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Abstract—In the current work the conceptual framework
of optimally stopping a stochastic process is used to determine
the optimal maximum number of retransmissions in an ARQ
chain. The process sequentially observed is the binary ARQ
feedback after each packet (re)transmission (ACK/NAK).
A reward-cost process Y

C
n is constructed as a function of

the observed sequence up to time n with a certain reward
and cost per trial as well as a final penalty in case the
retransmission process is finalised before correct packet
reception. Two problems are investigated, namely the cases
without and with cost. In the ARQ stopping problem without
cost ergodicity conditions of the ARQ Markov chain are
stated and proved. These guarantee with probability one finite
waiting times until the first ACK is received. The solution of
the ARQ stopping problem with cost provides an explicit
expression for the optimal truncation time of ARQ protocols
as a function of the costs and rewards and suggests a tradeoff
between delay and dropping probability. Conditions for cases
when the ARQ chain should not be truncated as well as when
no retransmissions should be allowed at all are presented. The
stopping rule is applied to practical ARQ scenarios where
the behavior of the truncation time with respect to different
supported rate, delay and dropping is investigated.

I. INTRODUCTION
In wireless communication networks, the stochastic na-

ture of the channel provides an unreliable link to nodes
that attempt to communicate with each other. Noise and
channel fading set capacity limits on the instantaneous
rate of information that can be transmitted through the
link, error free. However, 100% reliable communications
can not be fulfilled at any rate in practice where only
finite-length codes and imperfect channel state information
are available. Thus communications is always bound to
errors, which can be diminished with the aid of small size
modulation constellations, low-rate error-control codes and
expensive channel state information feedback.
An alternative approach to deal with the erroneous

behavior of the channel is to rely on an Automatic Retrans-
mission Request (ARQ) protocol which repeats transmis-
sion of packets declared in error at the receiver. In this case
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the transmitter is informed through a control channel and
binary feedback (ACK/NAK) whether it should retransmit
the erroneous message or move on to the first transmission
of the next packet waiting for service. On the one hand
since retransmissions are only activated when necessary,
system throughput can be improved relative to the use
of Forward Error Correction Codes (FEC). Combination
of these two techniques to combat channel errors has
given rise to Hybrid ARQ (HARQ) protocols [1], [2]. On
the other hand, occasionally even with HARQ, a large
number of retransmissions may be required resulting in an
unacceptable maximum delay. This delay can be reduced
by limiting the maximum allowable retransmission number
leading to truncated ARQ techniques [3], at the expense
of packet loss when the maximum number is exceeded.
A cross-layer combination of adaptive modulation and
coding with truncated ARQ has been investigated in [4]
where given a maximum number of retransmissions and a
maximum acceptable probability of packet loss that satisfy
certain service quality requirements, the gain in spectral
efficiency is shown to be considerable. Furthermore this
improvement decreases as the allowed retransmissions per
packet increase.
In most current approaches in the literature that deal

with ARQ, the truncated version is generally accepted as
realistic and optimal in terms of delay-throughput trade-
off. However the maximum number of retransmissions is
considered as a predefined constant, given which the entire
analysis follows, see e.g. [2]–[5], [6]. In the current work
we make use of the conceptual framework of sequential
analysis and optimal stopping [7] to determine the optimal
accepted number of retransmissions in an ARQ chain,
given a sequence of rewards and costs per retransmission
and a terminal cost when the packet fails to be correctly
received. The costs per trial as well as final cost are related
to the desired quality of service.
In the following we formulate the ARQ problem as an

Optimal Stopping problem, in section II, considering an in-
finite horizon. The stochastic process sequentially observed
is the binary feedback after each packet (re)transmission



{Xn}. We construct a reward-cost process
{

Y C
n

}

as a
function of the observed sequence up to time n, which will
be denoted as the payoff. The reward sequence {Cn} can
be related to some rate gain for successful transmission,
whereas the costs can be interpreted as a power/delay cost
per retransmission {Dn} as well as a final cost in case of
dropping at step n, equal to {µn}.
After each observation of Xn we can decide whether we

want to stop and receive the related instantaneous payoff
Y C

n or allow a new retransmission. We are looking for a
stopping rule T to maximize the expected payoff providing
us with the optimal truncation time. In section III, the
ARQ problem with reward and no cost is considered where
the retransmissions are not penalized. It is shown that it
is obviously optimal to continue retransmissions until the
first ACK is received and immediately stop afterwards.
Several conditions for finite waiting time (finite trials) up to
first ACK received are provided. The maximum expected
reward over all possible stopping rules for the problem
without cost serves as an upper bound for the case with
cost to be presented in section IV.
In the ARQ problem with cost we characterize the

maximum expected payoff and find an explicit optimal
stopping rule to achieve this, as a function of the stepwise
error probabilities, costs per trial and final cost. Given the
optimal stopping solution, section V discusses the case of
truncation for T=1, where no retransmissions are allowed
and we have to live with the erroneous channel since ARQ
is not ’worthy’ enough in terms of delay or power cost.
We consider furthermore conditions when the ARQ chain
should not be truncated T = ∞. In section VI the rules
are applied to scenarios with specific choice of costs {Cn}
and rewards {Dn}, {µn} related to real ARQ systems
and plots illustrate the relative behavior of the optimal
retransmission number. Generally speaking the truncation
time T is shown to be increasing w.r.t to supporting rate
R and dropping cost µ and decreasing w.r.t. delay and/or
power cost per retransmissionD. Finally section VII draws
the conclusions of our work.

II. ARQ AS AN OPTIMAL STOPPING PROBLEM
A. On Optimal Stopping Rules
Let us consider a filtered space (Ω,F , {Fn} ,P) where

(Ω,F ,P) is a probability triple and {Fn : n ∈ N} is a
filtration, that is an increasing family of sub-σ-algebras
of F : F0 ⊆ F1 ⊆ . . . ⊆ F . Each Fn contains all the
null sets of F . We consider further a stochastic process
X = (Xn : n ≥ 0) defined on this probability space each
random variableXn having state spaceR, measurable with
respect to the Borel σ-algebra B (R). The process is called
adapted to the filtration {Fn}, meaning that for each n,
Xn is Fn-measurable. To simplify we consider the case
of the natural filtration where Fn = σ (X0, X1, . . . , Xn).
Since the process is adapted the value Xn (ω) , ω ∈ Ω is
known to us at time n.
The problem of optimal stopping can be described as

follows. We observe the sequence of random variables

{X1, . . . , Xn, . . .} until we decide at some step n to stop
and receive a payoff Yn (ω) = fn (X1 (ω) , . . . , Xn (ω)),
which is an Fn measurable function fn : Ω → R, f−1

n :
B (R) → Fn. A random variable τ = τ (ω) : Ω →
{1, 2, . . . ,∞} defined in (Ω,F ,P) is a Stopping Time if
it is almost surely (a.s.) finite

P {τ (ω) < ∞} = 1 (1)

and satisfies the non-anticipativity requirement [8], that is
for each n ∈ N ∪ {∞}

{ω : τ (ω) ≤ n} ∈ Fn (2)

where F∞ := σ (
⋃

n Fn) ⊆ F . In simple words,
the stopping time is a time when we decide to stop
our process based solely on the already available sam-
ples that we have observed up to and including time n
{X1 (ω) , . . . , Xn (ω)}.
We are looking for a stopping rule τ = T with the

attributes (1) and (2) that maximizes the expected reward
E [Yτ ] in the class of all stopping times C for which the
expectation exists.
Writing Y = Y + − Y −, where Y + = max {0, Y } and

Y − = max {−Y, 0}, the expectation is defined if one of
the two terms is finite [9]. Furthermore Yτ ≤ supn Yn.
Hence under the condition that

E

[

sup
n

Y +
n

]

< ∞ (3)

the expectation is always well defined, possibly infinite and
it holds in particular −∞ ≤ E [Yτ ] ≤ E [supn Y +

n ] < ∞.
The maximum expected reward equals

V := sup
τ∈C,1≤τ<∞

E [Yτ ] (4)

and we are looking for the rule T ∈ C (if it exists) such
that

E [YT ] = V (5)

Under assumption (3) and if P (T < ∞) = 1, such an
optimal stopping rule can be shown to exist [10], [11]).
The rule maximizing the expected return is given by

the principle of optimality [7], [10] which is the basis of
Dynamic Programming.
It suggests that we ought to continue the observations

as long as the future expected payoff is greater than the
present reward and stop immediately otherwise.

B. The ARQ Model
In the case of ARQ the evolving process is the feedback

to the transmitter which contains the information whether
a message has been correctly or erroneously received.
The observed discrete-time process with finite state space
{0, 1} is described as follows

Xn =

{

1 if NAK is received
0 if ACK is received (6)



Note here that usually the value 1 represents a successful
reception instead of unsuccessful, however this convention
is adopted to simplify notation in the following.
We further define the process {Zn} with countably

infinite state space {1, 2, ...}, where the random variable
Zn is the number of retransmission effort at the n-th
time slot. Suppose that at slot n − 1 we are at the
k-th trial of some message, in other words Zn−1 =
k. There are two possibilities for the states of variable
Zn, either to move on to stage Zn = k + 1 if a
negative acknowledgement comes or to return to stage
Zn = 1 for the first transmission of the next message
in case of ACK. The events {Zn = k|Zn−1 = k − 1}
and {Zn = 1|Zn−1 = k − 1} are mutually exclusive and
exhaustive and occur with probabilities pn and qn respec-
tively which sum up to 1. Since the process at time slot
n depends only on the state of the process at the previous
slot, it forms a Markov Chain. The transition probability
diagram is given in the following figure and illustrates
a specific type of random walk in one-dimension better
known as a success run while the one step transition

Fig. 1. Transition Probability Diagram for homogeneous ARQ with
countably infinite states

probability matrix for the process {Zn} is

P =

⎛

⎜
⎜
⎜
⎝

q1 p1 0 0 0 · · ·
q2 0 p2 0 0 · · ·
q3 0 0 p3 0 · · ·
...

...
...

...
. . .

...

⎞

⎟
⎟
⎟
⎠

(7)

We assume in our model different success probabilities per
trial since the coding, modulation or power per retransmis-
sion may be chosen to vary [4], [12] in an effort to mini-
mize the dropping probability and the average number of
efforts until ACK. For the process {Xn} we have then that
P (Xn = 1|Zn = k) = P (Zn+1 = k + 1|Zn = k) = pk

and P (Xn = 0|Zn = k) = P (Zn+1 = 1|Zn = k) = qk.
That is, the current value of success probability depends on
the number of consecutive unsuccessful retransmissions up
to this point. The expected valueE [Xn] = 0·qk+1·pk ≤ 1.

C. Payoff Function
Let us now introduce the reward-cost process {Yn} =

fn (X0, . . . , Xn) where fn : {0, 1}× . . . × {0, 1}
︸ ︷︷ ︸

n−times

→ R is

an Fn-measurable function. In the following we construct
the processes of interest.

The random variable defined as Mn := X1 · . . . ·
Xn, M0 = 1 is non-negative and can take values from
the state space {0, 1}. If at some point k, Xk = 0 (ACK),
then Mn≥k = 0 that means that the process may only
stay constant or decrease. Then the process forms a super-
martingale [13]

E [Mn|Fn−1] = X1 · . . . · Xn−1 · E [Xn|Fn−1]

≤ X1 · . . . · Xn−1

= Mn−1 (8)

{−Mn} forms a non-positive sub-martingale.
Suppose now that before each observation Xn we place

a bet Cn the value of which we choose considering
only the known observations {X1 (ω) = x1, X2 (ω) =
x2, . . . , Xn−1 (ω) = xn−1}. Then since {Cn} is Fn−1

measurable and independent of Xn it forms a previsible
process. Some interesting choices of the previsible process
for the ARQ analysis could be some sequence of rates e.g.
Cn = Ro, Cn = Ro

n
or Cn = βnRo, 0 < β ≤ 1.

The reward that we receive for observing the random
variable Xn equals Cn ·(Mn−1 − Mn). Then if Mn−1 = 1
meaning that an ACK is not yet received up to step n−1 the
n-th step reward can either equal Cn if Xn = 0 (ACK at
step n) or 0 if the n-th retransmission is again unsuccessful.
If Mn−1 = 0 then definitely Mn = 0 and the n-th step
reward is 0. The total reward up to n equals

Yn =
n
∑

k=1

Ck · (Mk−1 − Mk) (9)

=
n
∑

k=1

Ck · X1 · . . . · Xk−1 · (1 − Xk) (10)

The n-th step reward is the difference Yn − Yn−1 =
Cn · (Mn−1 − Mn). Observe that the way we created the
reward function (9) implies that if no ACK is received
until n and given M0 = 1 we have a total reward equal to
Yn = 0. If an ACK is received for the first time at some
step k ≤ n, then Yn = Ck and remains constant ∀ń ≥ n.
We can directly conclude

Lemma 1 The reward process Yn is a sub-martingale
under the condition that {Cn} is a non-negative, bounded
and previsible process.

Proof: We have already shown in (8) that −Mn is
a sub-martingale. Then, conditioned that {Cn} is a non-
negative, bounded, previsible process (see theorem 10.7 in
[13]) we can directly deduce that

E [Yn − Yn−1| Fn−1] = Cn ·E [−Mn + Mn−1| Fn−1] ≥ 0

Optimal stopping problems usually include a cost per
observation as well as a terminal cost. For the case of
ARQ it is reasonable to consider as cost the delay added
to the system or the lost power due to an unsuccessful
transmission. The costs per observation sum up and are



deterministic, that is they do not depend on the values
of the observed process directly. Their sum depends only
on the number of observations we are willing to make.
Furthermore the terminal cost is related to some penalty
in the case we stop observation before a specific goal is
attained - that is in our case a penalty for stopping before
an ACK is received. Such a penalty is reasonable since the
unsuccessful packet will be dropped and this will affect
the user’s quality of service. In the following we give a
general expression of the reward-cost process, which will
be denoted as the payoff at step n

Y C
n =

n
∑

k=1

Ck (Mk−1 − Mk) − γ
n
∑

k=1

Dk − δµn · Mn (11)

Here, Dk are the non-negative costs per retransmission,
µk are the terminal costs for stopping at stage k and γ, δ
are constants indicating the relative importance of the costs
over the rewards. These last two constants can be ommited
if we consider that they are contained within Dk and µk.
Furthermore different weights of the costs and penalty can
reflect a different quality of service. That is a high value of
γ can correspond to a service with high delay sensitivity,
e.g. VoIP, while a high value of δ corresponds to services
sensitive to dropped packets.
We are generally looking for a stopping rule τ :

{τ ≤ n} ∈ Fn, ∀n ≤ ∞ that decides when it is ’worth’
stopping the process of retransmissions. Stopping at time
n brings a payoff equal to Y C

n . We are looking for a rule
to maximize the expected value of this payoff.

III. THE ARQ STOPPING PROBLEM WITHOUT COST

In this section we search for conditions to stop the
countably infinite ARQ process with reward function {Yn}
given by (10). This special case does not include any
supplementary cost per retransmission or final cost. Since
the previsible process is assumed bounded Cn < K <
∞, ∀k by some K > 0 we have E [supn Y +

n ] < ∞
and the expectation of the reward function is well defined.
Regarding the maximum expected reward, we can find that

Theorem 1 For {Ck} non-negative and upper-bounded by
someK > 0 the maximum expected reward for the problem
without cost equals

V := sup
τ

E [Yτ ] =
∞
∑

k=1

⎛

⎝Ck · qk

k−1
∏

j=1

pj

⎞

⎠ ≤ K (12)

Proof: The stopped process is written as {Yτ∧n}
where a ∧ b is the inf operator. We have seen in Lemma
1 that the process {Yn} under the conditions of theorem
1 is a submartingale. Furtermore from [13], every stopped
submartingale is a submartingale. Since it is also bounded
by K and Yτ∧n

n→∞
→ Yτ we can use the Bounded

Convergence Theorem [13] to get E [Yτ∧n] → E [Yτ ].

V := sup
τ∈C,1≤τ<∞

E [Yτ ]

= sup
τ

E

[
τ
∑

k=1

Ck · X1 . . . Xk−1 (1 − E [Xk|Fk−1])

]

=
∞
∑

k=1

Ck · qk

⎛

⎝

k−1
∏

j=1

pj

⎞

⎠ ≤ K

From the expression of the maximum expected reward we
observe that the value of the reward Ck achieved using the
optimal stopping rule T is geometrically distributed with
variable success probabilities. Hence, we can conclude that
it is optimal to continue until the first ACK is received
and immediately stop. This is intuitively clear due to the
fact that {Yn} is a submartingale and remains constant
and equal to Ck after the first ACK is received at time
k. However for any Stopping Time, condition (1) has to
be fulfilled. In our case this is equivalent to waiting only
for finite steps a.s. until an ACK is received and can hold
only when the chain in (7) is ergodic. Furthermore this
can ensure that the stopping times remain a.s. finite in the
ARQ problem with cost as well, to be investigated in the
next section.

Theorem 2 With probability 1 an ACK is fed back within
a finite number of retransmissions, if the protocol described
by the chain in (7) is ergodic.

Proof: To prove this we initially require the expres-
sion of the mean recurrence time for state 1

E [K] =
∞
∑

k=1

k · f (k)
1,1 =

∞
∑

k=1

k

(
k−1
∏

l=1

pl

)

qk

= q1 + 2p1q2 + 3p1p2q3 + . . .

= 1 +
∞
∑

k=1

p1p2 . . . pk (13)

If the chain is ergodic, E [K] < ∞. The probability of the
event An that more than n retransmissions are required
until an ACK is fed back equals P {An} = P {k > n} =
p1 · . . . · pn. Then the expression in (13) is an infinite sum
of the probabilities of the events An. From the first Borel-
Cantelli Lemma [14] since the series in (13) converges,
only finitely many of the events An can occur.
Three conditions for ergodicity of the chain are provided

Theorem 3 If lim supk→∞ pk < 1 the chain in (7) is
ergodic.

Proof: The proof is derived from Foster’s condition
for ergodicity [14]. The condition is reduced to the conver-
gence of the series

∑∞
k=1

∏k
j=1 pj . Due to limited space

details are omitted.



Theorem 4 The following two sufficient conditions hold:
• If limk→∞ sup (1 − qk · k) < 0 then (7) is ergodic.
• If limk→∞ inf (1 − qk · k) > 0 then (7) is non-
ergodic.

Proof: The above theorem comes directly from
the Foster-Lyapunov stability criterion [15] which extends
Pakes’ [16] sufficient conditions for ergodicity and also
from Kaplan’s [17] sufficient conditions for non-ergodicty.
Suppose the Lyapunov function used is V (x) = x :

N+ → N+ and D is a finite subset of N+. From [15] we
have that a Markov Chain is ergodic (positive recurrent) if
ϵ > 0 and b is a constant such that the drift function

γk = E {V (Zt+1) |V (Zt = k)}− V (k)

V (x)=x
=

∞
∑

j=1

(j − k)Pk,j ≤ −ϵ + b · ID

ID is the indicator function Ik∈D = 1. In the case of chain
(7) γk = 1− k · qk, k = 1, 2, . . . and 1− k · qk < 1. Then
we can choose b = 1. If k /∈ C then 1 − k · qk ≤ −ϵ
for infinitely many k’s and does not hold only for a finite
subset D. From the definition of lim sup [18] the condition
can be written as limk→∞ sup (1 − qk · k) < 0.
Using now Kaplan’s conditions, a Markov Chain is non-

ergodic if for some integer N ≥ 1 and constants B ≥
0, c ∈ [0, 1] the following two conditions hold

∞
∑

j=1

(j − k)Pk,j > 0 ∀k ≥ N

zk −
∞
∑

j=1

Pk,jz
j ≥ −B (1 − z) ∀k ≥ N, ∀z ∈ [c, 1]

The conditions are reduced to

(1 − k) qk + pk = 1 − k · qk > 0 ∀k ≥ N

zk − qk · z − pk · zk+1 ≥ −B (1 − z) ∀k ≥ N, ∀z ∈ [c, 1]

The second inequality is satisfied for c = 1, B = 0. From
the first condition it is required that infinitely many k’s
satisfy the inequality 1−k ·qk > 0 and only a finite subset
of N+ should be left out. Then from the lim inf definition
[18] this reduces to limk→∞ inf (1 − qk · k) > 0.
Upper-bounding the asymptotic probability of the tail

events An that an ACK is not received up to n-th retrans-
mission, a further sufficient condition for ergodicity can be
provided.

Theorem 5 If P {k > n} = p1 · . . . · pn = O
(

1
nβ

)

, β > 1
then the chain in (7) is ergodic.

Proof: If p1 · . . . · pn = O
(

1
nβ

)

, there exist con-
stants C, N∗ > 0 s.t. p1 · . . . · pn ≤ C · 1

nβ holds
∀n ≥ N∗ [19]. Using the Cauchy criterion for series
convergence [18] and assuming β > 1, we can see that
∑m

k=n p1 · . . . · pk ≤
∑m

k=n C · 1
nβ = ϵ < ∞, ∀m, n ≥

N∗ (ϵ). Then
∑∞

k=1

∏k
j=1 pj converges and from Foster’s

criterion (proof of Th.3) the chain is ergodic.

IV. THE ARQ STOPPING PROBLEM WITH COST
If the success probabilities satisfy the Theorems of

the previous section, the waiting time up to first ACK
remains a.s. finite and equals (13) in average. In many
cases however, where data are transmitted in real time
and are delay sensitive, as for example in VoIP or Video
Streaming, the maximum acceptable delay until a message
is correctly received cannot exceed a specific upper bound,
else communications fail. Furthermore, the value given
from (13) can be rather large. In such cases it is reasonable
to consider truncated ARQ protocols with a maximum
accepted number of retransmissions. Then on the one hand
we obtain a reduced number in average and we are sure that
the delay will definitely not exceed the truncation number.
On the other hand a packet may be dropped in case it is
not accepted after the maximum defined number of efforts,
thus having a certain cost in the service quality.
We are looking in this section for the optimal truncation

time that can maximize an expected cost-reward function
that reflects the aforementioned tradeoff. The expected
payoff for the problem with cost is of course upper
bounded by (12). We will have to loose some of the
generality of the function suggested in (11) since the
calculations would otherwise be rather complicated and the
results not so neat. We consider from now on a constant
cost per retransmission γ ·Dn = D, ∀n and a constant final
cost δ · µn = µ, ∀n. The simplified reward-cost function
is now

Y C
n =

n
∑

k=1

Ck · (Mk−1 − Mk) − n · D − Mn · µ (14)

We will first prove that the condition in (3) is satisfied

Lemma 2 If the sequence {Cn} is non-negative and
upper-bounded by some value K > 0 and µ, D ≥ 0,
E

[

supn

(

Y C
n

)+
]

< ∞.

Proof: Since
(

Y C
n

)+
≤ Yn a.s. under the conditions

of Lemma 2, it obvously holds supn

(

Y C
n

)+
≤ supn Y +

n

⇒ E

[

supn

(

Y C
n

)+
]

≤ E [supn Yn] < ∞.
The above Lemma together with the ergodicity con-

ditions guarantee the existence of an optimal stopping
rule achieving the maximum expected reward V C :=
supτ E

[

Y C
τ

]

≤ V := supτ E [Yτ ] ≤ K . The inequality
holds since Y C

n ≤ Yn a.s.
The solution to the optimal stopping problem with

cost can be simplified compared to the general dynamic
programming solution if we can show that the problem
is monotone (see Lemma 4 in [10] ). If the sequence of
rewards {Y1, Y2, . . .} is such that for every n ≥ τ

E (Yn+1|Fn) ≤ Yn ⇒ E (Yn+2|Fn+1) ≤ Yn+1 (15)

we say we are in the monotone case and the optimal
stopping rule is the one-stage look-ahead (myopic) rule.

T1 := min {n : Yn ≥ E [Yn+1|Fn] , n ∈ N+} (16)



Lemma 3 The ARQ problem with cost having the simpli-
fied reward-cost function

{

Y C
n

}

is a monotone stopping
problem as defined in (15), under the condition

(Cn + µ) qn ≥ (Cn+1 + µ) qn+1 (17)

Proof: We are given that for some n it holds
E
[

Y C
n |Fn−1

]

≤ Y C
n−1. This is reduced to

E
[

Y C
n |Fn−1

]

= Y C
n−1 + E

[

Y C
n − Y C

n−1|Fn−1

]

≤ Y C
n−1 ⇔

−D + (Cn + µ) X1 · . . . · Xn−1 (1 − E (Xn|Fn−1)) ≤ 0 (18)

We want to show under which conditions the inequality
holds also for n + 1. We have E

[

Y C
n+1|Fn

]

=

= Y C
n − D + (Cn+1 + µ) X1 · . . . · Xn (1 − E (Xn+1|Fn))
(18)
≤ Y C

n − (Cn + µ)X1 · . . . · Xn−1 (1 − E (Xn|Fn−1))

+ (Cn+1 + µ) X1 · . . . · Xn (1 − E (Xn+1|Fn))

= Y C
n − X1 · . . . · Xn−1 · [(Cn − µ) (1 − E (Xn|Fn−1))

− (Cn+1 + µ)Xn · (1 − E (Xn+1|Fn))]

Then for the one-stage look-ahead rule to hold we demand

X1 · . . . · Xn−1 · [(Cn + µ) (1 − E (Xn|Fn−1))

− (Cn+1 + µ) Xn · (1 − E (Xn+1|Fn))] ≥ 0 (19)

This last inequality holds true if
i) For some k ≤ n we have Xk = 0 (ACK received)
ii) For all Xk = 1, k ≤ n (no ACK received). Then

(Cn + µ) qn ≥ (Cn+1 + µ) qn+1.

Theorem 6 The optimal stopping rule for the monotone
(17) problem with cost is to continue retransmissions until
the first ACK is received or the inequality qn+1 ≤ D

Cn+1+µ

is satisfied for the first time.

T = min

{

n ∈ N+ : Xn = 0 or qn+1 ≤
D

Cn+1 + µ

}

(20)

Proof: Using the optimality of the one-stage look-
ahead rule under the condition (17), we have from (18)

E
[

Y C
n+1|Fn

]

= Y C
n −

−D + (Cn+1 + µ)X1 · . . . · Xn (1 − E (Xn+1|Fn)) (21)

Then stopping occurs if

(Cn+1 + µ)X1 · . . . · Xn (1 − E (Xn+1|Fn)) ≤ D (22)

This last inequality holds true if
i) For some k ≤ n we have Xk = 0 (ACK received)
ii) For all Xk = 1, k ≤ n (no ACK). The stopping

condition reduces to (Cn+1 + µ) · qn+1 ≤ D.

Theorem 7 The maximum expected reward for the ARQ
problem with cost equals

V C := sup
τ

E
(

Y C
τ

)

= E
(

Y C
T

)

(23)

=
n∗

∑

k=1

[Ck + (n∗ − k)D + µ] qk

k−1
∏

j=1

pj − n∗D − µ

where

n∗ = max

{

n ∈ N+ : qn >
D

Cn + µ

}

(24)

Proof: Observe that the n∗ comes from the optimal
stopping rule in (20) and is the maximum n ∈ N+

for which retransmissions are allowed and afterwards we
immediately stop. Then

E
(

Y C
T

)

=
n∗

∑

k=1

P (T = k) · Y C (T = k)

=
n∗

∑

k=1

qk

k−1
∏

j=1

pj (Ck − kD)

+ (−n∗D − µ)
n∗

∏

j=1

pj

and after some calculations we reach (23).

V. SOME SPECIAL CASES OF STOPPING
In the current paragraph we use the main result for the

optimal stopping time expressed in (20) to investigate some
special Truncation Times.
1. No retransmissions allowed - the Case T = 1

This case occurs when the optimal stopping time T = 1,
that is stopping occurs after the first transmission and no
ARQ takes place. From the truncation rule in (20) this
occurs when q2 ≤ D

C2+µ
. The expected reward equals

(n∗ = 1)

V C
1 := (C1 + µ) · q1 − (D + µ) (25)

2. No communications allowed - the Case T = 0
Observe that if the value of V C

1 in (25) above is negative
not even the first transmission should take place since it is
more probable that we have a cost rather than a positive
gain. This happens when

0 > (C1 + µ) · q1 − (D + µ) ⇒ q1 <
D + µ

C1 + µ
(26)

For D > C1 we get that q1 ≤ 1 hence regardless the
success probability of the first transmission no communi-
cations should take place.
3. Infinite Truncation Time

The case where no truncation should take place occurs
when the inequality qn > D

Cn+µ holds true ∀n ∈ N+. For
the case where qn = q :=const. we can see that Cn ≥
0 ⇒ D

µ
≥ D

Cn+µ
. Hence if q > D

µ
then no finite truncation

time exists.



VI. APPLICATIONS
In the following we apply the optimal stopping criterion

given in (20) to specific reward sequences {Cn} and suc-
cess probabilities {qn} that correspond to practical ARQ
scenarios. The section will provide a better understanding
of the impact of choice for the costs D and µ.

A. Constant success probabilities qn = q :=const and
effective coding rates Cn = R

n

In the case of ARQ retransmissions a message is sent at
each time slot/trial with a rate R bits/sec/Hz. Suppose that
the message is correctly received after n retransmissions
and Xn = 0 (ACK), Xm<n = 1 (NAKs). We say that the
effective coding rate for the current message equals R

n
[2],

[5]. The rewards for the process equal in this case Cn = R
n
.

The probability of success per retransmission is considered
constant. The random variable denoting the number of
retransmissions until correct reception is geometrically
distributed.
We have to show first the optimality of the one-stage

look-ahead rule. The criterion in (17) holds true for the
specific choice of Cn and qn of interest

(
R

n
+ µ

)

· q ≥

(
R

n + 1
+ µ

)

· q (27)

The solution of (20) is rewritten as

n∗ =

⌈

R
D
q
− µ

⌉

− 1 (28)

where ⌈. . .⌉ is the ceiling function, under the condition that
D
q −µ > 0. Observe that if q ≥ D

µ we fall into the case of
infinite truncation times of Section V.3. Furthermore the
stopping rule can be T > 0 - in other words transmissions
are allowed - if as shown in (26)

q ≥
D + µ

R + µ
(29)

The above two conditions on D and µ, given R and q
provide the range of D given µ

µ · q < D ≤ R · q − µ · p (30)

Concerning the range of values of µ

0 ≤ µ ≤ R · q (31)

The solution in (28) implies that given µ and D costs
that lie within the accepted range (30) and (31) the optimal
number of retransmissions increases when the supported
rate and/or the success probability increases. On the other
hand given a desired rate to support as well as a suc-
cess probability the optimal number of retransmissions
decreases as the cost per trial D increases or the terminal
cost µ decreases. This is reasonable since a higher cost per
trial discourages a high truncation number while a higher
dropping cost urges for more attempts until the message
is eventually correctly received.

The above remarks can be illustrated in the following
two figures. In the first one Fig.2 µ = 0.5 is kept fixed
while the optimal number of retransmissions is shown to
vary with R and D. In the second one Fig.3 the same
scenario holds for µ = 0, where the packet dropping is
cost free. In both cases q = 0.9.
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Fig. 2. Optimal Stopping time for different supported rates R =

{1 2 4 6}, µ = 0.5, q = 0.9 and Cn =
R
n
VS Cost per trial D.

Given that D = 1.5 we get that TR=2 = 1, TR=4 = 3, TR=6 = 5
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Fig. 3. Optimal Stopping time for different supported rates R =

{1 2 4 6}, µ = 0, q = 0.9 and Cn =
R
n
VS Cost per trial D. Given that

D = 1.5 we get reduced stopping times compared to µ = 0.5 > 0 since
no cost for dropping is inserted. TR=2 = 1, TR=4 = 2, TR=6 = 3

B. Exponentially decreasing error probabilities pn =
e−βn and discounted rate gain Cn = R · e−αn, α, β > 0

The error probability given that finite length codewords
are transmitted can be shown to be upper-bounded by an
exponential function p ≤ e−β·N . The error exponent β > 0
shows how fast the error vanishes as the length of the
code N tends to infinity. It is shown in [20] that in the
case of incremental redundancy ARQ the error exponent
of the upper bound, keeping the code length fixed and
finite N :=const< ∞ increases proportional to the number



of retransmissions, namely equals k · β if we currently
are at retransmission effort k ≥ 1. Then pk ≤ e−β·k,
where we merge N · β := β. Generally β depends on
the supported rate R. In the following we assume that the
error probability equals this upper bound. Furthermore we
consider a sequence of discounted gainsR·e−α·n where the
gain R which is the transmission rate per trial, is stepwise
discounted by a factor e−1 < 1. In what follows µ = 0.
The α, β > 0 should satisfy

β + α < α · eβ (32)

so that the 1-stage look-ahead rule to be optimal. Then
stopping occurs for the minimum n that satisfies the
following inequality

1 ≤
D

R
eαn + e−βn (33)

The range of D for µ = 0 equals

0 = µ ≤ D ≤ R · e−a
(

1 − e−β
)

(34)

In the following keeping α, β > 0 fixed so that they
satisfy (32) (specifically α = 0.8, β = 0.5) we plot the
optimal stopping times for different supported rates as a
function of cost D. The cost varies within (34).
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Fig. 4. Optimal Stopping time for different supported rates R =

{1 2 4 6}, µ = 0, α = 0.8, β = 0.5 and Cn = R · e−αn, qn =

1 − e−βn VS Cost per trial D. Given that D = 0.2 we get TR=2 = 2,
TR=4 = 3, TR=6 = 4

VII. CONCLUSIONS
We have described an ARQ protocol with different suc-

cess probabilities per trial as a discrete-time Markov Chain
with countably infinite state space and have further formu-
lated the problem of truncating the chain of retransmissions
as an optimal stopping problem. A reward-cost process has
been constructed as a function of the sequentially observed
ACK/NAK feedback. The rewards can be related to some
rate gain whereas the costs to delay/power consumption
per trial (Dk) as well as to dropped packets (µk) in
case the ARQ process is stopped before correct packet
reception. Parameters D and µ depend on the quality of

service to be supported. Solution of the ARQ stopping
problem without cost showed that continuing retransmis-
sions up to first ACK maximizes the expected reward.
Several conditions for the ergodicity of the ARQ chain in
(7) were provided. These guarantee finite retransmission
efforts until correct packet reception with probability 1.
Truncated ARQ protocols keep the delay definitely below
a specific allowable retransmission number at a cost of
a positive packet dropping probability. Solution of the
ARQ problem with cost provided an explicit expression
of the optimal truncation time as a function of the costs
and rewards. Cases where no retransmissions as well as
where infinite truncation times should be allowed have
been investigated. The optimal stopping rules have been
applied to two ARQ scenarios. For the first one, constant
success probabilities and effictive coding rates equal to R

n
were considered. In the second one, an incremental redun-
dancy ARQ protocol with exponentially decreasing error
probabilities and discounted coding rates was investigated.
The optimal retransmission number was shown to have
an increasing behavior with respect to rate, probability of
success and dropping cost and a decreasing behavior as
the cost per trial increases.
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