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Chattering and related behaviour in impact 
oscillators 

Chris Budd, Felix Dux 

One of the most interesting properties of an impacting system is the possibility of an 
infinite number of impacts occurring in a finite time (such as a ball bouncing to rest 
on a table). Such behaviour is usually called chatter. In this paper we make a 
systematic study of chattering behaviour for a periodically forced, single-degree-of
freedom impact oscillator with a restitution law for each impact. We show that 
chatter can occur for such systems and we compute the sets of initial data which 
always lead to chatter. We then show how these sets determine the intricate form of 
the domains of attraction for various types of asymptotic periodic motion. Finally, 
we deduce the existence of periodic motion which includes repeated chattering 
behaviour and show how this motion is related to certain types of chaotic behaviour. 

1. Introduction 

The single degree of freedom impact oscillator comprising a periodically driven 
oscillating particle, impacting and rebounding against a rigid obstacle has a 
remarkably rich dynamical structure. Some of the dynamics, such as periodic and 
certain forms of chaotic behaviour, can be explained by the usual theory of smooth 
dynamical systems (Thompson & Stewart 1986) but much of it is quite different and 
due to the essentially discontinuous nature of the impacting process. 

Previous papers studying impact oscillators have, in general, either considered 
solutions which are periodic and repeat after a fixed number of impacts (often one) 
or are chaotic with an infinite number of essentially random impacts in an infinite 
time. By restricting the analysis to solutions which repeat after one impact, it is 
possible to study the bifurcations that these undergo as the parameters in the system 
are varied. Some examples of these are given in Shaw & Holmes (1983) and 
Thompson & Stewart (1986) and have subsequently been developed by Whiston 
(1992), Nordmark (1991) and Budd et al. (1993). 

In this paper we shall take an opposite approach and examine the dynamical 
behaviour of those solutions of an impact oscillator which have a very large number 
or indeed infinite number of impacts in a finite time. One example of this form of 
behaviour is very familiar: an elastic ball released under gravity from above an 
obstacle will bounce on the obstacle, acting as a simple impact oscillator. If there is 
only a small energy loss at each impact then it will bounce a very large number (in 
an idealized case an infinite number) of times before coming to rest in a finite time. 
Similar systems arise in many applications in engineering where driven components 
may collide very frequently against each other or against rigid obstacles, resulting in 
a high wear rate (Goyda & Teh 1989). Engineers often refer to such behaviour as 
chatter and throughout this paper we refer to the idealized mathematical description 
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Figure 1. The general form of the impact oscillator. 

of this as chatter as well. In this paper we shall examine the dynamical behaviour 
related to chatter in a mathematical idealization of an impact oscillator. However, 
we expect that our conclusions are also relevant to more general systems. 

A vibrating mechanical component undergoing chatter can be very simply 
modelled as an oscillating particle which is on a periodically forced spring and is 
repeatedly impacting with the obstacle. In this case, chatter is likely to occur if the 
forcing is toward the obstacle but the particle is rebounding away from it. In such 
circumstances, the particle may still come to rest on the obstacle after a large number 
of impacts, but due to the forcing it will move away from the obstacle at a later time 
and the chattering behaviour will then form part of a more complex motion. It is this 
form of behaviour that we study in this paper. We shall examine other forms of 
behaviour closely related to chatter, such as cases where there are a large number of 
impacts but the particle does not come to rest (incomplete chatter), examples where 
chatter is closely related to chaotic behaviour and the effect that chatter has upon 
the domains of attraction of periodic solutions. Surprisingly the study of systems 
with a large number of impacts closely spaced in time is analytically rather simpler 
than those with fewer, more widely spaced impacts. Indeed we shall see that 
studying the rather special dynamics of those solutions of impact oscillators with 
such a large number of impacts can give very valuable insights into the qualitative 
form of the more general solutions. 

To set the scene we now describe the precise form of the idealized impact oscillator 
we study in this paper. The general such oscillator is illustrated in figure 1 and 
comprises a particle on a linear spring at position x(t) ~ o- which is periodically forced 
at a frequency w. When x = o- the mass impacts with an obstacle and we model this 
by a simple restitution law so that 

dxj dt I after collision = - r dxj dt I before collision' 

where r < 1 is the coefficient of restitution. 
The complete system is then 

d2xj~t2 ~X~ j(t),_ X< 0",} 
X-7 rx, x- o-. 

(1) 

Here various constants such as the mass of the particle, the stiffness of the spring and 
the magnitude of the forcing have, without loss of generality, been scaled to one (see 
Budd et al. 1993 for the details of this scaling). The forcing functionj(t) will be taken 
to be periodic with frequency w and to have the property that j(t)- o- changes sign. 
An appropriate such function is 

j(t) = cos (wt), 

and for most of this paper we shall assume that j(t) has this form. 
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The system (1) departs from a physical model in several respects. In particular, we 
have not considered damping between impacts and have taken very simple models 
both for the linear motion on the spring and also for the linear form of the impact. 
These simplifications make the analysis of the behaviour much easier. Certain forms 
of behaviour will be rather different in the idealized model: for example, during 
chatter the particle will impact an infinite number of times in the idealized model of 
an impact but only a large but finite number of times in a more realistic model. 
Although this does affect the detailed dynamics, the most significant consequence of 
chattering- that the particle eventually comes to rest- occurs in both models and 
it is this which has the dominant effect upon the subsequent motion. 

The system (1) has three parameters w, cr and rand its behaviour depends subtly 
upon the values these take and a review of some of this is given in Shaw & Holmes 
(1983) and Budd et al. (1993). 

If the particle is released from the obstacle at a time t and a velocity x = - rv < 0 
then it will in general describe a trajectory x(t) which comprises a sequence of 
smooth motions between impacts. In figure 2 we illustrate three such motions for the 
case cr = 0 and r = 0.8 with w = 2.6, 2.8 and 2.7 respectively. In the first figure, 
following an initial transient, the motion becomes and stays periodic. In the second 
the motion is chaotic and following the initial transient is governed by a strange 
attractor. In the third the particle repeatedly collides with the obstacle and then 
comes to rest, sticking to it while its acceleration, j(t)- cr is positive, and being 
released from it when its acceleration is first negative. 

It is the motion illustrated in figure 2 (c) which is of most interest to us here and 
this figure demonstrates the two phenomena of the particle coming to rest after a 
chattering sequence and then sticking to the obstacle. In figure 3 we give a close up 
of this part of the motion. A trajectory of the form illustrated in figure 2 (c) can either 
be part of a transient or it can in fact repeat and form part of a periodic motion. 

There is a closely related phenomenon illustrated in figure 2 (b) where several low 
velocity impacts occur close together in an incompletely chattering sequence. These 
sequences frequently form part of a chaotic motion. 

To study the phenomena of chatter, incomplete chatter and sticking it is 
convenient to describe the system (1) by a map P, and to do this we use the impact 
map introduced in Whiston (1992) and Shaw & Holmes (1983). To define this map 
we make two observations of system (1). First the trajectory x(t) of the particle is 
uniquely defined by the velocity - rv0 at which it leaves the obstacle and the phase 
¢0 of the time t0 at which it leaves, where 

¢0 = (t0 ) mod (2rt/w). (2) 

Second, as has been shown in Whiston (1992), if v0 is strictly positive then the 
trajectory necessarily impacts the obstacle again with velocity v1 ~ 0 at a phase ¢1 . 

Following the impact the motion continues with initial velocity - rv1 • 

Thus we may define a map P acting on the phase space [0,2rt/w] x W by 

If v1 > 0, then by simply running time backwards we obtain a unique inverse for P. 
As we are interested in examples where the particle comes to rest on the obstacle, 

we must extend this definition of P to the cases when v0 = 0. If v0 = 0 and x > 0 so 
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Figure 2. Time series of (a) periodic motion arising when w = 2.6 and 0' = 0; (b) chaotic motion 
arising when w = 2.8 and 0' = 0; (c) chattering motion followed by sticking and subsequent release 
of the particle arising when w = 2.7 and 0' = 0. 

Figure 3. A close up of the chattering motion, followed by sticking and release at the time ¢a· 

that f( ¢ 0)- O" > 0 then the particle remains stuck to the obstacle until the first point 
<Pa > 0 at which 

where we assume that j(t) is such that this point occurs. The set of values of¢ for 
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which i is positive when x = (}is termed by Whiston (1992) the sticking region of the 
map P and we shall assume that this is given by 

I= [¢p, 2njw] U [0, tPal 

If(} = 0 and f(t) = cos (wt) then ¢a= nj2w and tPp = 3nj2w; moreover if(}> 1 then 
I is the empty set. 

When combined with chatter, the sticking region plays a major role in the 
dynamics of the impact oscillator. This is because it has a large domain of attraction 
:?i' comprising those trajectories which come to rest following a chattering sequence. 
Part of the purpose of this paper is to construct the set :?i'. This set occupies a 
significant proportion of the domain of definition of the map P and consequently is 
likely to be robust to changes in the model given in (1). It is highly significant that 
for all cpEJ, 

P(¢, 0) = P(¢'", 0), 

and hence P is not invertible over the set I. 
By far the most significant aspect of P, realized by Shaw & Holmes (1983) and 

developed by Whiston (1992), D. Chillingworth (unpublished notes), Nordmark 
(1991) and Foale & Bishop (1992) is that it is discontinuous on a one dimensional set 
S 1 in the phase space and, more importantly, that it introduces considerable 
stretching onto the phase space in a neighbourhood of S 1 . We shall review this 
behaviour in the next section. Away from the setS\ the map P is smooth and it 
behaves very like any other nonlinear map of two variables, with fixed points that 
undergo various standard forms of bifurcation. However, the discontinuity and 
stretching result in the many new forms of behaviour remarked upon in the 
literature. 

A very good illustration of this richness of the behaviour of impact oscillators and 
the role played by chatter is provided by studying the domain of attraction of the 
fixed points of P for certain parameter values. If, for example, w = 2.6, (} = 0 and 
r = 0.8 then P has both the fixed point A = (!w¢jn, v) = (0.48214, 0.50544) and the 
period-6 orbit B, where 

B = {(!w¢/n, v)} = { (0.285, 0.554), (0.486, 0.907), (0.632, 0.443),} 
(0.272, 0.563), (0.481, 0.934), (0.635, 0.472). 

Both A andB correspond to periodic motions of the impact oscillator of periods 2njw 
and 12njw respectively. A large number of numerical simulations indicate strongly 
that these are the only two forms of stable asymptotic motion of the impact oscillator 
for these ranges of the parameter values. In figure 4 we plot the domains of attraction 
for these two orbits for a range of initial conditions, [ ¢, v] E [0, 2nj w] x [0, 4]. Also 
indicated on this figure are the orbits A, B and the sticking region I. 

The figure has a beautiful and complex form demonstrating the interesting fact 
that even if a system has only two periodic asymptotic states, the asymptotic motion 
of the particle can be very sensitive to its initial condition. The sensitivity is caused 
by the large and intertwined domains of attraction of A and B resulting from the 
stretching and discontinuity of the phase space introduced by P. The complexity of 
the domain of attraction can be understood by examining the structure of the set S 1 , 

its preiterates and the intersection of these sets with the domain of attraction, :?i' of 
the sticking region!. We can see part of this structure by observing from figure 4 that 
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Figure 4. The domains of attraction for the (1, 1) (light shade) and the (6, 6) (dark shade) periodic 
orbits when w = 2.6 and 0" = 0. The (1, 1) orbit is indicated by a cross and the (6, 6) orbit by six 
circles. 

there is a neighbourhood f!2J of I all of which is attracted to B as is each of its pre
images under P. This neighbourhood is indeed a subset of :F which is composed of 
f!2J and its pre-images. Moreover, the domains of attraction of A and B close to the 
boundary, 'f?, of f!2J have a very fine structure with close by points being attracted to 
either attractor. The images and pre-images of both f!2J and its boundary form large 
loops in the phase space and these can also be seen in figure 4. A major purpose of 
this paper is an explanation of this structure in detail. Similar structures are 
observed for the domains of attraction of different orbits for other parameter values 
and are due to the same underlying mechanism. 

The outline of the rest of this paper is as follows. In §2 we review some of the 
theory of the stretching behaviour of the map P and of the discontinuity set 81 . In 
§3 we demonstrate the existence of both chattering and incomplete chattering 
behaviour, and construct an invariant set f!2J for P such that all orbits starting in f!2J 

lead to chattering motion followed by sticking. By examining the behaviour of P 
close to the boundary of f!2J we show that it can be simplified to a one dimensional map 
with a consequent simplification in the analysis of the dynamics. In §4 we compute 
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the pre-images of ::0 to calculate the domain of attraction ff of the sticking region, 
demonstrating the existence of loops in the boundary of this set. Using this 
information we deduce the form of the domains of attraction for the attractors of P. 
In §5 we show how chatter can form part of a periodic motion and show how this is 
related to certain types of chaotic behaviour. Finally, in §6 we draw some conclusions 
from this work. 

2. The stretching associated with P 

The map P which was defined in § 1 has many interesting properties and some of 
these are reviewed in Whiston (1992), Nordmark (1991) and Foale & Bishop (1992). 
Of most interest to us here are the two facts that it can have periodic points x such 
that pm(x) = x for some integer m, and that it is discontinuous on a set Sl, and 
smooth away from 8 1 . 

The periodic points also correspond to (subharmonic) trajectories which repeat 
after a time 2nnjw and we label them by the indices (m, n). As parameters such as 
w and a" are varied, the periodic points display similar behaviour to the periodic 
points of smooth maps (including period-doubling and saddle-node bifurcations) 
until one of the iterates of x intersects the line 8 1 . 

For the remainder of this section we discuss some of the basic properties of 8 1 and 
the behaviour of P in a neighbourhood of 8 1 . Although it is rather technical we 
include it because of the insight it gives into the general dynamics of the particle. 
(This discussion will review the results presented in Nordmark (1991), Whiston (1992) 
and Budd & Dux (1994) and will necessarily be very incomplete.) 

We suppose that we have three impacts at points A, B, 0 which have similar 
phases and velocities. We suppose further thatP(A) = (¢1 , v1 ) where v1 is close to zero 
and that P(B) = (¢2 , 0) where ¢1 is close to ¢2 , but that the trajectory with initial 
condition 0 has a maximum with phase ¢m close to ¢ 2 so that the next impact occurs 
at a rather different phase ¢3 , so that P(O) = (¢3 , v3 ). 

The map Pis then discontinuous at the point B. In a sense this discontinuity is 
artificial in that P 2(A) ~ P 2(B) ~ P(O) and, indeed, the trajectories starting from A, 
B and 0 are similar. However, the discontinuity introduces considerable sensitivity 
to the initial conditions (or stretching in the phase space) and this plays a major role 
in the overall behaviour of the impact oscillator. 

(a) Local behavio'Ur of P close to S 

To make this behaviour precise we introduce the following notation first used by 
Whiston (1992) for the discontinuity set and its iterates and pre-iterates: 

and 

so that 

81 = {(¢, v): P(¢, v) = (¢2, 0)}, sn = {(¢, v): pn(¢, v) = (¢2 , 0)} 

wn = {(¢, v): (¢, v) = pn(¢2, 0)}, 

WI= P 2(S1 ). 

The sets wn and sn are dual; indeed by exploiting the time reversal symmetry of the 
impact oscillator we have 

8 1 = {(¢, v): [(2rcjw)- ¢, rv] E WI}. 

Close to 8 1 , the map P causes considerable stretching of the phase space and the 
effect of this is illustrated in figure 5 and discussed in detail in Whiston (1992), 
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Figure 5. The stretching of the phase space produced by the map P close to the 

discontinuity set 8 1 . 

Nordmark (1991), Foale & Bishop (1992) and Budd & Dux (1994). In this figure we 
consider a rectangle R = R+ U R- of initial data which intersects the set 8 1 and is 
bounded by line segments through the points A, BES and 0 which were considered 
earlier. Thus the subsetsR+ andR-lie on either side of 8 1 andR- includes part of 8 1 . 

The subset R- comprises the initial data which is mapped to low velocity impacts and 
the effect of these is to stretch R- to a set intersecting the set v = 0 which is parallel 

to the vector ( = ~), whereN = j{¢2 ) -(J' is the local acceleration of the particle at the 

point P(B). Indeed the stretching factor approaches infinity as we approach B. On 

the further action of the map P, the set P(R-) is contracted in the direction ( _: N) and 

is mapped to a set which is locally tangent to Wl, intersecting W in a set which 
includes the point P 2{B). The map from R- to P 2{R-) introduces a pronounced 
stretching between two data points connected by a line orthogonal to 8 1 , but not 
between two points connected by a line parallel to 8 1 . 

In contrast, the subset R+, comprises those points which must miss an impact at 
the point P(B). This set is not stretched at all by P, and the set P(R+) approaches W 
transversally, with P(R+) and P 2{R-) lying on either side of W. (We note that the 
stretching behaviour applies to much more general systems than the (linear) impact 
oscillators discussed here.) 

(b) The global behaviour of the sets sn and wn 
It was first recognized in Whiston (1992) that the global dynamics of the map P 

is largely governed by the global structure of the sets sn and wn. To gain some 
insight into this structure we display, in figure 6, the set 

8 1 U 8 2 U 8 3 U W U ff12 U WS 
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Figure 6. The set S1 U S2 U S3 U W1 U W2 U wa. 

1.0 

when r = 0.8, 0' = 0 and w = 2.6. (It is interesting to compare this figure with the 
domain of attraction for the same parameter values presented in figure 4.) Some of 
the structure of these sets, particularly as 0' is varied, can be complex and Whiston 
(1992) and D. Chillingworth (unpublished notes) devote much space to describing it. 
However, the general outline of figure 6 can be described fairly simply. To do this we 
first consider the set Wl and its iterates wn. The nature of the sets sn is essentially 
equivalent to that of wn and may be deduced in a similar manner by reversing the 
direction of time in the impact oscillator and replacing r by 1/r. 

The sets Wn are given by Wn = pn(¢, 0) for 0 < ¢ < 2njw. If ifJEl then the particle 
remains stuck to the obstacle and we may consistently define wn = {¢, 0) for all 
values of n. At the point¢ = ¢a the particle becomes unstuck and the point pn( ¢a, 0) 
is than an end-point for wn. Equivalently the point p-n(¢p, 0) is an end point for 
sn. As ¢ increases away from ¢a, the curves wn describe smooth loci until (for 
example) Wl intersects 8 1 at the point C when (say)¢= ¢8 . At this point we apply 
the results of the last section to calculate the locus of W2. Indeed wn divides into two 
disconnected curves for ¢ < ¢8 and ¢;?: ¢8 one of which (given by ¢ < ¢ 8 ) 

approaches (but does not intersect) Wl at the point A indicated on figure 6 and the 
other intersects the line {v = 0} when¢= ¢8 . Similarly, wa intersects W1 tangentially 
at A when¢;?: ¢8 . By reversing time a very similar behaviour is observed when 8 1 
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intersects fV1 in that S 2 is divided into two subsets, one of which approaches 8 1 

transversally at the indicated point B and the other intersects the line {v = 0}. 
Moreover, the set S 3 intersects 8 1 tangentially at B. 

As ¢ increases to ¢p the sets wn tend toward the point (¢p, 0) and have an 
approximately parabolic form close to this point. Similarly the sets sn tend toward 
parabolae passing through the point (¢", 0). We describe this behaviour in detail 
in §3. 

The simple observations account for much of the structure of figure 6 and this basic 
structure is, in general, preserved for other values of w, (]'and also when damping 
between impacts is included in the model. In the following sections we see how, by 
including chatter into the dynamics, we can predict much of the global behaviour of 
P (and the forms of the domains of attraction) from these observations of the forms 
of wn and sn. 

3. Chatter and the invariant chattering region 

We now turn our attention to the main theme of this paper: namely the existence 
of chattering orbits and the role played by chatter on the dynamics of the impact 
oscillator. Loosely speaking, a chattering motion is one that involves an infinite 
number of low velocity impacts with the obstacle before the particle comes to rest 
against it with some phase ¢ 00 in the sticking region. Similar phenomena have been 
observed in the (chaotic) motion of billiard balls (Katok & Strelcyn 1980) where they 
are referred to as 'dead end orbits'. 

To be precise, we define an orbit to include chatter if it contains a sequence ( ¢n, vn) 
such that 

as n-+oo, 

where ¢ 00 EI. We can also have various forms of incomplete chatter in which there 
are a large number of low velocity impacts in a short time interval, but at some 
critical value of N, ¢ N > ¢" and, as the acceleration of the particle is now away from 
the obstacle, the phase of the next impact ¢N+l is then rather different from ¢N· 

Any motion which includes chatter must include the point(¢", 0). Hence if chatter 
repeats then the orbit is necessarily periodic. However, the motion can still be very 
complex, especially if the image of the point (¢", 0) is close to a saddle-point of the 
mapP. 

In this section we show that chattering orbits define a basin of attraction !!J for the 
sticking region I, formed by the pre-images of the orbits which include chatter. 
Moreover, !!J is bounded by a set ((5 which is an accumulation set for the sets sn as 
n-+oo. 

For simplicity, our discussion will be mainly concerned with the forcing function 
j(t) =cos (wt). However, many of the conclusions apply as well to more general 
differentiable, periodic forcing functionsj(t) such thatj(t)- (]'changes sign at the two 
points ¢" and ¢p· 

(a) The dynamics of a chattering motion 

To demonstrate the existence of a chattering motion when j(t) =cos (wt) we 
presume that the particle has an initially low velocity for some value of ¢ 0 EI, where 
¢ is not too close to the end points of I. In this case we have a positive acceleration 
toward the obstacle and we may presume that the time to the next impact is small. 
If we take dxjdt = -rv0 ~ 1 at phase ¢ 0 then 

d 2xjdt2 = cos(w¢0 )-(J', d 3xjdt3 = -wsin(w¢0 )+rv0 , etc. 
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Thus, if A = ¢- rp0 , we may express the local behaviour of the particle in terms of a 
Taylor series so that 

x = O"-rv0 A+!(cos(wrp0 )-0")A2 -!(wsin(wrp0)-rv0 )A3 +0(A4 ), (3) 

x =- rv0 +(cos (w¢0)- O") A -!(w sin (w¢0)- rv0 ) A2 + O(A 3). (4) 

The time to the next impact is given by the first value of A for which x(A) = 0". If 
v0 is small then A is also small and to leading order in v0 the value of A is given by 

A = 2rv0 j[ cos ( w¢0)- 0"]. (5) 

This approximation is reasonable provided that 

(w sin (w¢0 ) + rv0 ) A ~ (cos (w¢0)- O"), 

so that v0 ~ (cos ( w¢0)- 0")2 / ( w sin ( w¢0 ) + rv0 ). (6) 

We assume this to be the case for the present and return to it in the next section. 
It follows from (5) that the next impact occurs at the phase ¢ 1 , where 

¢ 1 = rp0 +2rv0 /[cos(wrp0 )-0"]. (7) 

Combining (4) and (5) gives the velocity at the next impact as 

(8) 

Thus, provided that condition (6) is met, (7) and (8) give a simplification of the 
impact map P for small velocities v0 and for rpEl. A similar simplification can be 
made for a wide class of forcing functions j(t). 

For any value of rp 00 El this map has a fixed point given by (rp,v)=(¢00 ,0) 
corresponding to a chattering trajectory which has come to rest at this point. If rfln 
is close to rp 00 and vn close to 0 then we can linearize the map about this point to give 

rfln+l ~ rfln + 2rvnf[ cos (wrp00 )- 0"], vn+l ~ rvn

Thus the local behaviour of the iterates of Pis given by 

Vn ~ rnv0 , rfln ~ rp 00 -2rn+lv0 /[(1-r)(cos(wrp00 )-0")]; 

(9) 

(10) 

an infinite number of collisions of ever decreasing velocity occurring in a finite time. 
The formulae (9) and (10) give the approximate dynamics of P close to the fixed 

point and it is evident from this that the points (r/Jn, vn) lie on the straight line passing 
through (¢00 , 0) given by 

vn = !(1-r) (cos (w¢ 00 )-0") (¢ 00 -rfln)fr. (11) 

The gradient of these lines is -!(1-r) (cos (w¢ 00)- O")jr which takes its maximum 
value when rp 00 = 0 and its minimum of zero when rp 00 = rfla or rp 00 = ¢p· When 
studying the trajectory of a chattering motion we should, in general, expect to see 
a set of points which approaches the line v = 0 along such a straight line. In figure 
7 we illustrate such a trajectory for which the first few iterations do not have a clear 
structure but eventually do become asymptotic to a straight line. 

(b) The invariant region !?fl 

The analysis of chatter presented above gives the final behaviour of a chattering 
trajectory but does not clearly indicate what initial conditions (other than 
'sufficiently small v0 ') inevitably lead to such a trajectory. We now address this 
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Figure 7. The iterates of P for an orbit which includes chatter. 

question by calculating a neighbourhood[!) of I which is mapped into itself by P and 
has the property that any trajectory starting in it inevitably experiences chatter 
before coming to rest. 

Surprisingly, we can calculate this region by examining the behaviour of the map 
P close to the end points(¢'", 0) and (¢p, 0) of I. We do this by considering the action 
of P on a series of parabolae ~parametrized by A passing through the point (¢'", 0). 
The structure of the map P close to ¢rx is then completely characterized by the effect 
it has on each such parabola and we express this in the following lemma. 

Lemma 1. Let~= {(¢,v): v = wA.(¢'"-¢) 2,¢ ~ ¢J; then if (¢-¢rxl is sufficiently 
small, 

where tt = j(A.) and 

j(A.) = ( -rA. +sin (w¢'") T-! sin (w¢J T 2)/(1- T) 2 , 

where 
T = ~-h/[9-24rA.jsin (w¢'")]. 

In other words, a parabolic set of initial conditions is mapped to another such set. 
(This result remains true for any sufficiently smooth forcing function.) 

Proof. We again use the Taylor series decomposition 

x = tr- rv0 A +!(cos (w¢0)- tr) A2 -!(w sin (w¢0)- rv0 ) A 3 + O(A 4 ). 

We now presume that (¢0 ,v0)E~ and that ¢ 0 = ¢rx-£, where cos (w¢J-tr = 0 and c 
is small. Then 

cos (w¢0)- tr = cos (w(¢'"- c))- tr = we sin (w¢J + O(c2 ), 

wsin(w¢0 ) = wsin(w¢rx)+O(c). 

Now, by definition, v0 = WA£ 2• Thus 

x = tr- r£2wA.A + !cw sin (w¢J A2 -!(w sin (w¢J-rwA.c2) A 3 

+ O(c2A2 ) + O(cA3 ) + O(A4 ). 

To solve this to find A such that x = tr, we put A= cT, where Tis of order 1, giving 

0 = -rwA. +!wsin (w¢'") T-~wsin (w¢J T 2 + O(c2 ). 
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If we then ignore terms of O(c2) we find that T satisfies the quadratic equation 

! sin (w¢J T 2 -!sin (w¢J T + rA = 0. 

The corresponding equation for x is 

x = -rE2wA + Ewsin (w¢J A -!wsin (w¢J A 2 + O(c2A). 

Substituting A = cT gives the velocity v1 at the next impact as 

v1 = E2w[ -rA+sin(w¢a)T-!sin(w¢JT2]. 

Now, the phase of the next impact is ¢ 1 = ¢ 0 +A, so that 

¢1 = <Pa-E+Tc 

= <fia-E(1-T), 
or 

<Pa-¢1 = c(1-T). 

Combining this with (12) gives 

v1 = Wf1(¢a-¢1)2, (¢1,v1)E~, 

where 11 = [ -rA+sin(w¢a)T-!sin(w¢JT2]/[1-TJ2. 

Now, T satisfies the quadratic equation 

T 2 -3T+ [6ritjsin (w¢J] = 0. 
So 

T = ~±h/[9-24ri\.jsin(w¢J]. 

(12) 

We take the negative root in this expression to ensure that T gives the phase of the 
first impact after ¢ 0 . Combining our expressions gives the formula for j in the 
Lemma. D 

The significance of this result is that close to <Pa we can simplify the map P to a one 
dimensional map from the set ~ to the set ~ characterized by the single function f. 

After some manipulation, we can show that j has the following properties: 

j(O) = 0; df/dA(O) = r < 1; d2f/dA2(A) > 0 for all A< sin(w¢J/3r; 

d2 J/dA2 (0) = 20 r2 /[3 sin (w¢J]; j(A) -+00, T-+ 1 as A-+ sin (w¢J/3r. 

The general form ofj(A) is illustrated in figure 8, together with the line g(A) = A, and 
the intersection of these demonstrates the existence of a fixed point of f. 

Combining these simple results gives the following important lemma. 

Lemma 2. (i) The Junction j(A) has a unique non-zero fixed point A00 where 
! sin (w<fia)/r > A00 > 0 such that j(A00 ) = A00 and a further fixed point A= 0. 

(ii) If sin (w¢a)f3r > A > A00 then j(A) > A. 
(iii) If A< A00 thenj(A) <A andr(A)-+0 as n-+oo. 

By using the local information on j close to the origin we have that for small A 

j(A) ~ rA+[10r2A2/3sin(w¢00 )]. 

If r is close to one we may use this expression to compute A00 ; indeed 

3 (1-r) . 
Aoo ~ ---2 -sm (w¢oo)· 

10 r 



14

0.2 

0.1 

0 

v 

" 

/ 
/ 

/ 

/./ 

/ 

/ 

h 

/ 

0.08 
;., 

f 

Figure 8. The function J(it). 
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Figure 9. The parabola Too and the locus of a chattering orbit for which ¢oo = ¢a· 

Lemma 2 is a most important result because if we are sufficiently close to the point 
(¢'", 0), so that the approximations we have made are negligible, we can deduce from 
it the existence of a curve which is invariant under the action of P. 

Corollary. If¢ is close to ¢rx then the curve 

is invariant under the action of P. 

Any chattering orbit for which ¢ 00 = ¢rx must ultimately lie on the parabola T00 and 
we illustrate this in figure 9. Indeed, a point on T00 will move monotonically to the 
right, converging to the point (¢'", 0). 

In fact, the arc of the parabola T00 with end-point (¢'",0) is a limit for an invariant 
curve of the mapP as ¢--'J>¢rx· Further away from ¢rx thetermsof0(£2 ), which we have 
neglected in the expressions for x and v, become important and while P continues to 
have an invariant curve, this set departs from being a simple parabola. (We note that 
this is not a rigorous proof of the existence of such a curve which would need more 
careful arguments than those given here such as a fixed point construction in an 
appropriate function space. However, the arguments here do demonstrate how such 
a curve can be constructed.) To compute this invariant curve we take a small arc of 
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Figure 10. The pre-iterates of the parabola T00 , illustrating the set~ and 
the invariant region~-

the parabola T00 with (rpa, 0) as an end-point and iterate this set backwards under the 
action of p-1 . This defines a complex set of curves which are not all connected and 
some of these are illustrated in figure 10. 

From this figure we identify an arc, also with end-point (rpa, 0), which further 
intersects the line v = 0 at the point (¢1', 0) where 

¢1' < r/Jp < 2njw. 

The image of (rpy, 0) under Pis the first point where the backward iterates of the arc 
of T00 intersects the set JVI. We denote this curve by ((5, and the region enclosed 
between itself and the line v = 0 by !?fl. We make the assumption at this point that 
the map P has no fixed points lying either on ((5 or in !?fl and the closely related 
assumption that the set 8 1 does not intersect ((5. It follows from these assumptions 
that Pis smooth and invertible within !?fl. Now, as both ((5 and the line I are invariant 
under the action of P, it then follows that !?fl will be an invariant set (under the 
forward action of P) and, by the assumption on the fixed point of P, any trajectory 
with an initial point in !?fl must inevitably lead to chatter. 

We can show further that, under these assumptions, the curve ((5 is an accumulation 
set for the curves sn. We establish this in the following lemma. 

Lemma 3. (i) If¢ is close to rfla, then 8 1 has a component which coincides with the 
parabola 'qsin(wg\.)fr· 

(ii) As n -+00' sn has a component which coincides with the set of parabolae TA where 
i\.n is monotonically decreasing, f(i\.n) = i\.n_1 , i\.1 =~sin (wrpaJjr and i\.n-+ i\. 00 as nn -+00. 

Proof. The discontinuity set 8 1 is the set of points (¢0 , v0 ) for which 

P(r/Jo,Vo) = (¢1,0). 

If we assume that ¢ 0 ~ rfla and we set v1 = 0 in (12), then T and i\. must satisfy the 
relation 

so that 

-ri\.+sin(w¢a)T-!T2 sin(w¢al = 0, 

T 2 - 2T + [2ri\.jsin (wrpaJ] = 0. 

15-2 
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But T must also satisfy the quadratic equation 

T 2 - 3T + [6rAjsin (w¢J] = 0. 

Combining these two equations gives 

T = ~ and A= ~sin (w¢Jjr. 

Hence to leading order, 8 1 has a component given by the parabola T;,_ where 
1 

A1 =~sin (w¢Jjr >!sin (w¢J/r > A00 • 

Proceeding as before, sn has a component given by T;,_ where 
n 

An = r 1(An-1) 

and by the previous calculation, An> A00 ,An < An_1 and An-l>-A 00 as n-?-00. D 

The above lemma gives a precise description of the sets sn close to the point 
(¢a, 0) which is in accord with the observations recorded in figure 6. 

We conclude that under the assumptions about the fixed points of P, the curve CtJ 
and the line v = 0 bound a region ~ with the following properties. 

Theorem 1. (i) The region ~ is an invariant region for P and any orbit starting 
within it experiences chatter before sticking. 

(ii) The boundary of~ is an invariant curve CIJ. 
(iii) CtJ is an accumulation set for the curves sn as n _,.. oo. 

We can say a little more about the shape of ~ by considering the points of 
intersection between CtJ and the sets wn considered in the last section. These sets have 
a structure which, in a neighbourhood of the point (¢p, 0) is very similar to that of 
sn and is given by the following result. 

Lemma 4. Let~= {(v, ¢): v = wA(¢-¢p) 2 , ¢;?! ¢p}. 
(i) If¢ is sufficiently close to ¢p then 

P(~) = ~' 
where 

and T satisfies the quadratic equation 

T 2 +3T-[6rAjsin(w¢a)J = 0. 

(ii) In a neighbourhood of (¢p,O) 

WI=~ A1 =~sin (w¢J 
1 

and Wn(¢, v) = ~n' where An= g(An_1 ). 

(iii) As n _,..oo, wn _,.. {v = 0}. 

Proof. The proof of this result is similar to that for 8 1 and follows by taking a 
Taylor series expansion close to (¢p, 0). For simplicity we shall omit it. D 

The map g(A) is very similar to f(A); however it has the significant difference that 

dgjdA (0) = r, d 2g/dA2 (A)< 0, VA> 0. 

Thus it has no fixed points other than A = 0 and hence An_,.. 0 so that 

wn_,..{v = 0} as n-?-00. 
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Figure 11. The form taken by the sets sn and wn in the neighbourhood of the set~. 

The resulting form of !(!, and of the sets sn and wn in a neighbourhood of I is 
illustrated in figure 11. 

To complete our description of the invariant set!'» we note from figure 11 that the 
sets S1 and W1 intersect at a point A 1 which is close to!(/. Similarly, W1 intersects the 
sets sn at a sequence of such points An accumulating at the point A 00 where W1 
intersects 1(/. 

We define Bn to be the pre-image of An so that Bn = p-l (An) and 

Bn ESn+l n {v = 0}. 

It follows thatBn-+B 00 , whereB 00 = (¢>y,O) is the point where!(/ intersects the line 
v = 0, so that if Bn = (¢>n, 0) then ¢>n -+¢>1' <¢>pas n-+oo. We can also deduce the 
structure of!(! close to the point B 00 , by studying the pre-image of the set sn close to 
its intersection with Wl. It follows from the discussion in §2 (b) that this is a portion 
of the set sn+l passing through Bn, and that close to Bn this set approximates a 
straight line of gradient 1/[r(o--cos (<f>n))]. Taking the limit as n-+oo we deduce that 
close to Boo the curve!(/ approximates a straight line of gradient 1/[r(o-- cos (¢>y))]. 

(c) Incomplete chatter 

We conclude this section by looking at those trajectories which have a large 
number of low velocity impacts but do not ultimately stick to the obstacle. Such a 
trajectory must include a point which lies close to the curve !(/ but not inside the 
region !'». The iterates of this point will then initially lie close to !(/ and will have low 
velocity impacts, but will eventually leave a neighbourhood of !(/ after a finite 
number of iterations. The closer the initial point is to !(/, the more low impacts will 
be included in the motion. We can estimate the curve dividing those low velocity 
impacts that lead to further such impacts at a nearby time from those that lead to 
high velocity impacts at a rather later time, by the set S1 . Indeed, those points lying 
to the 'left' of S1 are mapped to a neighbourhood of!(/, whereas those lying to the 
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Figure 12. The iterates of a trajectory which includes a sequence of incomplete chatter. 

'right' are mapped to that part of fVl which is close toP( if> a, 0). We illustrate this in 
figure 12 by plotting the iterates of P corresponding to a trajectory which includes 
a sequence of impacts with incomplete chatter. 

4. Domains of attraction 

For various values of w and o-, the map P has distinct periodic attractors (for 
example w = 2.6, o- = 0) and, as we saw in the introduction, the domains of 
attraction of each such attractor can have a complex form. Much of this complexity 
can, however, be understood by examining the images and pre-images of the set 5» 
constructed in the last section. This follows partly from the following simple result. 

Lemma 5. All points in 5» and its pre-images have the same asymptotic behaviour as 
the single point (if>a, 0). 

Thus, if a trajectory starting from (if> a, 0) is attracted to a periodic orbit then so will 
all trajectories with initial conditions in 5» and its pre-iterates. 

We now calculate the form taken by the pre-iterates of 5». The point A1 ES1 n fVl 
constructed in §3 has the pre-iterateB1 ES2 n (v = 0). By applying the results of§2 (b) 
we may deduce that B 1 has, in turn, the pre-iterate 0 1 lying on the intersection of sa 
with S 1 and which is also a limit point of the set S 2 . If we now compute the pre-image 
of that portion of S 2 lying between B 1 and A 2 we see that it forms a part of sa which 
intersects S 1 at the point 0 1 and approaches S 1 again at the point 0 2 which is the pre
image of B 2 such that 0 2 ES1 n S 4 . Indeed, sa forms a loop around the end-point of 
S 1 which is the pre-image of the point (r/>p, 0). Following the discussion in §2 it is 
evident that sa intersects S 1 tangentially at 0 1 and approaches it transversally at 0 2 . 

A similar argument applied to the portion of sn lying between Bn_1 and An, shows 
that the pre-iterate of this set forms a loop around the end of S 1 intersecting 
it tangentially at Cn_1 and approaching it at Cn. We illustrate this behaviour in 
figure 13. 
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Figure 13. The region ,ff surrounding the end-point of the set 8 1 which is 

mapped into the region £fi. 

The resulting curves accumulate onto the pre-image of the portion of C(J which lies 
between Boo and Aw- This curve loops around the endpoint of S 1 and intersects it 
twice at the point 0 00 which is the limit of the points 0 n as n -+00. The loop encloses 
a non-empty region Iff containing the point p-1 (r/Jp,O) such that P(cff) is that subset 
of 5» bounded by C(J, fVl and the line v = 0. Any point in Iff will form an initial point 
of a trajectory with chatter. The pre-images of Iff are similarly non-empty regions 
containing the points p-n(r/Jp, 0). Any point in such a region is ultimately mapped into 
5» and hence is attracted onto the same trajectory. We denote the union of these 
regions, together with 5», by ff, which is then the domain of attraction of the sticking 
region I. The general form of ff is clearly visible in figure 10 and also in the domains 
of attraction of the two periodic attractors for P given when w = 2.6, o- = 0 which is 
presented in figure 4. In the latter example the set ff is visible as a union of sets, each 
centred on the end points of a set sn and all attracted to the (6, 6) orbit. 

We can extend our understanding of the domains of attraction of the fixed points 
of P by considering the asymptotic behaviour of the trajectories with incomplete 
chatter which have an initial point close to C(J. As we have shown, C(J is an 
accumulation of the sets sn and these sets lead to considerable stretching of the phase 
space. Consequently, we would expect that the domain of attraction will have a 
complex form close to C(J. Our discussions in §2 showed that a set of data 'parallel' 
to a set sn is not stretched by the action of P whereas a set of data which intersects 
sn transversely is considerably stretched by P. This simple observation indicates 
that two points joined by a chord parallel to sn are likely to have the same 
asymptotic behaviour and be mapped to the same attractor, whereas two points 
joined by a chord which intersects sn may be mapped to different attractors. The 
resulting form of the domain of attraction of the two at tractors given when w = 2.6, 
o- = 0 in a neighbourhood of C(J is illustrated schematically in figure 14 and takes the 
form of a series of 'stripes' roughly parallel to C(J. The pre-iterates of this 
neighbourhood of C(J are in turn a series of stripes surrounding the various 
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Figure 14. The 'striped' nature of the domain of attraction close to the region !?fl. 

v 

Figure 15. The accumulation of the sets wn onto the end-point of the set WI. 

components of the set $' which, by the arguments above, will form a series of loops 
around the end-points of the sets sn. This short discussion explains the loops visible 
in figure 4 which are, in turn, the boundaries of the components of the set$'. 

To see more precisely why this behaviour occurs, we consider the images of the sets 
Vn, defined to be the subsets of WI lying between the points An and An+l but not 
including the point An+1· A simple calculation shows that the set pm(Vn) is a subset 
of wm+l that lies between sn-m and sn-m+l if m < n, and between S 1 and the line 
{v = 0} if m = n, intersecting {v = 0} at the point Dn = pn(Anl· Furthermore, the set 
pn+l(Vn) is a subset of wn+ 2 that intersects WI tangentially at the point En = 

pn+l(An), loops round the end point, E 00 , of WI, given by P((if>a,O)), and approaches 
WI transversely at the point En+1· We illustrate this behaviour in figures 15 and 16. 
These figures are closely related to the strange attractors of various forms of chaotic 
behaviour and we shall return to this in the next section. 
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D 1 =P(A1) 

Figure 16. The approximately triangular set L1 1 and two of its iterates. 

The behaviour of these curves is very similar to that of the curves sn close to the 
endpoint of S1 . However, there is a significant difference in that as n--+00, 

Dn-+(¢rx,O), En-+P(¢a,O). 

The approximately triangular region Lin, bounded by the sets Vn, sn, sn+l and the 
point (¢a, 0), is mapped by pn onto the region bounded by pn(Vn), S1 and the line 
v = 0 and by pn+I onto the region Gn, on the end of Wl, that is bounded by the loop 
made by wn+2 and that part of JV1 lying between the points En and En+1· 
Furthermore, as n-+oo the sets Gn accumulate onto the single point E 00 • 

The precise form of the domain of attraction of P close to C(/, and for the pre
iterates of these points, is then determined by the form of this domain in a 
neighbourhood of the single pointE oo- If we consider the special case in which P has 
precisely two attracting states A and B, then in this case two possibilities may arise. 

(i) Eoo is interior to the domain of attraction of A (or B). 
(ii) E 00 is on the boundary of the domain of attraction of A (or B) (or, perhaps, is 

very close to the boundary). 
In case (i) the sets G n (which decrease in size as n --+00) will ultimately all lie inside 

the domain of attraction of A (or B). Consequently, close to C(/, all trajectories will be 
attracted to A (or B). In contrast, in case (ii) the boundary of the domain of 
attraction of A (or B) will intersect G n for all n and hence, some points of Vn will be 
attracted to A and some will be attracted to B. As a consequence each region Vn will 
contain 'stripes' which are attracted to A or B. This behaviour is illustrated in figure 
17 and accounts for the structure observed in figure 14 and also in figure 4. 

5. Periodic chatter and chaos 

Finally we study the occurrence of trajectories in which chatter is repeated. Such 
trajectories are necessarily periodic. Closely related to these are chaotic trajectories 
with recurrent examples of interrupted chatter. 
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Figure 17. The intersection of the sets wn with the domain of attraction of point A shown 
shaded and the resulting pre-iterates of this region. 
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Figure 18. The sequence of points lying on the periodic orbit with chatter which 
occurs when w = 2.7 and 0' = 0. 

A trajectory with chatter necessarily evolves in subsequent time as the iterates 
Fn = pn( efta, 0) of the single point (efta, 0). These iterates are also the 'end-points' of 
the sets wn. Such a trajectory will be periodic if FN lies inside £» for some value 
of N < oo (or alternatively if FN-lEtff etc.). As the sets£» (and Iff) have non-zero 
measure it is likely that this will occur for a range of values of the parameters r, 
wand rr. For example, if rr and rare fixed then we would expect to see an interval 
of values [w1 , w2] at which periodic chatter is observed, such that at w1 and w2 then 
FN E C(f is on the boundary of £», and for w1 < w < w2 then FN lies inside £». Indeed if 
r = 0.8 and rr = 0 then such an interval occurs for 

2.692 < w < 2.701 and N = 5. 

The resulting iterates Fn for the particular case w = 2.7 are illustrated in figure 18. 
It follows, by construction, that if w1 < w < w2 , then the end-point E 00 ( = F 1 ) of WI 

must lie interior to the domain of attraction of the periodically chattering orbit. 
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Figure 19. The domain of attraction of the (2, 2) (shaded), (8, 6) (white) and periodically 
chattering (black) orbits that occur when w = 2.7 and tJ = 0. 

First, this implies that any such an orbit must be stable. Second the domain of 
attraction must then be of the form (i) described in §4. Indeed the domain of 
attraction for the periodically chattering orbit is rather large and is illustrated in 
figure 19. 

We now suppose that w is slightly greater than w2 so that FN lies just outside!!). 
Instead of experiencing chatter the further iterates of FN will form an incomplete 
chattering sequence. Indeed there will be a further point pN+M such that pN+M ~ 
(¢"',0) and pN+M+l ~F1 . In this case pzN+M will be close to FN but, owing to the 
effects of stretching will be further away from !!) than FN is. There will be a sequence 
of such points F 3N+ 2M, F 4N+aM etc. each giving an incomplete chattering sequence 
until the points are too far from !!) for incomplete chatter to be observed. This 
behaviour is illustrated in figure 20. The subsequent behaviour of the points Fk is 
then going to be very different from the chattering sequence and will probably be 
attracted to a very different asymptotic state. We conclude that the periodic chatter 
observed for wE [ w1 , w2] does not deform continuously into another form of periodic 
motion when w leaves this interval but is likely to be replaced by a very different 
form of asymptotic state. 
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Figure 20. The sequence of iterations of the point (¢a, 0) when w > w 2 • 
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Figure 21. The strange attractor for the chaotic motion that arises when w = 2.8 and 17 = 0. 

Indeed, if we continue to consider the above example and let w increase from 2.701, 
we find that the iterates of P have a chaotic behaviour. The strange attractor of this 
motion when w = 2.8 is illustrated in figure 21 (the corresponding trajectory is given 
in figure 2 (b)). Some of the structure of the strange attractor can be understood in 
terms of trajectories which include incomplete chatter. In particular it is shown in 
Whiston ( 1992) that the strange attractor of a chaotic orbit is, in general, close to the 
set Woo= U~~1 wn. Now, the analysis in the previous section, summarized in figure 
15, showed that as a result of the intersection of WI with Cfl, the set Woo includes a 
series of loops connected to WI and accumulating on the point P(¢a, 0). Orbits 
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mapped onto these loops necessarily include sequences of interrupted chatter. 
Inspection of figure 21 shows that the strange attractor certainly inherits a great deal 
of the structure of woo with the loops close to the end point of JVl clearly visible. The 
related sequences of incomplete chatter are visible in figure 2 (c). Very similar 
behaviour can be observed in the strange attractors of the chaotic trajectories of 
orbits with different parameter values and will occur in general whenever one of the 
iterates of the point (¢a, 0) lies close to the curve Cf/. For the case o- = 0 this occurs 
when w is close to an odd integer and partly explains the fact that chaos is frequently 
observed for these values (see the discussions in Shaw & Holmes 1983; Budd et al. 
1993). 

6. Conclusions 

We have shown that chatter can arise quite naturally in the idealized impact 
oscillator and that it helps explain both the forms of the domain of attraction of 
periodic attractors and the strange attractors of chaotic motions. The discussions in 
this paper have been of a rather idealized model, but it is significant that the set :?2 
calculated is large and will therefore be stable to perturbations of the model which 
make it more realistic. (Although we would have to modify the precise definition of 
chatter in the case of different impact laws.) As the dynamical significance of chatter 
is largely related to the interaction of :?2 and its iterates with the set 8 1 , it is probable 
that some of the predictions of this paper are also true for more realistic models. We 
leave this as a subject for future investigation. 
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