help him to write actions. In this way, we supply three things.
The first one is that we have split complex actions in more elementary ones®.
For example, we have a local_lookup which make the local (independently of
all import relationships) research of a relevant feature in a description and a
match which takes a feature and a message and determines if the second one
is compatible with the first one... Thus, we split the difficulty of the complex
lookup which has to call local_lookup, match and other actions to make its job.

Secondly, to solve the problem of the static and dynamic facets of our actions,
we provide a way to define them in several parts. So, in fact, each action is split
in a set of facets and each facets is declared static (used in a preliminary step like
a compiler, a code checker, or a first access) or dynamic (used in an interpreter,
an execution engine, or a virtual machine).

Thirdly, we intend to provide some default behaviours for all actions. Indeed,
OFL could be used for a large variety of tools about source code. In this paper,
we present a way to assist an extension of a programming language, but it is also
possible to use our actions to make others tools like a code checker, some trace

6 Chapter 6 of [2] presents more than fifty actions.



service, or a wizard for programming. So, our idea is to write typical algorithms
for actions and to supply them in libraries.

‘Who write the actions? There are three possible answers to this question. As
we just explained, OFL-designers (we) have to provide libraries of actions for the
more frequent usages. These libraries must be for very general purposes. When a
relevant solution is not given in these libraries, the meta-programmer (the person
who designs a language or a tool for handling source-code) has to redefine some
of the actions or, in a bad case, to rewrite all of them. It is here useful to create a
kind of plug-in library which adds some interest to the OFL set of tools. Finally,
when the meta-programmer wants to add a very particular behaviour, he can
redefine or write some actions in order to handle this behaviour. As this case is
for a specific use (useful for an unique application, for example), creation of a
library is not useful and the redefinition could be temporary.

4 TImplementation issues

Firstly, an implementation of OFL (cf. fig. 7) is based on the reification of both
language semantics (OFL-components instances of an OFL-concepts) and ap-
plication entities such as method, attribute, statement, etc. Because it is not
reasonable to design a reification which deal with any entity of any language, it
is necessary to design an extensible reification model. All this issues are achieved
through a Meta-Object Protocol (MOP) written in Java and called OFL/J. In
order to make easier the coupling with other tools, an XML-DTD of OFL/J can
be generated automatically whereas meta-information and application reification
are stored under an XML representation which conforms to this DTD.

Secondly, the reification of application should be parsed and semantics ac-
tions should be performed on each entities according to the language semantics.
This will be done by SmartTools [3] which allows to define visitors (design-
pattern) in order to allow the description of semantical actions to be associated
to application entities. SmartTools apply all these actions, automatically to any
node of the abstract syntax tree associated to the application reification.

One interesting thing is the flexibility of the system. Actions can be added
or removed from OFL/J and they can implement the approach described above
from different point of view: to control the appropriateness between the body of
application methods and the relationships defined between the classes within the
reification, to generate pure Java code according to the information above, or to
do both control and generation. Many other variants may be found according to
the level of reification of statements and expressions (e.g. to insert into action-
semantics the code for implementing an open virtual machine).

5 Conclusion and future work

In this paper we demonstrated that it was interesting to make coexist both spe-
cialisation and generalisation relationships, in order to better handle libraries
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OFL Actions

(SmartTools) target Application
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of relationships

and descriptions

according to some objectives
Code generation, type checker, metrics, etc... Report of type checker

Metrics for application

Fig. 7. Architecture of OFL implementation

of classes in the design of application. Other relationships also could be useful
such as a reuse-code relationship whose aim is to provide one class the capability
to include some methods from existing classes without allowing any polymor-
phism for its instances with those classes. These are only examples of the kind
of relationships that OFL/J, the implementation of OFL model could handle.
the part of OFL/J which deals with meta and non meta information reifica-
tion and with the OFL Mop for extending the capabilities of the reification are
implemented. Now we are investigating how to implement a first version of the
semantics actions into SmartTools.
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