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A NUMERICAL STUDY OF ABSORPTION BY MULTILAYERED BIPERIODIC

STRUCTURES

G. Berginc∗, C. Bourrely†, C. Ordenovic∗ and B. Torrésani
CPT, CNRS-Luminy, case 907, 13288 Marseille Cedex 09, France

(May 1997)

We study the electromagnetic scattering by multilayered
biperiodic aggregates of dielectric layers and gratings of con-
ducting plates. We show that the characteristic lengths of
such structures provide a good control of absorption bands.
The influence of the physical parameters of the problem (sizes,
impedances) is discussed.

I. INTRODUCTION

Electromagnetic absorbers and frequency selective sur-
faces (FFS for short) have recently received an increasing
interest. There is a growing need for electromagnetic ab-
sorbers, and in particular for lighter, thinner and more
highly absorbing materials. Frequency selective surfaces
are generally made of planar screens with periodic or
biperiodic metallizations. One generally considers two
types of FFS: capacitive FFS are transparent at low fre-
quencies; inductive FFS are reflecting ones. Their behav-
ior at the resonance frequency is complementary. Capac-
itive FFS consist of arrays of metal patches embedded
in a dielectric structure, which may be a stratified one.
The dielectric structure provides the mechanical support
of the FFS. Inductive FFS consist of perforated screens.
Such frequency selective surfaces have been considered

by several authors [1,6,13] who have proposed various ap-
proaches for the numerical resolution of the correspond-
ing scattering problem. Efficient numerical methods are
now available for the analysis and design of FFS, as we
shall show.
The purpose of this paper is to show that the ab-

sorption bands of such structures may be controlled by
combining the performances of capacitive FFS and elec-
tromagnetic absorbers. To vary the frequency response
of a FFS, the standard method consists in varying the
geometry of the array elements. We give efficient com-
putational methods for analyzing this kind of structure.
The representation of the transmitted and reflected fields
is obtained by applying resistive boundary conditions to
include a general surface impedance in the problem for-
mulation.
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We provide examples of such periodic or biperiodic
structures, whose absorption bands can easily be con-
trolled by varying some of the characteristic lengths of
the system. More precisely, we consider multilayers made
of dielectric stacks and surface gratings with various
shapes and sizes. We show that such structures yield
absorption bands, and that the location and bandwidth
of such bands may be controlled by varying the charac-
teristic sizes of the structure.
This paper is organized as follows. After this introduc-

tion, we describe in Section II the details of the diffract-
ing structures we consider, and the model we use to
solve numerically the corresponding diffraction problem.
Then we develop in section III the numerical resolution
method, and discuss a series of examples. Finally, sec-
tion IV is devoted to the conclusions. More technical as-
pects concerning the mathematical background and nu-
merical details are discussed in three appendices at the
end of this paper.

II. MODELLING THE BIPERIODIC

STRUCTURES

We consider a system made of dielectric layers and
biperiodic gratings of resistive conducting plates, ended
by an infinitely conducting plane (or the vacuum), lo-
cated at a height z = 0. The structure is globally in-
variant under the discrete translations of period (a, b)
which define the grating, namely translations of the form
x → x +ma, y → y + nb, m,n ∈ ZZ, in the xOy plane.
The structure is illuminated by an incident monochro-
matic field of the form

−→
E

I

(x, y, z) =
−→
E

I

e−i(ωt−
−→
k .

−→r ) .

The geometry of the problem is displayed in Fig 1. We
shall generically denote by E(j) and H(j) the electric and
magnetic fields in the j-th layer zj < z < zj+1, with
electric permittivity ǫj ; we shall also use the superscript
+ or −, according to whether the field propagates in the
direction of positive or negative z. From now on, the
configuration of Fig. 1 will be refered to as configuration
I.
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FIG. 1. Global geometry of the structure: a grating of re-
sistive plates between stacks of dielectric media, upon a per-
fectly conducting plane. The incident field propagates in the
direction of negative z.

Alternatively, we shall also consider the same struc-
ture, but we remove the infinitely conducting plane at
z = 0. The latter configuration will be called configura-
tion II.

A. Floquet Modes

Taking into account the global invariance of the prob-
lem, it is natural to introduce the associated Floquet

decompositions. Let
−→
k = (kx, ky, kz) be the incident

wavevector. In a medium of permittivity ǫ, let us set for
all integers m,n















α0 = kx
√
ǫ , αm = α0 +

2πm

a
,

β0 = ky
√
ǫ , βn = β0 +

2πn

b
,

tmn =
√

α2
m + β2

n , γ
2
mn = k2 − t2mn ,

(1)

where a and b are the grating periods. For m,n integers,
we introduce the corresponding Floquet modes

E±
mn(x, y, z) =

1√
ab
ei(αmx+βny±γmnz) , (2)

and the “planar” modes

φmn(x, y) =
1√
ab
ei(αmx+βny) , (3)

which form an orthonormal basis of the space of biperi-
odic functions on the plane, with period (a, b). Then it is
well known that such function satisfy Helmholtz’s equa-
tion, and that both the electric and the magnetic fields
may be decomposed into those Floquet modes (see e.g.
[11]). Therefore, we write in the j-th layer

−→
E

(j)

(x,y,z)=
∑

m,n

(

−→e (j)+

mnE+
mn(x,y,z) +

−→e (j)−

mnE−
mn(x, y, z)

)

, (4)

−→
H

(j)

(x,y,z)=
∑

m,n

(−→
h

(j)+

mnE+
mn(x,y,z) +

−→
h

(j)−

mnE−
mn(x,y,z)

)

, (5)

where −→e (j)±

mn and
−→
h

(j)±

mn denote the (complex vector)
coefficients of the expansion. The sum over m,n runs
theoretically from −∞ to ∞. In practice it has to be
truncated to a finite index [−M,M ]× [−N,N ]. We now
restrict ourselves to the tangential electric and magnetic
fields. We directly obtain from Maxwell’s equations that
the following matrix relations hold

−→
h

(j)±

mn = ∓K
(j)
mnX

−→e (j)±

mn . (6)

Here we have introduced the following 2× 2 matrices:

K
(j)
mn=

1

ωµγmn

(

k2 − α2
m −αmβn

−αmβn k2 − β2
n

)

, X=

(

0 1
−1 0

)

.

(7)

In the following we set ξmn = 1
ωµγmn

.

Alternatively, we shall also make use of the expansions
with respect to the planar modes φmn(x, y) in (3), which
leads to the coupled waves, defined by

−→
E

(j)±

mn (z) = −→e (j)±

mn e±iγmnz , (8)

−→
H

(j)±

mn (z) =
−→
h

(j)±

mn e±iγmnz . (9)

The propagation of such modes within the corresponding
layer is diagonal, and we have in particular

−→
E

(j)±

mn (zj+1) = exp{±iγmn(zj+1 − zj)}
−→
E

(j)±

mn (zj) . (10)

Matching boundary conditions at a dielectric-dielectric
interface is an easy task, since Floquet modes with dif-
ferent indices are not coupled. Given one such interface
between two dielectric media labeled by j,j + 1, at a
height z = zj , and equating the tangential components
of the electric and magnetic fields, we obtain:




−→
E

(j)+

mn

−→
E

(j)−

mn



=C(j)
mn





−→
E

(j+1)+

mn

−→
E

(j+1)−

mn



=

(

c c
′

c
′

c

)





−→
E

(j+1)+

mn

−→
E

(j+1)−

mn



 ,

(11)

where for the sake of simplicity we have suppressed the
explicit dependence on the height z = zj. The matrix
elements (which are themselves 2 × 2 matrices) c, c′ are
given by

c = c
(j)
mn=

1

2
(X)−1

(

1 + (K(j)
mn)

−1
K

(j+1)
mn

)

X , (12)

c
′ = c

′(j)
mn=

1

2
(X)−1

(

1− (K(j)
mn)

−1
K

(j+1)
mn

)

X . (13)

Alternatively, we shall make use of the following R-
matrices, which read




−→
E

(j+1)+

mn

−→
E

(j)−

mn



=R(j)
mn





−→
E

(j)+

mn

−→
E

(j+1)−

mn



=

(

t
++

r
−+

r
+−

t
−−

)





−→
E

(j)+

mn

−→
E

(j+1)−

mn



 ,

(14)
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and the connection between the two formulations is given
by [4]

Rj
mn =

(

c
−1 −c

−1
c
′

c
′
c
−1

c− c
′
c
−1

c
′

)

. (15)

B. Surface Elements and Boundary Conditions on

the Conducting Plates

Let us now describe the surface currents living on the
conducting plates. We may expand such currents into
Floquet modes

−→J (x, y) =
∑

m,n

−→J mnφmn(x, y) , (16)

and impose the boundary conditions.

x

y

a'

b'

a

b

FIG. 2. The grating of conducting plates, in the particular
case of rectangular plates.

Several approaches have been proposed for imposing
boundary conditions. Among these, the integral formu-
lations (e.g. Galerkin methods) are generally considered
the most stable. To implement the Galerkin method, we
need to introduce a family of functions defined on the

plates. Let
−→
ψ pq(x, y) be such a family. If zP denotes the

height of the interface supporting the conducting plates,
we then write, at a height z = zP

−→J (x, y) =
∑

p,q

jpq
−→
ψ pq(x, y) . (17)

The boundary conditions rely on three sets of equa-
tions. First, the continuity of the tangential electric fields
at all interfaces

−→
E

(j+1)

(x, y, zj) =
−→
E

(j)

(x, y, zj) , (18)

allows one to connect the global electric fields on each
side of the interface. Second, the discontinuity condition
for the tangential magnetic fields:

−→
H

(j+1)

(x, y, zj)−
−→
H

(j)

(x, y, zj) = X
−→J (x, y, zj) , (19)

explicitely

K
j
X

(−→
E

(j)+

mn−
−→
E

(j)−

mn

)

−K
j+1

X

(−→
E

(j+1)+

mn −−→
E

(j+1)−

mn

)

=X
−→J mn .

(20)

Finally, the impedance boundary conditions, which read
at a height z = zP :

−→
E

(P+1)

(x, y, zP ) =
−→
E

(P )

(x, y, zP ) = Z
−→J (x, y, zP ) ,

(21)

(where
−→J vanishes outside the conducting plates) require

a special treatment. It has been observed by several au-
thors that such conditions cannot be imposed pointwise,
because this leads to unstable systems. Several alter-
natives have been proposed and tested (see for example
[6]). The most stable solutions rely on the use of in-
tegral formulations, obtained by considering either line
integrals of the above equation, or a Galerkin formula-
tion. We limit ourselves to the latter, which leads to a
finite number of integral equations, obtained by testing
Eq. (21) against suitably chosen basis functions ψpq(x, y)
(see Appendix A for some possible choices).

C. The Coupled System

Let us start with the case of configuration I. Taking
into account the above remarks, we are led to the fol-

lowing formulation. We denote by
−→
E

I

and
−→
E

R

the in-
cident and reflected electric fields respectively, and we
recall that we have denoted by P the index of the in-
terface containing the plates. In order to avoid as much
as possible numerical problems, we limit ourselves to a
formulation involving the so-called R-matrix propagation
formalism [4,5] (see Appendix B for a short account of
the method).
Using the R-matrix propagation scheme, we can obtain

R matrices for the stacks below and above z = zP . For
example, we obtain a relation of the form





−→
E

R

mn

−→
E

(P+1)−

mn



 =

(

T
++

R
−+

R
+−

T
−−

)





−→
E

(P+1)+

mn

−→
E

I

mn



 , (22)

where the 2×2 matrices T andR are the stack equivalent
transmission and reflection matrices respectively. Simi-
larly, the R-matrix algorithm below the grating of plates
yields a matrix relation of the form





−→
E

(P )+

mn

−→
E

(0)−

mn



 =

(

T
′++

R
′−+

R
′+−

T
′−−

)





−−→
E

(0)−

mn

−→
E

(P )−

mn



 , (23)
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which implies

−→
E

(P )+

mn =
(

R
′−+ −T

′++(1 −T
′−−)−1

R
′+−
)−→
E

(P )−

mn

= N−1−→E
(P )−

mn . (24)

The remarkable point with such a formulation is that
it only involves small matrices, since modes with differ-
ent indices m,n are not coupled. The only place where
coupling between Floquet modes occurs is at a height
z = zP .

The case of configuration II requires only minor mod-
ifications. Eq. (22) is still valid. For the stack below the
grating of conducting plates, we have to replace Eq. (23)
with




−→
E

(P )+

mn

−→
E

T

mn



 =

(

T
′++

R
′−+

R
′+−

T
′−−

)

(

0
−→
E

(P )−

mn

)

, (25)

where
−→
E

T

mn are the Floquet coefficients of the transmit-
ted field. Therefore, Eq. (24) is to be replaced with

−→
E

(P )+

mn = R
′+−−→E

(P )−

mn = N−1−→E
(P )−

mn . (26)

The rest of the formalism is unchanged.

III. RESOLUTION AND NUMERICAL RESULTS

A. Resolution of the Coupled System

We now consider the practical resolution of the sys-
tem we have obtained above. We consider approxima-
tions of the fields with (2N +1)(2M +1) Floquet modes
−→
E mn,m = −M, . . .M, n = −N, . . .N , and approxima-

tions of the currents with PQ surface elements
−→
ψ pq. The

boundary conditions lead to three systems of equations

involving the three sets of unknowns:
−→
E

(P )+

mn ,
−→
E

(P+1)+

mn

and
−→J mn. Eliminating

−→
E

(P )+

mn , we first obtain

−→
E

(P )+

mn = (1 +N )−1

(

(

1 +R
+−
mn

)−→
E

(P+1)+

mn +T
−−
mn

−→
E

I

mn

)

.

(27)

Inserting this result into (19), we get

−→
E

(P+1)+

mn = A
−1
mn

(

X
−→J mn +Bmn

−→
E

I

mn

)

, (28)

where we have set

Amn=K
(p+1)
mn X

(

R
+−
mn − 1

)

−K(p)
mnX (N− 1) (N+ 1)

−1(
R

+−
mn+ 1

)

, (29)

Bmn=
(

K
(p)
mnX (N− 1)(N+ 1)−1 −K(p+1)

mn X

)

T
−−
mn . (30)

Eventually, we are led to a system of the form

Umn

−→
E

I

mn = Vmn

−→J mn , (31)

where the 2× 2 matrices Umn and Vmn are defined by:

Umn = T
−−
mn +

(

1 +R
+−
mn

)

A
−1
mnBmn , (32)

Vmn = Z −
(

1 +R
+−
mn

)

A
−1
mnX . (33)

The system (31) is to be solved numerically, using a

Galerkin procedure. Let
−→
ψ pq(x, y) be a basis of func-

tions defined on the plate, with appropriate boundary
conditions. Using the expansion (17), we get

−→J mn =
∑

p,q

jpq
−→
ψ pq;mn , (34)

where

−→
ψ pq;mn = 〈−→ψ pq, φmn〉 =

∫ −→
ψ pq(x, y)φ

∗
mn(x, y)dxdy ,

(35)

and where the star “∗” denotes complex conjugation.
Taking the scalar products of equations (31) with the ba-

sis functions
−→
ψ pq(x, y), we obtain a system of the form

Upq =
∑

p′,q′

Vpq;p′q′jp′q′ , (36)

where U is a vector of length PQ and V is a PQ × PQ
matrix given by

Upq =
∑

m,n

(

Umn

−→
E

I

mn

)

· −→ψ
∗

pq;mn , (37)

Vpq;p′q′ =
∑

m,n

(

Vmn

−→
ψ p′q′;mn

)

· −→ψ
∗

pq;mn . (38)

Eq. (36) is solved numerically (more details are given in

Appendix C). Once the current
−→J is known, one recovers

directly the fields
−→
E

(P+1)+

mn using Eq. (28) and then the

reflected field
−→
E

R

, from Eq. (22).

B. Numerical Results

Our main goal is to exhibit absorption bands, and to
analyze the influence of some specific parameters on the
location of the maximal absorption. More precisely, we
focus on the influence of the resistive impedance Z and
the ratio size of resistive plates/period. In addition, we
show that the location of the absorption band essentially
does not depend on the incidence angle. We work with a
TM polarization for the incident field (in fact the results
are weakly dependent on the polarization).
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We consider a series of configurations, in which we vary
individually these parameters, in the frequency domain
1GHz−10GHz. In all the figures, we plot the reflectivity
(i.e. the ratio of reflected flux by incident flux) as a
function of the incident frequency, and in the case of
configuration II we also plot the transmittivity (i.e. the
ratio of transmitted flux by incident flux).
We start with the case of square resistive plates of side-

length a′, with variable impedance. The period of the
grating is set to a = 10mm in both the x and y directions.
The grating is supported by a dielectric stack of height
z = 4mm and complex refractive index ǫ = 10 + 2i, it-
self supported by an infinitely conducting plane (a simple
case of configuration I). Since the resistive plates are in
that case square plates, we use Fourier-type decomposi-
tions as described in Appendix A 1 for the decomposition
of the surface current. The numerical results displayed
below have been obtained using 17 × 17 Floquet modes
and the same number of Galerkin modes.
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FIG. 3. Square plates in configuration I. Reflectivity as a
function of the incident frequency, for various values of the
plate’s size: a′ = 1, 2, 4, 7, 9mm. The period a is kept fixed
to a = 10mm. θ = 0 and Z = 0.

We show in Figure 3 the reflectivity as a function of
the incident frequency, for several values of the ratio a′/a.
The computed values are indicated with symbols, and in-
termediate values have been obtained using cubic spline
interpolation. In all cases, a significant absorption band
is observed. In addition, the critical frequency (i.e. the
frequency at which reflectivity attains its minimum) de-
creases as the ratio a′/a increases, and the width of the
absorption band narrows.
In the considered case, the plates are perfectly con-

ducting. We nevertheless observe a strong absorption in
a specific frequency range. Such a phenomenon is gener-
ally coupled with the excitation of a leaky surface wave.
The surface wave may be given an interpretation in terms
of complex poles or zeroes of a scattering matrix (see [8]
for details on the scattering matrix, and [9] for an anal-
ysis of the role of zeroes and poles). The poles of the
scattering matrix give the propagation constant of the

leaky waves, which propagate along the surface of the
biperiodic grating. The leaky wave is evanescent, as its
energy decreases in the direction normal to the surface of
the structure. The imaginary part of the pole gives the
damping of the wave. The excitation of a leaky wave is
a resonance phenomenon at a particular frequency. Fig-
ure 3 shows a spectacular phenomenon. A highly reflect-
ing capacitive grating (with an important ratio a′/a) can
absorb an incident plane wave in totality. Thanks to this
absorption by a leaky surface wave propagating along the
grating, we can control the absorption band of a classical
Dahlenbach absorber layer which consists of a thick ho-
mogeneous lossy layer backed by a metallic plate. When
the ratio a′/a tends to zero we have checked that the min-
imum of reflectivity is obtained for the same frequency
as in Figure 3. To adjust the absorption band of the ab-
sorber, we can deposit a biperiodic capacitive reflecting
grating on the Dahlenbach layer. By doing so, we com-
bine the properties of the biperiodic grating with those
of the lossy layer. Notice in particular that it is possi-
ble to decrease the thickness of the layer by adding such
a biperiodic structure, to obtain the critical absorption
frequency of the initial Dahlenbach structure.
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FIG. 4. Square plates in configuration I. Reflectivity as a
function of the incident frequency, for various values of the
plate’s impedance: Z = 10, 30, 100Ω/✷. The period a and
the plate’s size a′ are kept fixed a = 10mm and a′ = 7mm.
θ = 0.

We show in Figure 4 the reflectivity as a function of
the frequency of the incident beam, for several values of
the impedance Z. The configuration corresponds to the
case of Fig. 3 with a′ = 7mm, and a significant minimum
in the reflectivity is observed for a certain value of the
frequency. This critical value is seen to be an increasing
function of the impedance of the conducting plates.
In Figure 4, the patches of the grating are not perfectly

conducting any more. In that case, the absorption fre-
quency and the bandwidth increase with the resistivity of
the patches. To obtain a required absorption band, it is
therefore possible to combine the effects of the geometry
(here the ratio a′/a) and the effect of the conductivity.
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This provides extra flexibility to the filter design.
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FIG. 5. Square plates in configuration I. Reflectivity as a
function of the incident frequency, for various values of inci-
dence angle: θ = 10, 30, 60 deg. The period a and the plate’s
size a′ are kept fixed a = 10mm and a′ = 7mm. Z = 0.

We show in Figure 5 the reflectivity as a function of the
frequency of the incident beam, for several values of the
incidence angle θ, for the same configuration as before,
i.e. a configuration exhibiting a well defined absorption
band. These results (and other tests of intermediate in-
cidence angles, are not reproduced here to simplify the
plot) show that the critical frequency value depends very
weakly on the incidence angle (at least for angles smaller
than 45 deg).

The same computations have been performed with re-
sistive plates of various shapes. We display here the re-
sults obtained when the square resistive plates in Fig. 3
are replaced with cross-shaped ones, of the same size. By
this we mean that the crosses lie within a square of the
sidelength a′, and are made of five identical squares of
sidelength a′/3. For this case, we used the surface ele-
ments described in Appendix A2, and as before we take
17×17 Floquet modes, and the same number of Galerkin
modes.
The numerical results, displayed in Figures 6 and 7

show a similar behavior to the previous case: a well de-
fined absorption band is clearly seen, and the critical
frequency again depends on the ratio a′/a and on the
impedance Z. Again, the location of the absorption band
depends only weakly on the incidence angle (the numer-
ical results, not given here, are very similar to those dis-
played in Fig. 5). The only significant difference which
may be observed is a broadening of the absorption band
in the case of cross-shaped plates, and a second minimum
occurs for large a′.
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FIG. 6. Cross-shaped plates in configuration I. Reflectivity
as a function of the incident frequency, for various values of
the plate’s size: a′ = 1, 2, 4, 7, 9mm. The period a is kept
fixed to a = 10mm. θ = 0 and Z = 0.
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FIG. 7. Cross-shaped plates in configuration I. Reflectivity
as a function of the incident frequency, for various values of
the plate’s impedance: Z = 10, 30, 100Ω/✷. The period a and
the plate’s size a′ are kept fixed a = 10mm and a′ = 7mm.
θ = 0.

Similar computations have been made with configura-
tion II. We display in Fig. 8 (reflexion) and Fig. 9 (trans-
mission) the results obtained with systems identical to
those considered in Figures 3-5. We observe that in such
a configuration, the reflexion is small and almost constant
above 5Ghz, it increases slightly with a′. The transmit-
tivity shows maximums at frequencies corresponding to
the minimums in configuration I.
These two figures show the importance of the conduct-

ing plane at z = 0. The well-defined absorption band
appears only in that case. The excitation of the leaky
wave and the corresponding absorption occurs only for
structures ended by a conducting plane.
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FIG. 8. Reflexion for square plates in configuration II. Re-
flectivity as a function of the incident frequency, for various
values of the plate’s size: a′ = 1, 2, 4, 7, 9mm. The period a
is kept fixed to a = 10mm. θ = 0 and Z = 0.
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FIG. 9. Transmission for square plates in configuration II.
Reflectivity as a function of the incident frequency, for various
values of the plate’s size: a′ = 1, 2, 4, 7, 9mm. The period a
is kept fixed to a = 10mm. θ = 0 and Z = 0.

Next, we consider a second system (in configuration I),
in which the resistive plates are located upon a double
layer of dielectrics. The first dielectric (upon which the
plates are located) has electric permittivity ǫ = 5, and
the second layer has electric permittivity ǫ = 15+ i18σ/ν
with a frequency dependent imaginary part. Here the
constant σ is set to σ = 10s/m, and the frequency ν is
expressed in GHz.
The results are displayed in Figures 10 and 11. As be-

fore, an absorption band is clearly seen on Figure 10,
when a′ is above 4mm, whose critical frequency and
bandwidth decrease as the sidelength of the plates in-
creases. In addition, for small plates, the reflectivity has
a constant behavior close to zero above 8GHz. Figure 11
shows that in such a configuration, the critical frequency
depends weakly on the value of the impedance, but the
bandwidth is an increasing function of the impedance.
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FIG. 10. Reflexion for square plates in configuration I. Re-
flectivity as a function of the incident frequency, for various
values of the plate’s size: a′ = 1, 2, 4, 7, 9mm. The period a
is kept fixed to a = 10mm. θ = 0 and Z = 0.
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FIG. 11. Reflexion for square plates in configura-

tion I. Reflectivity as a function of the incident fre-
quency, for various values of the resistive impedance Z:
Z = 10, 25, 50, 75, 100Ω/✷. The period a is kept fixed to
a = 10mm. a′ = 7mm and θ = 0.

IV. CONCLUSIONS AND PERSPECTIVES

We have studied and described a series of configura-
tions involving dielectric stacks and arrays or resistive
plates which produce well-defined absorption bands, with
controllable absorption frequency. The critical frequency
has been shown to be strongly influenced by the ratio
period/plate-size, which therefore provides a good con-
trol parameter. The impedance of the resistive plates has
been shown to allow the control of the critical frequency.
Our approach is based on a Floquet (or Rayleigh) de-

velopment of the electromagnetic fields within the differ-
ent layers of the structure, and a Galerkin approximation
of the surface currents. Multilayers more complex than
the ones we considered here may be described by the
formalism of this paper as well.
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In light of the numerical experiments we have per-
formed, it is possible to combine the different parameters
(namely the ratio a′/a, the geometry of the patches and
the conductivity of the patch material) to obtain opti-
mized absorbing structures from a quite standard biperi-
odic grating. The use of absorption by a leaky surface
wave can improve a classical Dahlenbach structure.
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APPENDIX A: THE SURFACE ELEMENTS

Depending on the geometry of the conducting plates,
several different bases of surface elements may be used.
In all cases, the finite number of basis functions we are
forced to consider limits the precision of the approxima-
tion of the current.

1. Rectangular Plates

To start with, we consider the case of rectangular
plates, as shown in Fig. 2 above. In such cases, the best
choice for surface elements is provided by a Fourier basis:
we set

~ψTE
pq (x, y) =

pπ

a′
sin

pπ

a′
[x+ 1

2a
′] cos

qπ

b′
[y + 1

2b
′]~ex

+
qπ

b′
cos

pπ

a′
[x+ 1

2a
′] sin

qπ

b′
[y + 1

2b
′]~ey , (A1)

~ψTM
pq (x, y) =

qπ

b′
sin

pπ

a′
[x+ 1

2a
′] cos

qπ

b′
[y + 1

2b
′]~ex

−pπ
a′

cos
pπ

a′
[x+ 1

2a
′] sin

qπ

b′
[y + 1

2b
′]~ey . (A2)

Therefore, the Floquet modes of the surface current may
be written as

−→J mn =

P−1
∑

p=0

Q−1
∑

q=0

(

jTM
pq

−→
ψ

TM

pq,mn + jTE
pq

−→
ψ

TE

pq,mn

)

, (A3)

and the scalar products

−→
ψ

TE

pq,mn = 〈~ψTE
pq , φmn〉 , (A4)

−→
ψ

TM

pq,mn = 〈~ψTM
pq , φmn〉 , (A5)

may be computed analytically.
For other special geometries, such as disks or elongated

disks, it is possible to design appropriate basis functions
to describe the current density on the resistive plates (in
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the case of disks, such basis functions are linear combi-
nations of Bessel functions). However, it is also desirable
to have basis functions which can describe arbitrary ge-
ometries. This is the purpose of the surface elements
described in the next subsection.

2. Arbitrary Plates

For conducting plates with arbitrary geometry, we are
forced to use “all purpose” basis functions, which we shall
call surface elements. Such basis functions have been
considered by several authors under the name of rooftop
functions. It follows from the analysis in [6] that rooftop
functions often provide faster and better conditioned nu-
merical schemes than classical alternatives (the so-called
surface-patch and triangular patch functions). The first
step for the construction of such surface elements is a
discretization of the plate. For the sake of simplicity, we
restrict to a uniform square discretization, with period τ .
Consider the characteristic function

χ(x) =

{

1 if 0 ≤ x ≤ τ
0 elsewhere

(A6)

and the Schauder function

Λ(x) =







1 + x
τ

if − τ ≤ x ≤ 0
1− x

τ
if 0 ≤ x ≤ τ

0 elsewhere
(A7)

Then set

ψx
pq(x, y) = χ(x− pτ)Λ(y − qτ) , (A8)

ψy
pq(x, y) = Λ(x− pτ)χ(y − qτ) , (A9)

and finally

−→
ψ pq(x, y) = ψx

pq~ex + ψy
pq~ey . (A10)

The surface elements we consider will be those functions
ψx
pq(x, y) and ψy

pq(x, y) such that their support is com-
pletely included in the support of the plate. Clearly, the
smaller τ the better is the approximation of the current,
but the higher the complexity of the numerical problem.

APPENDIX B: R-MATRIX PROPAGATION

We describe briefly the R-matrix propagation scheme
as we used it in our simulations. Clearly, the simplest
approach amounts to consider the direct product of the
C matrices given in Eq. (11), which yields directly a C
matrix for the whole structure. As stressed by various
authors, such a scheme turns out to become rapidly un-
stable as the depth of the structure grows.

= R

E(j)+
(zj)E(j)-

(zj)

E(j+1)+
(zj) E(j+1)-

(zj)

FIG. 12. Illustration of the R-matrix propagation algo-
rithm: the role of an interface R-matrix.

Let us consider a multilayered medium with interfaces
at heights zp, . . . , zF , and assume that we are given an
interface R-matrix of the form given in Eq. (14). Then,
one easily verifies that





−→
E

(j+1)+

(zj)
−→
E

(j)−

(zj−1)



 =

(

t̃
++

r̃
−+

r̃
−+

t̃
++

)





−→
E

(j)+

(zj−1)
−→
E

(j+1)−

(zj)



 ,

(B1)

where we have set






t̃
++ = t

++Lj ; t̃
−− = t

−−Lj ;
r̃
++ = r

+−L2
j ; r̃

−+ = r
−+ ,

Lj = exp{iγmn(zj+1 − zj)} .
(B2)

z

zF

zj

zj-1

EREI

E(j)+E(j)-

E(j+1)- E(j+1)+

FIG. 13. Illustration of the R-matrix propagation algo-
rithm: the stack R-matrix.

Suppose now that we are given a stack R-matrix for
the stack [j + 1, F ]:





−→
E

R

−→
E

(j)−



 =

(

T
++

R
−+

R
−+

T
++

)





−→
E

(j)+

−→
E

I



 , (B3)

where we set by default
−→
E

(j)±

=
−→
E

(j)±

(zj−1) for the
sake of simplicity. From Eqs. (B1) and (B3), little algebra
gives the expression of the coefficients of the stack matrix
for the stack [j + 1, F ]:

−→
E

R

(zF ) = T
++(1−R

+−
r̃
−+)−1

t̃
++−→E

(j)+

(zj−1)

+
(

R
−++T

++(1−R
+−

r̃
−+)−1

r̃
−+

T
−−
)−→
E

I

(zF ) ,
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−→
E

(j)−

(zj−1) =
(

r̃
+−+t̃

−−(1−R
+−

r̃
−+)−1

r̃
−+

t̃
++
)−→
E

(j)+

(zj−1)

+ t̃
−−(1−R

+−
r̃
−+)−1

T
−−−→E

I

(zF ) .

The above equations provide a simple iterative algorithm
for computing the global R-matrix for the stacks [zP , zF ]
and [z0, zP ]. This algorithm is known as the R-matrix
propagation algorithm, and has been analyzed by various
authors. We refer to [4,5,7,10] for more details.

APPENDIX C: NUMERICAL ASPECTS

We give here more details on the numerical methods
used to solve the complete problem. As stressed before,
most of the matrices used in the scheme are 2 × 2 ma-
trices, which are easy to handle. In addition, the use of
R-matrix propagation algorithm prevents us from devel-
oping numerical instabilities when computing products
of such matrices.
The main part of CPU is used for solving Eq. (36). Sev-

eral methods have been tested for that problem (which
has also been studied by various authors). The numer-
ical results presented here have been obtained by using
an inversion method based on LU -decomposition, with
left and rigth equilibrations of the matrix. A fortran im-
plementation of such a method is available in the LA-
PACK library (see [3]). Alternative methods may be
found in the literature, such as (complex) biconjugate
gradient methods or FFT-based methods.
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