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An Optimal Stopping Approach to ARQ Protocols with Variable Success Probabilities per Retransmission

In the current work the conceptual framework of optimally stopping a stochastic process is used to determine the optimal maximum number of retransmissions in an ARQ chain. The process sequentially observed is the binary ARQ feedback after each packet (re)transmission (ACK/NAK). A reward-cost process Y C n is constructed as a function of the observed sequence up to time n with a certain reward and cost per trial as well as a final penalty in case the retransmission process is finalised before correct packet reception. Two problems are investigated, namely the cases without and with cost. In the ARQ stopping problem without cost ergodicity conditions of the ARQ Markov chain are stated and proved. These guarantee with probability one finite waiting times until the first ACK is received. The solution of the ARQ stopping problem with cost provides an explicit expression for the optimal truncation time of ARQ protocols as a function of the costs and rewards and suggests a tradeoff between delay and dropping probability. Conditions for cases when the ARQ chain should not be truncated as well as when no retransmissions should be allowed at all are presented. The stopping rule is applied to practical ARQ scenarios where the behavior of the truncation time with respect to different supported rate, delay and dropping is investigated.

I. INTRODUCTION

In wireless communication networks, the stochastic nature of the channel provides an unreliable link to nodes that attempt to communicate with each other. Noise and channel fading set capacity limits on the instantaneous rate of information that can be transmitted through the link, error free. However, 100% reliable communications can not be fulfilled at any rate in practice where only finite-length codes and imperfect channel state information are available. Thus communications is always bound to errors, which can be diminished with the aid of small size modulation constellations, low-rate error-control codes and expensive channel state information feedback.

An alternative approach to deal with the erroneous behavior of the channel is to rely on an Automatic Retransmission Request (ARQ) protocol which repeats transmission of packets declared in error at the receiver. In this case This research is supported by the German Federal Ministry of Education and Research as part of the ScaleNet project 01BU566. the transmitter is informed through a control channel and binary feedback (ACK/NAK) whether it should retransmit the erroneous message or move on to the first transmission of the next packet waiting for service. On the one hand since retransmissions are only activated when necessary, system throughput can be improved relative to the use of Forward Error Correction Codes (FEC). Combination of these two techniques to combat channel errors has given rise to Hybrid ARQ (HARQ) protocols [START_REF] Kallel | Analysis of a type-II hybrid ARQ scheme with codecombining[END_REF], [START_REF] Caire | The Throughput of Hybrid-ARQ Protocols for the Gaussian Collision Channel[END_REF]. On the other hand, occasionally even with HARQ, a large number of retransmissions may be required resulting in an unacceptable maximum delay. This delay can be reduced by limiting the maximum allowable retransmission number leading to truncated ARQ techniques [START_REF] Malkamäki | Performance of Truncated Type-II Hybrid ARQ Schemes with Noisy Feedback over Block Fading Channels[END_REF], at the expense of packet loss when the maximum number is exceeded. A cross-layer combination of adaptive modulation and coding with truncated ARQ has been investigated in [START_REF] Liu | Cross-Layer Combining of Adaptive Modulation and Coding With Truncated ARQ Over Wireless Links[END_REF] where given a maximum number of retransmissions and a maximum acceptable probability of packet loss that satisfy certain service quality requirements, the gain in spectral efficiency is shown to be considerable. Furthermore this improvement decreases as the allowed retransmissions per packet increase.

In most current approaches in the literature that deal with ARQ, the truncated version is generally accepted as realistic and optimal in terms of delay-throughput tradeoff. However the maximum number of retransmissions is considered as a predefined constant, given which the entire analysis follows, see e.g. [START_REF] Caire | The Throughput of Hybrid-ARQ Protocols for the Gaussian Collision Channel[END_REF]- [START_REF] Ahmed | Throughput Measures for Delay-Constrained Communications in Fading Channels[END_REF], [START_REF] Lu | Throughput of CDMA Data Networks with Multiuser Detection, ARQ, and Packet Combining[END_REF]. In the current work we make use of the conceptual framework of sequential analysis and optimal stopping [START_REF] Shiryayev | Optimal Stopping Rules[END_REF] to determine the optimal accepted number of retransmissions in an ARQ chain, given a sequence of rewards and costs per retransmission and a terminal cost when the packet fails to be correctly received. The costs per trial as well as final cost are related to the desired quality of service.

In the following we formulate the ARQ problem as an Optimal Stopping problem, in section II, considering an infinite horizon. The stochastic process sequentially observed is the binary feedback after each packet (re)transmission {X n }. We construct a reward-cost process Y C n as a function of the observed sequence up to time n, which will be denoted as the payoff. The reward sequence {C n } can be related to some rate gain for successful transmission, whereas the costs can be interpreted as a power/delay cost per retransmission {D n } as well as a final cost in case of dropping at step n, equal to {µ n }.

After each observation of X n we can decide whether we want to stop and receive the related instantaneous payoff Y C n or allow a new retransmission. We are looking for a stopping rule T to maximize the expected payoff providing us with the optimal truncation time. In section III, the ARQ problem with reward and no cost is considered where the retransmissions are not penalized. It is shown that it is obviously optimal to continue retransmissions until the first ACK is received and immediately stop afterwards. Several conditions for finite waiting time (finite trials) up to first ACK received are provided. The maximum expected reward over all possible stopping rules for the problem without cost serves as an upper bound for the case with cost to be presented in section IV.

In the ARQ problem with cost we characterize the maximum expected payoff and find an explicit optimal stopping rule to achieve this, as a function of the stepwise error probabilities, costs per trial and final cost. Given the optimal stopping solution, section V discusses the case of truncation for T=1, where no retransmissions are allowed and we have to live with the erroneous channel since ARQ is not 'worthy' enough in terms of delay or power cost. We consider furthermore conditions when the ARQ chain should not be truncated T = ∞. In section VI the rules are applied to scenarios with specific choice of costs {C n } and rewards {D n }, {µ n } related to real ARQ systems and plots illustrate the relative behavior of the optimal retransmission number. Generally speaking the truncation time T is shown to be increasing w.r.t to supporting rate R and dropping cost µ and decreasing w.r.t. delay and/or power cost per retransmission D. Finally section VII draws the conclusions of our work.

II. ARQ AS AN OPTIMAL STOPPING PROBLEM

A. On Optimal Stopping Rules

Let us consider a filtered space (Ω, F , {F n } , P) where (Ω, F , P) is a probability triple and {F n : n ∈ N} is a filtration, that is an increasing family of sub-σ-algebras of F : F 0 ⊆ F 1 ⊆ . . . ⊆ F. Each F n contains all the null sets of F . We consider further a stochastic process X = (X n : n ≥ 0) defined on this probability space each random variable X n having state space R, measurable with respect to the Borel σ-algebra B (R). The process is called adapted to the filtration {F n }, meaning that for each n, X n is F n -measurable. To simplify we consider the case of the natural filtration where F n = σ (X 0 , X 1 , . . . , X n ). Since the process is adapted the value X n (ω) , ω ∈ Ω is known to us at time n.

The problem of optimal stopping can be described as follows. We observe the sequence of random variables {X 1 , . . . , X n , . . .} until we decide at some step n to stop and receive a payoff Y n (ω) = f n (X 1 (ω) , . . . , X n (ω)), which is an

F n measurable function f n : Ω → R, f -1 n : B (R) → F n . A random variable τ = τ (ω) : Ω → {1, 2, . . . , ∞} defined in (Ω, F , P) is a Stopping Time if it is almost surely (a.s.) finite P {τ (ω) < ∞} = 1 (1) 
and satisfies the non-anticipativity requirement [START_REF] Davis | A deterministic approach to optimal stopping[END_REF], that is for each

n ∈ N ∪ {∞} {ω : τ (ω) ≤ n} ∈ F n (2) 
where

F ∞ := σ ( n F n ) ⊆ F.
In simple words, the stopping time is a time when we decide to stop our process based solely on the already available samples that we have observed up to and including time n {X 1 (ω) , . . . , X n (ω)}.

We are looking for a stopping rule τ = T with the attributes (1) and ( 2) that maximizes the expected reward E [Y τ ] in the class of all stopping times C for which the expectation exists.

Writing Y = Y + -Y -, where Y + = max {0, Y } and Y -= max {-Y, 0}, the expectation is defined if one of the two terms is finite [START_REF] Rudin | Principles of Mathematical Analysis[END_REF]. Furthermore Y τ ≤ sup n Y n . Hence under the condition that

E sup n Y + n < ∞ (3) 
the expectation is always well defined, possibly infinite and it holds in particular

-∞ ≤ E [Y τ ] ≤ E [sup n Y + n ] < ∞.
The maximum expected reward equals

V := sup τ ∈C,1≤τ <∞ E [Y τ ] (4) 
and we are looking for the rule T ∈ C (if it exists) such that

E [Y T ] = V (5) 
Under assumption (3) and if P (T < ∞) = 1, such an optimal stopping rule can be shown to exist [START_REF] Chow | On Optimal Stopping Rules[END_REF], [START_REF] Ferguson | Optimal Stopping and Applications[END_REF]).

The rule maximizing the expected return is given by the principle of optimality [START_REF] Shiryayev | Optimal Stopping Rules[END_REF], [START_REF] Chow | On Optimal Stopping Rules[END_REF] which is the basis of Dynamic Programming.

It suggests that we ought to continue the observations as long as the future expected payoff is greater than the present reward and stop immediately otherwise.

B. The ARQ Model

In the case of ARQ the evolving process is the feedback to the transmitter which contains the information whether a message has been correctly or erroneously received. The observed discrete-time process with finite state space {0, 1} is described as follows

X n = 1 if NAK is received 0 if ACK is received (6)
Note here that usually the value 1 represents a successful reception instead of unsuccessful, however this convention is adopted to simplify notation in the following. We further define the process {Z n } with countably infinite state space {1, 2, ...}, where the random variable Z n is the number of retransmission effort at the n-th time slot. Suppose that at slot n -1 we are at the k-th trial of some message, in other words Z n-1 = k. There are two possibilities for the states of variable Z n , either to move on to stage Z n = k + 1 if a negative acknowledgement comes or to return to stage Z n = 1 for the first transmission of the next message in case of ACK. The events {Z n = k|Z n-1 = k -1} and {Z n = 1|Z n-1 = k -1} are mutually exclusive and exhaustive and occur with probabilities p n and q n respectively which sum up to 1. Since the process at time slot n depends only on the state of the process at the previous slot, it forms a Markov Chain. The transition probability diagram is given in the following figure and illustrates a specific type of random walk in one-dimension better known as a success run while the one step transition 

P = ⎛ ⎜ ⎜ ⎜ ⎝ q 1 p 1 0 0 0 • • • q 2 0 p 2 0 0 • • • q 3 0 0 p 3 0 • • • . . . . . . . . . . . . . . . . . . ⎞ ⎟ ⎟ ⎟ ⎠ (7) 
We assume in our model different success probabilities per trial since the coding, modulation or power per retransmission may be chosen to vary [START_REF] Liu | Cross-Layer Combining of Adaptive Modulation and Coding With Truncated ARQ Over Wireless Links[END_REF], [START_REF] Visotsky | Optimum ARQ Design: A Dynamic Progarmming Approach[END_REF] in an effort to minimize the dropping probability and the average number of efforts until ACK. For the process {X n } we have then that

P (X n = 1|Z n = k) = P (Z n+1 = k + 1|Z n = k) = p k and P (X n = 0|Z n = k) = P (Z n+1 = 1|Z n = k) = q k .
That is, the current value of success probability depends on the number of consecutive unsuccessful retransmissions up to this point. The expected value

E [X n ] = 0•q k +1•p k ≤ 1.

C. Payoff Function

Let us now introduce the reward-cost process

{Y n } = f n (X 0 , . . . , X n ) where f n : {0, 1} × . . . × {0, 1} n-times → R is an F n -measurable function.
In the following we construct the processes of interest.

The random variable defined as M n := X 1 • . . . • X n , M 0 = 1 is non-negative and can take values from the state space {0, 1}. If at some point k, X k = 0 (ACK), then M n≥k = 0 that means that the process may only stay constant or decrease. Then the process forms a supermartingale [START_REF] Williams | Probability with Martingales[END_REF] 

E [M n |F n-1 ] = X 1 • . . . • X n-1 • E [X n |F n-1 ] ≤ X 1 • . . . • X n-1 = M n-1 (8) 
{-M n } forms a non-positive sub-martingale. Suppose now that before each observation X n we place a bet C n the value of which we choose considering only the known observations

{X 1 (ω) = x 1 , X 2 (ω) = x 2 , . . . , X n-1 (ω) = x n-1 }. Then since {C n } is F n-1
measurable and independent of X n it forms a previsible process. Some interesting choices of the previsible process for the ARQ analysis could be some sequence of rates e.g.

C n = R o , C n = Ro n or C n = β n R o , 0 < β ≤ 1.
The reward that we receive for observing the random variable

X n equals C n •(M n-1 -M n ). Then if M n-1 = 1
meaning that an ACK is not yet received up to step n-1 the n-th step reward can either equal C n if X n = 0 (ACK at step n) or 0 if the n-th retransmission is again unsuccessful. If M n-1 = 0 then definitely M n = 0 and the n-th step reward is 0. The total reward up to n equals

Y n = n k=1 C k • (M k-1 -M k ) (9) = n k=1 C k • X 1 • . . . • X k-1 • (1 -X k ) (10)
The n-th step reward is the difference

Y n -Y n-1 = C n • (M n-1 -M n ).
Observe that the way we created the reward function [START_REF] Rudin | Principles of Mathematical Analysis[END_REF] implies that if no ACK is received until n and given M 0 = 1 we have a total reward equal to Y n = 0. If an ACK is received for the first time at some step k ≤ n, then Y n = C k and remains constant ∀n´≥ n. We can directly conclude

Lemma 1

The reward process Y n is a sub-martingale under the condition that {C n } is a non-negative, bounded and previsible process.

Proof: We have already shown in (8) that -M n is a sub-martingale. Then, conditioned that {C n } is a nonnegative, bounded, previsible process (see theorem 10.7 in [START_REF] Williams | Probability with Martingales[END_REF]) we can directly deduce that

E [Y n -Y n-1 | F n-1 ] = C n • E [-M n + M n-1 | F n-1 ] ≥ 0
Optimal stopping problems usually include a cost per observation as well as a terminal cost. For the case of ARQ it is reasonable to consider as cost the delay added to the system or the lost power due to an unsuccessful transmission. The costs per observation sum up and are deterministic, that is they do not depend on the values of the observed process directly. Their sum depends only on the number of observations we are willing to make. Furthermore the terminal cost is related to some penalty in the case we stop observation before a specific goal is attained -that is in our case a penalty for stopping before an ACK is received. Such a penalty is reasonable since the unsuccessful packet will be dropped and this will affect the user's quality of service. In the following we give a general expression of the reward-cost process, which will be denoted as the payoff at step n

Y C n = n k=1 C k (M k-1 -M k ) -γ n k=1 D k -δµ n • M n (11)
Here, D k are the non-negative costs per retransmission, µ k are the terminal costs for stopping at stage k and γ, δ are constants indicating the relative importance of the costs over the rewards. These last two constants can be ommited if we consider that they are contained within D k and µ k . Furthermore different weights of the costs and penalty can reflect a different quality of service. That is a high value of γ can correspond to a service with high delay sensitivity, e.g. VoIP, while a high value of δ corresponds to services sensitive to dropped packets. We are generally looking for a stopping rule τ : {τ ≤ n} ∈ F n , ∀n ≤ ∞ that decides when it is 'worth' stopping the process of retransmissions. Stopping at time n brings a payoff equal to Y C n . We are looking for a rule to maximize the expected value of this payoff.

III. THE ARQ STOPPING PROBLEM WITHOUT COST

In this section we search for conditions to stop the countably infinite ARQ process with reward function {Y n } given by [START_REF] Chow | On Optimal Stopping Rules[END_REF]. This special case does not include any supplementary cost per retransmission or final cost. Since the previsible process is assumed bounded C n < K < ∞, ∀k by some K > 0 we have E [sup n Y + n ] < ∞ and the expectation of the reward function is well defined. Regarding the maximum expected reward, we can find that Theorem 1 For {C k } non-negative and upper-bounded by some K > 0 the maximum expected reward for the problem without cost equals

V := sup τ E [Y τ ] = ∞ k=1 ⎛ ⎝ C k • q k k-1 j=1 p j ⎞ ⎠ ≤ K ( 12 
)
Proof: The stopped process is written as {Y τ ∧n } where a ∧ b is the inf operator. We have seen in Lemma 1 that the process {Y n } under the conditions of theorem 1 is a submartingale. Furtermore from [START_REF] Williams | Probability with Martingales[END_REF], every stopped submartingale is a submartingale. Since it is also bounded by K and Y τ ∧n n→∞ → Y τ we can use the Bounded Convergence Theorem [START_REF] Williams | Probability with Martingales[END_REF] to get

E [Y τ ∧n ] → E [Y τ ]. V := sup τ ∈C,1≤τ <∞ E [Y τ ] = sup τ E τ k=1 C k • X 1 . . . X k-1 (1 -E [X k |F k-1 ]) = ∞ k=1 C k • q k ⎛ ⎝ k-1 j=1 p j ⎞ ⎠ ≤ K
From the expression of the maximum expected reward we observe that the value of the reward C k achieved using the optimal stopping rule T is geometrically distributed with variable success probabilities. Hence, we can conclude that it is optimal to continue until the first ACK is received and immediately stop. This is intuitively clear due to the fact that {Y n } is a submartingale and remains constant and equal to C k after the first ACK is received at time k. However for any Stopping Time, condition (1) has to be fulfilled. In our case this is equivalent to waiting only for finite steps a.s. until an ACK is received and can hold only when the chain in ( 7) is ergodic. Furthermore this can ensure that the stopping times remain a.s. finite in the ARQ problem with cost as well, to be investigated in the next section.

Theorem 2 With probability 1 an ACK is fed back within a finite number of retransmissions, if the protocol described by the chain in [START_REF] Shiryayev | Optimal Stopping Rules[END_REF] is ergodic.

Proof: To prove this we initially require the expression of the mean recurrence time for state 1

E [K] = ∞ k=1 k • f (k) 1,1 = ∞ k=1 k k-1 l=1 p l q k = q 1 + 2p 1 q 2 + 3p 1 p 2 q 3 + . . . = 1 + ∞ k=1 p 1 p 2 . . . p k (13) 
If the chain is ergodic, E [K] < ∞. The probability of the event A n that more than n retransmissions are required until an ACK is fed back equals P {A n } = P {k > n} = p 1 • . . . • p n . Then the expression in ( 13) is an infinite sum of the probabilities of the events A n . From the first Borel-Cantelli Lemma [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] since the series in (13) converges, only finitely many of the events A n can occur. Three conditions for ergodicity of the chain are provided Theorem 3 If lim sup k→∞ p k < 1 the chain in [START_REF] Shiryayev | Optimal Stopping Rules[END_REF] is ergodic.

Proof: The proof is derived from Foster's condition for ergodicity [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]. The condition is reduced to the convergence of the series ∞ k=1 k j=1 p j . Due to limited space details are omitted.

Theorem 4

The following two sufficient conditions hold: [START_REF] Shiryayev | Optimal Stopping Rules[END_REF] is nonergodic.

• If lim k→∞ sup (1 -q k • k) < 0 then (7) is ergodic. • If lim k→∞ inf (1 -q k • k) > 0 then

Proof:

The above theorem comes directly from the Foster-Lyapunov stability criterion [START_REF] Meyn | Stability of Markovian Processes I: Criteria for Discrete-Time Chains[END_REF] which extends Pakes' [START_REF] Pakes | Some Conditions for Ergodicity and Recurrence of Markov Chains[END_REF] sufficient conditions for ergodicity and also from Kaplan's [START_REF] Kaplan | A Sufficient Condition for Nonergodicity of a Markov Chain[END_REF] sufficient conditions for non-ergodicty.

Suppose the Lyapunov function used is V (x) = x : N + → N + and D is a finite subset of N + . From [START_REF] Meyn | Stability of Markovian Processes I: Criteria for Discrete-Time Chains[END_REF] we have that a Markov Chain is ergodic (positive recurrent) if ϵ > 0 and b is a constant such that the drift function

γ k = E {V (Z t+1 ) |V (Z t = k)} -V (k) V (x)=x = ∞ j=1 (j -k) P k,j ≤ -ϵ + b • I D I D is the indicator function I k∈D = 1.
In the case of chain ( 7)

γ k = 1 -k • q k , k = 1, 2, . . . and 1 -k • q k < 1. Then we can choose b = 1. If k / ∈ C then 1 -k • q k ≤
-ϵ for infinitely many k's and does not hold only for a finite subset D. From the definition of lim sup [START_REF] Sokolnikoff | Advanced Calculus[END_REF] the condition can be written as lim k→∞ sup (1q k • k) < 0.

Using now Kaplan's conditions, a Markov Chain is nonergodic if for some integer N ≥ 1 and constants B ≥ 0, c ∈ [0, 1] the following two conditions hold

∞ j=1 (j -k) P k,j > 0 ∀k ≥ N z k - ∞ j=1 P k,j z j ≥ -B (1 -z) ∀k ≥ N, ∀z ∈ [c, 1]
The conditions are reduced to

(1 -k) q k + p k = 1 -k • q k > 0 ∀k ≥ N z k -q k • z -p k • z k+1 ≥ -B (1 -z) ∀k ≥ N, ∀z ∈ [c, 1]
The second inequality is satisfied for c = 1, B = 0. From the first condition it is required that infinitely many k's satisfy the inequality 1k • q k > 0 and only a finite subset of N + should be left out. Then from the lim inf definition [START_REF] Sokolnikoff | Advanced Calculus[END_REF] this reduces to

lim k→∞ inf (1 -q k • k) > 0.
Upper-bounding the asymptotic probability of the tail events A n that an ACK is not received up to n-th retransmission, a further sufficient condition for ergodicity can be provided. [START_REF] Aigner | Diskrete Mathematik[END_REF]. Using the Cauchy criterion for series convergence [START_REF] Sokolnikoff | Advanced Calculus[END_REF] and assuming β > 1, we can see that 

Theorem 5 If

P {k > n} = p 1 • . . . • p n = O 1 n β , β > 1 then the chain in (7) is ergodic. Proof: If p 1 • . . . • p n = O 1 n β , there exist con- stants C, N * > 0 s.t. p 1 • . . . • p n ≤ C • 1 n β holds ∀n ≥ N *
m k=n p 1 • . . . • p k ≤ m k=n C • 1 n β = ϵ < ∞, ∀m, n ≥ N * (ϵ).

IV. THE ARQ STOPPING PROBLEM WITH COST

If the success probabilities satisfy the Theorems of the previous section, the waiting time up to first ACK remains a.s. finite and equals [START_REF] Williams | Probability with Martingales[END_REF] in average. In many cases however, where data are transmitted in real time and are delay sensitive, as for example in VoIP or Video Streaming, the maximum acceptable delay until a message is correctly received cannot exceed a specific upper bound, else communications fail. Furthermore, the value given from ( 13) can be rather large. In such cases it is reasonable to consider truncated ARQ protocols with a maximum accepted number of retransmissions. Then on the one hand we obtain a reduced number in average and we are sure that the delay will definitely not exceed the truncation number. On the other hand a packet may be dropped in case it is not accepted after the maximum defined number of efforts, thus having a certain cost in the service quality.

We are looking in this section for the optimal truncation time that can maximize an expected cost-reward function that reflects the aforementioned tradeoff. The expected payoff for the problem with cost is of course upper bounded by [START_REF] Visotsky | Optimum ARQ Design: A Dynamic Progarmming Approach[END_REF]. We will have to loose some of the generality of the function suggested in [START_REF] Ferguson | Optimal Stopping and Applications[END_REF] since the calculations would otherwise be rather complicated and the results not so neat. We consider from now on a constant cost per retransmission γ•D n = D, ∀n and a constant final cost δ • µ n = µ, ∀n. The simplified reward-cost function is now

Y C n = n k=1 C k • (M k-1 -M k ) -n • D -M n • µ (14)
We will first prove that the condition in (3) is satisfied Lemma 2 If the sequence {C n } is non-negative and upper-bounded by some value K > 0 and µ, D ≥ 0,

E sup n Y C n + < ∞. Proof: Since Y C n + ≤ Y n a.s. under the conditions of Lemma 2, it obvously holds sup n Y C n + ≤ sup n Y + n ⇒ E sup n Y C n + ≤ E [sup n Y n ] < ∞.
The above Lemma together with the ergodicity conditions guarantee the existence of an optimal stopping rule achieving the maximum expected reward

V C := sup τ E Y C τ ≤ V := sup τ E [Y τ ] ≤ K. The inequality holds since Y C n ≤ Y n a.
s. The solution to the optimal stopping problem with cost can be simplified compared to the general dynamic programming solution if we can show that the problem is monotone (see Lemma 4 in [START_REF] Chow | On Optimal Stopping Rules[END_REF] ). If the sequence of rewards {Y 1 , Y 2 , . . .} is such that for every n ≥ τ

E (Y n+1 |F n ) ≤ Y n ⇒ E (Y n+2 |F n+1 ) ≤ Y n+1 (15) 
we say we are in the monotone case and the optimal stopping rule is the one-stage look-ahead (myopic) rule.

T 1 := min {n : Y n ≥ E [Y n+1 |F n ] , n ∈ N + } (16) 
Lemma 3 The ARQ problem with cost having the simplified reward-cost function Y C n is a monotone stopping problem as defined in [START_REF] Meyn | Stability of Markovian Processes I: Criteria for Discrete-Time Chains[END_REF], under the condition

(C n + µ) q n ≥ (C n+1 + µ) q n+1 (17) 
Proof: We are given that for some n it holds

E Y C n |F n-1 ≤ Y C n-1 . This is reduced to E Y C n |F n-1 = Y C n-1 + E Y C n -Y C n-1 |F n-1 ≤ Y C n-1 ⇔ -D + (C n + µ) X 1 • . . . • X n-1 (1 -E (X n |F n-1 )) ≤ 0 (18) 
We want to show under which conditions the inequality holds also for n + 1. We have

E Y C n+1 |F n = = Y C n -D + (C n+1 + µ) X 1 • . . . • X n (1 -E (X n+1 |F n )) (18) 
≤ Y C n -(C n + µ) X 1 • . . . • X n-1 (1 -E (X n |F n-1 )) + (C n+1 + µ) X 1 • . . . • X n (1 -E (X n+1 |F n )) = Y C n -X 1 • . . . • X n-1 • [(C n -µ) (1 -E (X n |F n-1 )) -(C n+1 + µ) X n • (1 -E (X n+1 |F n ))]
Then for the one-stage look-ahead rule to hold we demand

X 1 • . . . • X n-1 • [(C n + µ) (1 -E (X n |F n-1 )) -(C n+1 + µ) X n • (1 -E (X n+1 |F n ))] ≥ 0 (19) 
This last inequality holds true if i) For some k ≤ n we have

X k = 0 (ACK received) ii) For all X k = 1, k ≤ n (no ACK received). Then (C n + µ) q n ≥ (C n+1 + µ) q n+1 .

Theorem 6

The optimal stopping rule for the monotone [START_REF] Kaplan | A Sufficient Condition for Nonergodicity of a Markov Chain[END_REF] problem with cost is to continue retransmissions until the first ACK is received or the inequality q n+1 ≤ D Cn+1+µ is satisfied for the first time.

T = min n ∈ N + : X n = 0 or q n+1 ≤ D C n+1 + µ (20) 
Proof: Using the optimality of the one-stage lookahead rule under the condition (17), we have from ( 18)

E Y C n+1 |F n = Y C n - -D + (C n+1 + µ) X 1 • . . . • X n (1 -E (X n+1 |F n )) (21)
Then stopping occurs if

(C n+1 + µ) X 1 • . . . • X n (1 -E (X n+1 |F n )) ≤ D (22)
This last inequality holds true if i) For some k ≤ n we have X k = 0 (ACK received) ii) For all X k = 1, k ≤ n (no ACK). The stopping condition reduces to (C n+1 + µ) • q n+1 ≤ D.

Theorem 7

The maximum expected reward for the ARQ problem with cost equals

V C := sup τ E Y C τ = E Y C T (23) = n * k=1 [C k + (n * -k) D + µ] q k k-1 j=1 p j -n * D -µ
where

n * = max n ∈ N + : q n > D C n + µ (24) 
Proof: Observe that the n * comes from the optimal stopping rule in [START_REF] Gopala | On the Error Exponents of ARQ Channels with Deadlines[END_REF] and is the maximum n ∈ N + for which retransmissions are allowed and afterwards we immediately stop. Then

E Y C T = n * k=1 P (T = k) • Y C (T = k) = n * k=1 q k k-1 j=1 p j (C k -kD) + (-n * D -µ) n * j=1 p j
and after some calculations we reach (23).

V. SOME SPECIAL CASES OF STOPPING

In the current paragraph we use the main result for the optimal stopping time expressed in [START_REF] Gopala | On the Error Exponents of ARQ Channels with Deadlines[END_REF] to investigate some special Truncation Times.

1. No retransmissions allowed -the Case T = 1 This case occurs when the optimal stopping time T = 1, that is stopping occurs after the first transmission and no ARQ takes place. From the truncation rule in [START_REF] Gopala | On the Error Exponents of ARQ Channels with Deadlines[END_REF] this occurs when q 2 ≤ D C2+µ . The expected reward equals (n * = 1)

V C 1 := (C 1 + µ) • q 1 -(D + µ) (25) 
2. No communications allowed -the Case T = 0 Observe that if the value of V C 1 in (25) above is negative not even the first transmission should take place since it is more probable that we have a cost rather than a positive gain. This happens when

0 > (C 1 + µ) • q 1 -(D + µ) ⇒ q 1 < D + µ C 1 + µ (26) 
For D > C 1 we get that q 1 ≤ 1 hence regardless the success probability of the first transmission no communications should take place.

Infinite Truncation Time

The case where no truncation should take place occurs when the inequality q n > D Cn+µ holds true ∀n ∈ N + . For the case where q n = q :=const. we can see that C n ≥ 0 ⇒ D µ ≥ D Cn+µ . Hence if q > D µ then no finite truncation time exists.

VI. APPLICATIONS

In the following we apply the optimal stopping criterion given in [START_REF] Gopala | On the Error Exponents of ARQ Channels with Deadlines[END_REF] to specific reward sequences {C n } and success probabilities {q n } that correspond to practical ARQ scenarios. The section will provide a better understanding of the impact of choice for the costs D and µ.

A. Constant success probabilities q n = q :=const and effective coding rates

C n = R n
In the case of ARQ retransmissions a message is sent at each time slot/trial with a rate R bits/sec/Hz. Suppose that the message is correctly received after n retransmissions and X n = 0 (ACK), X m<n = 1 (NAKs). We say that the effective coding rate for the current message equals R n [START_REF] Caire | The Throughput of Hybrid-ARQ Protocols for the Gaussian Collision Channel[END_REF], [START_REF] Ahmed | Throughput Measures for Delay-Constrained Communications in Fading Channels[END_REF]. The rewards for the process equal in this case C n = R n . The probability of success per retransmission is considered constant. The random variable denoting the number of retransmissions until correct reception is geometrically distributed.

We have to show first the optimality of the one-stage look-ahead rule. The criterion in [START_REF] Kaplan | A Sufficient Condition for Nonergodicity of a Markov Chain[END_REF] holds true for the specific choice of C n and q n of interest

R n + µ • q ≥ R n + 1 + µ • q (27)
The solution of ( 20) is rewritten as

n * = R D q -µ -1 (28) 
where ⌈. . .⌉ is the ceiling function, under the condition that D qµ > 0. Observe that if q ≥ D µ we fall into the case of infinite truncation times of Section V.3. Furthermore the stopping rule can be T > 0 -in other words transmissions are allowed -if as shown in (26)

q ≥ D + µ R + µ (29) 
The above two conditions on D and µ, given R and q provide the range of D given µ

µ • q < D ≤ R • q -µ • p (30)
Concerning the range of values of µ

0 ≤ µ ≤ R • q (31)
The solution in (28) implies that given µ and D costs that lie within the accepted range (30) and (31) the optimal number of retransmissions increases when the supported rate and/or the success probability increases. On the other hand given a desired rate to support as well as a success probability the optimal number of retransmissions decreases as the cost per trial D increases or the terminal cost µ decreases. This is reasonable since a higher cost per trial discourages a high truncation number while a higher dropping cost urges for more attempts until the message is eventually correctly received.

The above remarks can be illustrated in the following two figures. In the first one Fig. 2 µ = 0.5 is kept fixed while the optimal number of retransmissions is shown to vary with R and D. In the second one Fig. 3 the same scenario holds for µ = 0, where the packet dropping is cost free. In both cases q = 0.9. The error probability given that finite length codewords are transmitted can be shown to be upper-bounded by an exponential function p ≤ e -β•N . The error exponent β > 0 shows how fast the error vanishes as the length of the code N tends to infinity. It is shown in [START_REF] Gopala | On the Error Exponents of ARQ Channels with Deadlines[END_REF] that in the case of incremental redundancy ARQ the error exponent of the upper bound, keeping the code length fixed and finite N :=const< ∞ increases proportional to the number of retransmissions, namely equals k • β if we currently are at retransmission effort k ≥ 1. Then p k ≤ e -β•k , where we merge N • β := β. Generally β depends on the supported rate R. In the following we assume that the error probability equals this upper bound. Furthermore we consider a sequence of discounted gains R•e -α•n where the gain R which is the transmission rate per trial, is stepwise discounted by a factor e -1 < 1. In what follows µ = 0.

The α, β > 0 should satisfy

β + α < α • e β (32) 
so that the 1-stage look-ahead rule to be optimal. Then stopping occurs for the minimum n that satisfies the following inequality

1 ≤ D R e αn + e -βn (33) 
The range of D for µ = 0 equals

0 = µ ≤ D ≤ R • e -a 1 -e -β (34) 
In the following keeping α, β > 0 fixed so that they satisfy (32) (specifically α = 0.8, β = 0.5) we plot the optimal stopping times for different supported rates as a function of cost D. The cost varies within (34). 

VII. CONCLUSIONS

We have described an ARQ protocol with different success probabilities per trial as a discrete-time Markov Chain with countably infinite state space and have further formulated the problem of truncating the chain of retransmissions as an optimal stopping problem. A reward-cost process has been constructed as a function of the sequentially observed ACK/NAK feedback. The rewards can be related to some rate gain whereas the costs to delay/power consumption per trial (D k ) as well as to dropped packets (µ k ) in case the ARQ process is stopped before correct packet reception. Parameters D and µ depend on the quality of service to be supported. Solution of the ARQ stopping problem without cost showed that continuing retransmissions up to first ACK maximizes the expected reward. Several conditions for the ergodicity of the ARQ chain in [START_REF] Shiryayev | Optimal Stopping Rules[END_REF] were provided. These guarantee finite retransmission efforts until correct packet reception with probability 1. Truncated ARQ protocols keep the delay definitely below a specific allowable retransmission number at a cost of a positive packet dropping probability. Solution of the ARQ problem with cost provided an explicit expression of the optimal truncation time as a function of the costs and rewards. Cases where no retransmissions as well as where infinite truncation times should be allowed have been investigated. The optimal stopping rules have been applied to two ARQ scenarios. For the first one, constant success probabilities and effictive coding rates equal to R n were considered. In the second one, an incremental redundancy ARQ protocol with exponentially decreasing error probabilities and discounted coding rates was investigated. The optimal retransmission number was shown to have an increasing behavior with respect to rate, probability of success and dropping cost and a decreasing behavior as the cost per trial increases.
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 1 Fig. 1. Transition Probability Diagram for homogeneous ARQ with countably infinite states probability matrix for the process {Z n } is
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  p j converges and from Foster's criterion (proof of Th.3) the chain is ergodic.
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 23 Fig. 2.Optimal Stopping time for different supported rates R = {1 2 4 6}, µ = 0.5, q = 0.9 and Cn = R n VS Cost per trial D. Given that D = 1.5 we get that T R=2 = 1, T R=4 = 3, T R=6 = 5
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 4 Fig. 4. Optimal Stopping time for different supported rates R = {1 2 4 6}, µ = 0, α = 0.8, β = 0.5 and Cn = R • e -αn , qn = 1e -βn VS Cost per trial D. Given that D = 0.2 we get T R=2 = 2, T R=4 = 3, T R=6 = 4