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Simulation and stability analysis of impacting systems 
with complete chattering

Arne B. Nordmark, Petri T. Piiroinen

Abstract This paper considers dynamical systems
that are derived from mechanical systems with im-
pacts. In particular we will focus on chattering—
accumulation of impacts—for which local disconti-
nuity mappings will be derived. We will first show
how to use these mappings in simulation schemes, and
secondly how the mappings are used to calculate the
stability of limit cycles with chattering by solving the
first variational equations.
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1 Introduction

Impacts can be found in many (bio-)mechanical sys-
tems. Sometimes they are desirable and necessary,
such as in two-legged walking [32], church bells [3]
and Braille printers [8, 19]. However, very often im-
pacts are unwanted and cause unexpected wear and
noise, such as in gears [18] and cam-follower sys-
tems [28]. There has been research into developing
theoretical impact models [4, 17, 31, 36], as well as,
using numerical simulations [29, 30, 35] and exper-
iments [16, 37], to understand impacts from both mi-
croscopical and global perspectives. Despite all this ef-
fort no ultimate impact model has been presented and
is still to be discovered. Luckily, simple impact mod-
els, such as Newton’s impact law, work remarkably
well in many situation and are therefore used in many
applications. The advantage of these simple impact
models is that they can be easily combined with the
standard framework for deriving equations of motion
of mechanical systems, i.e. as systems of second-order
ordinary differential equations (ODEs). For analysis
purposes such systems are often transformed to first-
order ODEs and thus results from dynamical system
theory can be applied. This will be the foundation for
the work in the present paper.

Impacting systems are often put into a larger
class of systems called non-smooth (NS) or piecewise
smooth (PWS) systems. A common feature for most of
these systems is that they are smooth, or even linear,
away from discontinuity surfaces but at the surfaces
something that causes nonlinearities occurs, such as
impacts. Another important feature is that these sys-
tems often have dynamical characteristics that can-
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not be found in smooth systems. For instance, interac-
tion of equilibria or limit cycles with a discontinuity
surface can lead to instantaneous changes in stability,
which cannot be experienced in smooth systems. All
such interactions we collectively term discontinuity-
induced bifurcations (DIBs), but they are also some-
times known as C-bifurcations or border-collision bi-
furcations [13, 14, 20]. The type of DIB is heavily
dependent on the type of NS systems in question, and
therefore there is a substantial terminology detailing
what kind of DIB that is studied, e.g. grazing bifur-
cations in impacting systems [22–24], sliding bifurca-
tions in electrical [7, 10, 11] and mechanical systems
with dry friction [12, 34], and corner bifurcations [6].
Since some DIBs do not have center manifolds in the
classical sense, and thus cannot be used to unfold the
dynamics locally, the concept of discontinuity map-
pings (DMs) [23, 25] have instead been introduced as
a useful tool to unfold the dynamics at DIBs. In recent
years DMs have been used to unfold codimension-one
and codimension-two DIBs in a variety of systems and
situations [12, 27].

A special feature of impacting systems, and the
main topic of this article, is the possibility of chat-
tering [5]. We will distinguish between two different
types of chattering, namely, complete and incomplete
chattering. Complete chattering refers to the phenom-
enon where a system undergoes an infinite number of
impacts in a finite time, where the impact velocity goes
uniformly to zero. Incomplete chattering refers to a se-
quence of impacts that initially has the same behav-
ior as complete chattering but that ends after a large
but finite number of impacts. In Figs. 1(a) and (b) we
show a time series of the position and velocity, respec-
tively, for a vertically moving ball under the influence
gravity bouncing against a rigid surface that undergoes

complete chattering. It is notable that chattering as de-
fined here is sometimes also referred to as Zeno phe-
nomenon [38], and that the term chattering is some-
times used in control theory to refer to a large number
of switches, and in mechanical engineering to a large
number of recurrent impacts, not necessarily infinite.

When faced with a new NS dynamical system, the
first and most straightforward way of analyzing the
dynamics is to perform a direct numerical simulation
(DNS) of the system, i.e. to solve an initial value prob-
lem (IVP). In some special cases one might be able
to find the analytic solution to the ODE, but gener-
ally one needs to solve a system of ODEs numeri-
cally. There are many different numerical solvers for
smooth systems [1, 33], but the question is how to deal
with interactions between solutions and discontinuity
surfaces. There are a number of different strategies of
which the two mostly used are the time-stepping and
event-driven strategies. Ultimately both methods are
time steppers, but in the first case there is a check if
a discontinuity surface has been crossed at each time
step, and if that is the case the ODE is adjusted, e.g. by
applying an impulsive force at an impact. In the second
case there is also a check if a discontinuity surface has
been crossed at each time step, but when such a cross-
ing is detected the point of penetration will be more
precisely located, with an event-location routine, from
which point the simulation continues and the system
is adjusted. The adjustment could be through an im-
pulsive force, as above, or a discrete map. The method
of solving a combination of smooth systems and dis-
crete maps is sometimes termed a hybrid-system ap-
proach. In the hybrid-system approach the simulation
is stopped when the event has been located and a dis-
crete map is applied to the state and/or the system of
ODEs are replaced. Here we will use this last strategy
for simulation of impacting systems, which means that

Fig. 1 The (a) position and
(b) velocity versus time of a
bouncing ball, with
coefficient of restitution
e = 0.8, that undergoes a
complete chattering
sequence
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we can use a high-order ODE solver between events
and focus more on how to deal with the discontinuous
elements. Another advantage with this strategy is that
it is relatively straightforward to calculate the stability
of limit cycles by solving the first variational equa-
tions, using saltation matrices [21], and ultimately
to continue them under parameter variation [2]. Un-
like boundary value solver software like AUTO [15]
and SLIDECONT [9], that are based on collocation,
where the entire event order has to be predescribed,
hybrid-system based software uses shooting and does
not require a predescribed event order, but all neces-
sary quantities are calculated during simulation.

The focus of this article is threefold. Firstly, we
will show how to simulate impacting systems that un-
dergo complete chattering by deriving the necessary
mapping to bypass the tail of the complete chattering
(see [5] for related work). We will also give a detailed
description of our proposed numerical algorithm for
simulation of impacting systems with chattering. Sec-
ondly, we will show what measures need to be taken
in order to calculate the stability of a trajectory with
chattering and thus how it can be used to locate and
continue periodic orbits. Thirdly, we will introduce an
example to show that our proposed numerical method
works in three different cases.

The remainder of the present article is organized
as follows. Section 2 introduces and defines concepts
needed for the treatment of impacting systems, such
as the impacting surface, the impact law, sticking and
chattering. In Sect. 3 the local map that bypasses the
tail of a complete chattering sequence is derived and
explained. Section 4 describes how to calculate the
stability of a limit cycle with chattering and also dis-
cusses how the numerical robustness can be improved.
In Sect. 5 the numerical scheme we propose for sim-
ulation is explained and in Sect. 6 we apply the sim-
ulation and analysis methods to a mechanical system,
a forced double pendulum. Finally, in Sect. 7 we con-
clude the article.

2 Impacting systems

We will here introduce a rather general model for an
impacting system described by a smooth vector field
(F ) and impacting on a smooth surface (S0

0) in state
space. Impacts are taken to cause an instantaneous
change in the system state (i.e. an impact takes zero

time), and we use a restitution law to describe the state
change (cf. Newton’s impact law). The reason for con-
sidering only one impact surface is that the main topic
of this paper, chattering, is a local phenomenon involv-
ing only one impact surface, and also that a simultane-
ous impact at two different surfaces may involve the
simultaneous application of two incompatible impact
laws, and solutions that are not unique in forward time
(see [6]). The components of our model are a vector
field F , a scalar function H whose zero level set de-
scribes the impact surface, and a function W used in
the impact law. We will assume that these three func-
tions are analytic.

2.1 The vector field

Let S be a subset of R
n and let F be a vector field on

S with a corresponding system of ODEs given by

ẋ = F(x), x ∈ S ⊂ R
n.

Since we would like to have solutions for all forward
times, let us assume that trajectories of the vector field
do not reach the boundary of S in finite time. Thus
the vector field defines an analytic flow function φ :
S × R �→ S so that

φt (x, t) = F
(
φ(x, t)

)
, φ(x,0) = x. (1)

Notice that will often use subscripts ‘x ’ and ‘t ’ to de-
note partial derivatives.

2.2 The impact surface

Let the impact surface (S0
0 ) be given by the zero

level set of a scalar function H : S �→ R, which has
non-zero gradient on this level set, and that the sys-
tem should be constrained to those points of S where
H ≥ 0. Define the Lie derivative LF (H) of H along F

so that

LF (H)(x) := Ht

(
φ(x, t)

)∣∣
t=0 = Hx(x)F (x)

and inductively

L0
F (H) = H, Lk

F (H) = LF

(
Lk−1

F (H)
)
.

In particular we denote the velocity relative to H by

v(x) := LF (H)(x) (2)
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and the acceleration by

a(x) := L2
F (H)(x). (3)

For future reference we also define some useful sub-
sets of S:

S+
k := {

x ∈ S | Lk
F (H)(x) > 0

}
,

S0
k := {

x ∈ S | Lk
F (H)(x) = 0

}
,

S−
k := {

x ∈ S | Lk
F (H)(x) < 0

}
,

Σ+
k :=

(
k−1⋂

m=0

S0
m

)

∩ S+
k , Σ0

k :=
(

k−1⋂

m=0

S0
m

)

∩ S0
k ,

Σ−
k :=

(
k−1⋂

m=0

S0
m

)

∩ S−
k

for non-negative integers k. This means that each zero
set Σ0

k is further divided into subsets through

Σ0
k = Σ+

k+1 ∪ Σ0
k+1 ∪ Σ−

k+1.

Thus, the desired region for the system is Σ+
0 ∪ Σ0

0 .
However, at points in

⋃∞
m=1 Σ−

m the system would
leave this region. We have to introduce an impact law
and sticking motion to be able to continue from these
points.

2.2.1 Example: a periodically forced 1DOF linear
oscillator

Consider the ODE

q̈ + 2ζ q̇ + q = cos(ωt), q ≥ σ.

Letting x = (x1, x2, x3)
T, where x1 = q , x2 = q̇ and

x3 = ωt (mod 2π), we can take S = R
n, use the vector

field

F(x) =
⎛

⎝
x2

−x1 − 2ζx2 + cos(x3)

ω

⎞

⎠ (4)

and H(x) = x1 − σ as the scalar function defining the
impacting surface. The velocity and acceleration rela-
tive to H becomes

v(x) = x2 and a(x) = −x1 − 2ζx2 + cos(x3),

respectively. We also have

Σ+
0 = {x | x1 > σ }, Σ+

1 = {x | x1 = σ,x2 > 0},

Σ−
1 = {x | x1 = σ,x2 < 0}

and if for example σ = 0 and ω > 0, we have

Σ+
2 = {

x | x1 = 0, x2 = 0,

x3 ∈ [0,π/2) ∪ (3π/2,2π)
}
,

Σ−
2 = {

x | x1 = 0, x2 = 0, x3 ∈ (π/2,3π/2)
}
,

Σ+
3 =

⎧
⎨

⎩

⎛

⎝
0
0

3π/2

⎞

⎠

⎫
⎬

⎭
, Σ−

3 =
⎧
⎨

⎩

⎛

⎝
0
0

π/2

⎞

⎠

⎫
⎬

⎭
,

and the union of these disjoint sets is precisely those
points x where H(x) ≥ 0. These sets are shown in
Fig. 2.

2.3 The impact law

First consider a point x ∈ Σ−
1 where H(x) = 0 and the

velocity v(x) < 0. We now need an impact law R̃(x)

defined on S0
0 that gives a new state with H(R̃(x)) = 0

and v(R̃(x)) ≥ 0. We will further assume that the map-
ping reduces to identity (no state jump) as the impact
velocity approaches zero, and that R̃ can be extended
to an analytic mapping R : S �→ S. The condition that
v = 0 should lead to no-jump means that R must have
the form

R(x) = x + W(x)v(x) (5)

for some analytic function W : S �→ R
n. The function

W is further restricted by the condition

R(Σ−
1 ) ⊂ (

Σ+
1 ∪ Σ0

1

)
. (6)

Substituting (5) into (2) to compute the new veloc-
ity gives

v
(
x + W(x)v(x)

)

= v(x) + ∇v(x)W(x)v(x) + O
(
v(x)

)2

= (
1 + LW

(
LF (H)

)
(x)

)
v(x) + O

(
v(x)

)2 (7)

and thus we can identify a low-velocity “coefficient of
restitution” as

r(x) = −(
1 + LW LF (H)(x)

)
. (8)

From (6) we must have

0 ≤ r(x) (9)

at a point x ∈ Σ0
1 .
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Fig. 2 The Σ sets and two
sticking trajectories for the
periodically forced 1DOF
linear impact oscillator.
Parameter values are
ζ = 0.1, ω = 1, σ = 0, and
the restitution coefficient
e = 0.6. One trajectory
enters sticking without
impact through Σ−

3 . The
other enters sticking
through a complete
chattering sequence. Both
orbits coincide after exiting
from sticking, which
happens at Σ+

3 . Notice that
x3 = ωt (see (4))

The appearance of something like a coefficient of
restitution here is just a consequence of the jump map
being assumed to be analytic and that it should reduce
to no-jump in the case of zero normal velocity.

If x ∈ ⋃∞
m=2 Σ−

m , where v(x) = 0, then the impact
law does nothing but we still have to prevent the sys-
tem from leaving the allowed region, which is dealt
with next.

2.4 Sticking

Suppose now that x ∈ ⋃∞
m=2 Σ−

m . The process that
keeps the system constrained to Σ0

0 during an infini-
tesimal time interval dt can be viewed as a combina-
tion of the action of the vector field F and of “impact-
ing with an infinitesimally small negative velocity du”
which gives dx = F(x)dt − |du|W(x). We call this
process sticking (or sliding, in some circumstances).
Thus, the sticking vector field is given by

ẋ = F ′(x) = F(x) − λ(x)W(x), λ ≥ 0, (10)

where λ must be chosen to keep the system in Σ0
1

(λ is essentially a Lagrange multiplier for the con-
strained system). Since the jump map R maps the
impact surface Σ0

0 back to itself, we must have that
W is tangent to Σ0

0 when x ∈ Σ0
1 , which means that

x ∈ Σ0
1 ⇒ LW(H)(x) = 0.

Then we can show that the sticking vector field F ′
is automatically tangent to Σ0

0 since

LF ′(H)(x) = LF (H)(x) − λ(x)LW(H)(x) = 0 (11)

for any λ(x) when x ∈ Σ0
1 . Since the sticking vector

field should also be tangent to Σ0
1 , we want

LF ′(v)(x) = LF ′ LF (H)(x)

= L2
F (H)(x) − λ(x)LW LF (H)(x) = 0

which gives

λ(x) = L2
F (H)(x)

LW LF (H)(x)
= −a(x)

1 + r(x)
. (12)

Since 0 ≤ r(x) when x ∈ Σ0
1 (by (9)), we see that

λ(x) is well defined there, F ′(x) is tangent to Σ0
1 , and

if a(x) ≤ 0 then λ(x) is non-negative. The sticking
phase ends when x ∈ ⋃∞

m=3 Σ+
m .

A trajectory of F can only enter the sticking set,
without impacts, at points in Σ−

m for some odd m ≥ 3,
which is a subset of the impact surface Σ0

0 of at
least codimension-two (see the leftmost trajectory in
Fig. 2). Thus the direct transition from free flight to
sticking is rather unlikely. Another possibility is that
the impact map R maps a point in Σ−

1 to a point in Σ0
1

(with zero outgoing velocity) through a “completely
inelastic” impact, which happens only in a rather spe-
cial class of impacting systems, i.e. when r(x) = 0.
The typical way of entering sticking is instead through
an accumulation of impacts with lower and lower ve-
locities, i.e. chattering.

2.5 Chattering

It may happen that an infinite number of impacts accu-
mulate in finite time. Since the time between impacts
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goes to zero, the same must happen with the velocity,
and the accumulation point x must lie in Σ−

2 ∪ Σ0
2

where H(x) = 0, v(x) = 0, a(x) ≤ 0. For example,
if a(x) < 0, 0 < r(x) < 1, and H(x), v(x) are small
enough, then impacts will accumulate at a point in Σ−

2
near x. This typical situation will be our focus in the
rest of the paper.

2.5.1 Example continued: a periodically forced
1DOF linear impact oscillator

We complete the example of Sect. 2.2.1 by specifying
that when q reaches σ with negative velocity q̇−, an
impact should occur such that

q̇+ = −eq̇− when q = σ and q̇− < 0,

where e correspond to a Newton coefficient of restitu-
tion. Using the state x as defined above, we find that
the impact function W becomes

W(x) =
⎛

⎝
0

−(1 + e)

0

⎞

⎠ so that

R(x) = x +
⎛

⎝
0

−(1 + e)

0

⎞

⎠x2,

and r(x) as defined by (8) is equal to e, as expected.
In Fig. 2 two trajectories with a sticking section are
shown. One is the special trajectory that enters stick-
ing without impact, and the second nearby one is a
more typical trajectory that enters sticking through a
complete chattering sequence. Both trajectories leave
the sticking set at the same point.

3 The chatter mapping

Our goal in this section is to show that if x̄ is a
point in Σ−

2 and 0 ≤ r(x̄) < 1, then for all points x ∈
Σ−

1 ∪Σ−
2 close to x̄ there is a unique point x∗ = Q(x)

and a unique time interval 	t∗ = q(x) where chatter
completes. Furthermore, the mappings Q and q are
smooth.

First, if x ∈ Σ−
2 , then we can take x∗ = Q(x) = x

and 	t∗ = q(x) = 0. Thus we may assume that x ∈
Σ−

1 . A point in Σ−
1 will immediately undergo an im-

pact, and then a short trajectory of F will bring us

back to Σ−
1 again. This gives a “next impact” map-

ping, and applying this mapping an infinite number
of times should lead us to the point x∗, where chat-
ter completes. This point x∗ is also a fixed point of the
mapping, and x belongs to the stable manifold of x∗.

3.1 The generalized next impact mapping

The mappings Q(x) and q(x) reduce to the identity
and zero, respectively, whenever v(x) = 0. We can
take advantage of this by introducing an auxiliary vari-
able v to track the velocity v(x) = LF (H)(x), inde-
pendently of the state x. The goal is to be able to write
the mappings as power series in the scalar variable v,
with coefficients that are known functions of x, instead
of having to expand in the non-scalar state variable x.
Thus we will derive generalized mappings depending
on x and v, which will reduce to the correct mappings
depending on x only when we set v = LF (H)(x). To
achieve the goal of having a power series in v, we
will be adding terms that evaluate to 0 to the equa-
tions defining the mappings. For several examples of
the same type of techniques, see Chaps. 6–8 in [14].

Thus, in the following, we will use v as an auxiliary
variable independent of x, keeping in mind that in the
final result we will let v = LF (H)(x). We will always
take x in a neighborhood of Σ−

2 , and v small.

3.1.1 Impact

The first thing that happens to a point in Σ−
1 is the im-

pact, given by the jump map R. Let us view the impact
velocity v as being independent of x and define

X1(x, v) = x + W(x)v, (13)

V1(x, v) = LF (H)
(
X1(x, v)

) − LF (H)(x) + v (14)

(rather than X1(x) = R(x), V1(x) = LF (H)(R(x))).
Note that if v = LF (H)(x) then

X1
(
x, LF (H)(x)

) = R(x), (15)

V1
(
x, LF (H)(x)

) = LF (H)
(
R(x)

)
, (16)

so X1 is the jump map and V1 is the outgoing velocity.
On the other hand, for all x and small v, the lineariza-
tion around v = 0 is

X1(x, v) = x + W(x)v, (17)

V1(x, v) = −r(x)v + O
(
v2), (18)
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as was established in (7). Note again that without writ-
ing equations (13–14) this way, V1 would not have had
a vanishing zeroth-order term in the v power series ex-
pansion.

3.1.2 Flow to next impact

The second thing that happens is that a trajectory leads
to the next impact. If we start with H(x) = 0, v(x) > 0
small, a(x) < 0, then the trajectory intersects Σ−

1 after
a time that is proportional to v(x) to lowest order. With
this in mind we define the function T2(x, v) implicitly
as the solution of

E2(x, v, T2) = H(φ(x,T2)) − H(x)

T2

− LF (H)(x) + v = 0, (19)

T2(x,0) = 0,

where φ is the flow of F defined by (1). Note that since
a(x) �= 0 and

E2(x, v, t) = v + ta(x)/2 + O
(
t2),

the implicit function theorem applies. Also note that
if H(x) = 0 and v = LF (H)(x), then H(φ(x,T2(x,

LF (H)(x))) = 0, so T2 is the time to next im-
pact. Note again that trying to write (19) simply as
H(φ(x,T2)) = 0, would neither have allowed us to
use the implicit function theorem, since the Jacobian
with respect to T2 is always 0 at the x points of in-
terest, nor would it have allowed us to write the flight
time as a power series in v with a vanishing zeroth
order term.

Now define

X2(x, v) = φ
(
x,T2(x, v)

) = x − 2F(x)

a(x)
v + O

(
v2),

(20)

V2(x, v) = LF (H)
(
X2(x, v)

) − LF (H)(x) + v

= −v + O
(
v2). (21)

Again, if H(x) = 0 and v = LF (H)(x) then X2 is the
point of next impact and V2 is the impact velocity, but
they are well-defined functions for all small v and all
x where a(x) < 0.

3.2 Fixed points

We now define the generalized next impact mapping
when a(x) < 0 and v small as

X3(x, v) = X2
(
X1(x, v),V1(x, v)

)

= x + K(x)v + O
(
v2), (22)

V3(x, v) = V2
(
X1(x, v),V1(x, v)

) = r(x)v + O
(
v2),
(23)

where

K(x) = 2F(x)

a(x)
r(x) + W(x). (24)

For any M < 0, define the set

D = {
(x, v) ∈ R

n × R | a(x) ≤ M < 0, v = 0
}
.

Then the generalized next impact mapping defines a
dynamical system in a neighborhood of D, and each
point in D is a fixed point. The Jacobian of the map-
ping evaluated at the fixed point is

J (x) =
(

I K(x)

0 r(x)

)
(25)

where I is the n × n identity matrix. Clearly this ma-
trix has n eigenvalues equal to 1, corresponding to
the n-dimensional manifold of fixed points D, and
one non-trivial eigenvalue r(x). If 0 ≤ r(x) < 1 this
eigenvalue lies inside the unit circle in the complex
plane and hence the linearized map is stable. The cor-
responding stable (right) eigenvector is

(
θ(x)

1

)
=

(
− K(x)

1−r(x)

1

)

. (26)

Furthermore, if the linearized map is stable, there are
no other fixed points nearby with v �= 0 and small.

3.3 Stable manifold

The stable manifold theorem now tells us that there
exists a unique one-dimensional stable manifold

x = X4(x
∗, v) = x∗ + θ(x∗)v + O

(
v2) (27)

through each fixed point (x∗,0) ∈ D that solves the
equation

X3
(
X4(x, v), v

) = X4
(
x,V3(X4(x, v), v)

)
. (28)
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Since D itself is n-dimensional, the union of the stable
manifolds fills out an open subset of R

n × R. If we for
a given x can find a point x∗ such that

x = X4
(
x∗, LF (H)(x)

)
,

then x∗ is the point where chatter completes. To see
that this is always possible, we invoke the implicit
function theorem again. Let X5(x, v) solve

E5(x, v,X5) = X4(X5, v) − x

X5(x,0) = x.
(29)

This gives X5(x, v) = x − θ(x)v + O(v2), where θ is
given by (26).

Our result can now finally be stated: If H(x) = 0,
v(x) < 0 and small enough, a(x) < 0, and 0 ≤
r(x) < 1, then the dynamics starting at x leads to chat-
tering that completes at

x∗ = Q(x) = X5
(
x, v(x)

)

= x + 1

1 − r(x)

(
2F(x)

a(x)
r(x) + W(x)

)
v(x)

+ v(x)2 O(1) (30)

(where O(1) indicates a bounded function of x). The
function X5(x, v) can be computed as a power series
in v to any order (assuming F,H,W to be sufficiently
smooth) by using the implicit function and stable man-
ifold theorems.

Equation (30) can also be used to compute the time
it takes for chatter to complete (we can include a new
variable tracking the flow of time in the system by ex-
tending F with an extra component equal to 1 and W

with 0). The result is

	t∗ = q(x)

= 1

1 − r(x)

(
2

a(x)
r(x)

)
v(x) + v(x)2 O(1). (31)

Maps like these have been derived for particular sys-
tems before, for example in [5].

3.4 Estimating the truncation error

The map derived in Sect. 3.3 will naturally introduce a
truncation error, and in what follows we will estimate
this error.

Let X
(k)
5 (x, v) be the truncation of X5 to or-

der k in v. Thus X
(0)
5 (x, v) = x and X

(k+1)
5 (x, v) =

X
(k)
5 (x, v)+Ck+1(x)vk+1 for some coefficients Ci(x).

For small v, the error in using X
(n)
5 instead of X5 will

be dominated by the first neglected term Cn+1(x)vk+1.
Equations (28)–(29) imply that

X5
(
X3(x, v),V3(x, v)

) − X5(x, v) = 0 (32)

(which may in fact be used together with X5(x,0) = x

to compute X5 directly without having to compute X4

first). If we use X
(n)
5 instead of X5 in this equation, we

find

X
(n)
5

(
X3(x, v),V3(x, v)

) − X
(n)
5 (x, v)

= Rn(x)vn+1 + O
(
vn+2)

for some remainder function Rn(x). Now using X
(n+1)
5

with a not yet determined coefficient Cn+1(x), and re-
membering that

X3(x, v) = x + O(v), V3(x, v) = r(x)v+ O
(
v2),

gives

X
(n+1)
5

(
X3(x, v),V3(x, v)

) − X
(n+1)
5 (x, v)

= [
X

(n)
5

(
X3(x, v),V3(x, v)

) − X
(n)
5 (x, v)

]

+ [
Cn+1

(
X3(x, v)

)(
V3(x, v)

)n+1

− Cn+1(x)vn+1]

= [
Rn(x)vn+1 + O

(
vn+2)]

+ [
Cn+1(x)

(
r(x)v

)n+1 + O
(
vn+2)

− Cn+1(x)vn+1]

= (
Rn(x) − (

1 − r(x)n+1)Cn+1(x)
)
vn+1

+ O
(
vn+2), (33)

which shows us that the undetermined coefficient
Cn+1(x) must be chosen as

Cn+1(x) = Rn(x)

1 − r(x)n+1
. (34)

Thus, if we have computed a truncated approxima-
tion x∗(n) = X

(n)
5 (x, v(x)) of the point where chatter-

ing completes, we can both get an improved approxi-
mation of this point and an estimate of the truncation

8



error, by first taking another impact/flight, and then ap-
proximating the chattering point again, that is

x̃∗(n) = X
(n)
5

(
X3

(
x, v(x)

)
,V3

(
x, v(x)

))
.

The improved chattering point is then

x̃∗(n) − r(x)n+1x∗(n)

1 − r(x)n+1

which is correct to order v(x)n+1, and the error esti-
mate is

X5(x, v(x)) − X
(n)
5

(
x, v(x)

)

= x̃∗(n) − x∗(n)

1 − r(x)n+1
+ O

(
v(x)n+2). (35)

Note that we are assuming here that the im-
pact/flight mappings X3 and V3 are known exactly.
In practice they are computed through numerical inte-
gration, and we cannot trust the above estimate of the
truncation error in X5, unless the truncation errors in
the numerical integration are known to be of smaller
size.

3.5 Example: the bouncing ball

Consider the simplest possible example: a ball mov-
ing vertically under gravity and bouncing with a New-
ton coefficient of restitution e, where 0 ≤ e < 1 (see
Fig. 1). For this example all functions defined above
can be explicitly computed, so this gives an illustra-
tion to how the theory works. We have

q̈ = −g < 0, q ≥ 0, q̇+ = −eq̇−

when impacting at q = 0.

Letting x = (x1, x2, x3)
T, where x1 = q , x2 = q̇ and

x3 is a variable to keep track of time, and rewriting the
impact law in the form of Eqs. (2) and (5), we have

F(x) =
⎛

⎝
x2

−g

1

⎞

⎠ , H(x) = x1, v(x) = x2,

W(x) =
⎛

⎝
0

−(1 + e)

0

⎞

⎠ .

From this we compute using (3), (8), (10) and (12) that

a(x) = −g, r(x) = e, λ(x) = −g/(1 + e),

F ′(x) =
⎛

⎝
x2

0
1

⎞

⎠ .

The relevant Σ sets are

Σ+
0 = {x | x1 > 0}, Σ−

1 = {x | x1 = 0, x2 < 0},
Σ+

1 = {x | x1 = 0, x2 > 0},
Σ−

2 = {x | x1 = 0, x2 = 0}.

We can now compute the end result according to (30)
to be

x∗ = x +
⎛

⎜
⎝

− 2ex2
g(1−e)

−1
− 2e

g(1−e)

⎞

⎟
⎠x2 + x2

2 O(1). (36)

If we only keep the two first terms, we find that the
final velocity happens to be exactly 0, the time taken
for chattering is also exact, but starting with x1 = 0 we
find that the final position is of the order x2

2 . This is of
course consistent with the neglected term.

For this simple example, all equations defining the
functions are actually solvable in closed form. Using
(13) and (14) we find for the impact that

X1(x, v) = x +
⎛

⎝
0

−(1 + e)

0

⎞

⎠v, V1(x, v) = −ev,

and for the flow, using (1), (19), (20) and (21), that

φ(x, t) =
⎛

⎝
x1 + x2t − gt2/2

x2 − gt

x3 + t

⎞

⎠ , T2(x, v) = 2

g
v

so

X2(x, v) = x +
⎛

⎜
⎝

2x2
g

−2
2
g

⎞

⎟
⎠v +

⎛

⎝
− 2

g

0
0

⎞

⎠v2,

V2(x, v) = −v.

For the next time mapping (22), (23) we get

X3(x, v) = x +
⎛

⎜
⎝

− 2ex2
g

−(1 − e)

− 2e
g

⎞

⎟
⎠v +

⎛

⎝
2e
g

0
0

⎞

⎠v2,

V3(x, v) = ev.

9



Solving the stable manifold equation (28), inverting
the result by solving (29), and inserting the expression
for v(x) finally gives

X4(x, v) = x +
⎛

⎜
⎝

2ex2
g(1−e)

1
2e

g(1−e)

⎞

⎟
⎠v,

X5(x, v) = x +
⎛

⎜
⎝

− 2ex2
g(1−e)

−1
− 2e

g(1−e)

⎞

⎟
⎠v +

⎛

⎝
2e

g(1−e)

0
0

⎞

⎠v2, (37)

X5(x, v(x)) =
⎛

⎝
x1

0
x3 + 2e(−x2)

g(1−e)

⎞

⎠ .

The formula (37) tells us that if we start in Σ−
0

with x1 = 0, x2 = −v0, chattering completes in
2ev0/(g(1 − e)) time units at x1 = 0, x2 = 0, which
indeed belongs to Σ1. Note also the error in position
introduced by keeping only terms linear in v in (36) is
gone in (37).

4 Stability analysis and continuation

4.1 Solution structure

Now that we have introduced the chatter mapping, as
a way to bypass the accumulation of events associ-
ated with complete chattering, we can view the solu-
tion over a finite time interval as a finite sequence of
trajectories of either F or F ′, connected by (possible
non-instantaneous) events. This can be represented as
follows.

The continuous trajectories are given by a sequence
of functions Xk : Ik → R

n (k ∈ {0,1, . . . ,N}) where
Ik = [tk, t ′k] is a sequence of time intervals. Also we
have a sequence of discrete states Sk ∈ {f, s} (f for
free flight, s for sticking) and vector fields Fk : R

n →
R

n, where

Fk =
{

F if Sk = f

F ′ if Sk = s.

Thus Xk is a trajectory of Fk in the time interval Ik ,
and for tk < t < t ′k we have Xk(t) ∈ Σ+

0 if Sk = f , or
Xk(t) ∈ Σ−

2 if Sk = s.

Denoting the initial and final points of each trajec-
tory by

xk = Xk(tk) and x′
k = Xk(t

′
k),

respectively, we also have event mappings Ek : R
n →

R
n, ek : R

n → R, such that

xk+1 = Ek(x
′
k), (38)

tk+1 = t ′k + ek(x
′
k). (39)

All this takes place at an event surface defined as the
zero level set of a scalar function Hk : R

n → R. From
now on we will assume that all events are transversal,
that is LFk

(Hk)(x
′
k) �= 0, and that all flow time inter-

vals have non-zero length. Then there are three possi-
ble events:

• If there is a complete chattering event, then Ek = Q,
ek = q , Hk = H , and we require x′

k ∈ Σ−
1 , Sk = f ,

xk+1 ∈ Σ−
2 , Sk+1 = s.

• If there is a regular impact, then Ek = R, ek = 0,
Hk = H , and we require x′

k ∈ Σ−
1 , Sk = f , xk+1 ∈

Σ+
1 , Sk+1 = f .

• Lastly, if we have a release from sticking, then Ek =
Id (the identity mapping), ek = 0, Hk = a, and we
require x′

k ∈ Σ+
3 , Sk = s, Sk+1 = f .

Let us now impose the additional requirement that
the initial and final points of the solution also stay clear
of events, that is, both x0 and x′

N belong to Σ+
0 or Σ−

2 .
Combined with the requirement of transversal events
and non-zero time intervals, this means that all solu-
tions starting at x̃0 near x0 will have the same number
and type of events, albeit with slightly different time
intervals in between. Solving for a given fixed time,
so that t0 = t̃0 = 0, t ′N = t̃ ′N = T , we can compute the
final point corresponding to an initial point x̃0 through
the composition of mappings

x̃′
N = P(x̃0) = (PN ◦DN−1 ◦PN−1 ◦· · ·◦D0 ◦P0)(x̃0)

(40)

as long as x̃0 is close to x0. Here Pk(x)=φk(x, t ′k − tk),
where φk is the flow of vector field Fk (and where
the times t ′k and tk correspond to event times for the
point x0), and Dk is a discontinuity mapping corre-
sponding to the event, which corrects for the fact that
the event times of x0 instead of x̃0 have been used
so the argument of Dk no longer lies exactly on the
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event surface Hk(x) = 0. More precisely, the mapping
Dk(x) is defined for points x close to the event surface
of event k as

Dk(x) = φk+1
(
Ek

(
φk

(
x, τ (x)

))
,

tk+1 − t ′k − ek

(
φk

(
x, τ (x)

)) − τ(x)
)
, (41)

where tk+1 and t ′k are independent of x, and the time
τ(x) is the time to reach the nearby impact surface,
defined implicitly by

Hk

(
φk

(
x, τ (x)

)) = 0. (42)

We see that the discontinuity mapping always ad-
vances time by the fixed amount dk = tk+1 − t ′k , it gives
the same result as the event mapping for the point x′

k :
Ek(x

′
k) = Dk(x

′
k), ek(x

′
k) = dk , and if preceded by the

flow φk and followed by flow φk+1, the resulting com-
posite dynamics will be the correct one.

4.2 Computation of derivatives

For stability analysis, we would like to compute the
Jacobian Px of P . From the composition (40) we find

Px(x0) = PNx(xN)DN−1x(x
′
N−1)PN−1x(xN−1) · · ·

· D0x(x
′
0)P0x(x0).

The flow Jacobians Pk can be computed using the
variational equations consisting of the matrix ODE
system

dJ

dt
(t) = Fkx

(
φk(xk, t)

)
J (t), J (0) = I,

Pkx(xk) = J (t ′k − tk).

The Jacobian of the discontinuity mapping for a
non-instantaneous event, sometimes referred to as the
saltation matrix [21], has the formula

Dkx(x
′
k) = A + B2 − AB1

d
C (43)

where

A = Ekx(x
′
k) − B2ekx(x

′
k), B2 = Fk+1(xk+1),

B1 = Fk(x
′
k), d = LFk

(Hk)(x
′
k),

C = Hkx(x
′
k),

derived using the chain rule repeatedly on (38–39,
41–42). We see that the condition of transversal events

means that d �= 0, so the discontinuity mapping Jaco-
bian is well defined.

Thus, by treating complete chattering as a single
non-instantaneous event, we can compute the Jaco-
bian around a given solution, as long as all events are
transversal and all flow times non-zero. Should higher-
order derivatives be needed, they too can be computed
from the composition (40) by using higher-order vari-
ational equations and formulae for higher-order deriv-
atives of the discontinuity mappings.

4.3 Scaling considerations

As we approach the tail of a complete chattering
sequence, the impact velocity becomes smaller and
smaller. Since the denominator in (43) is the impact
velocity for events corresponding to regular impacts
or complete chattering, the matrices Dk will have in-
creasingly large elements as the events become less
and less transversal. On the other hand, because we
have shown that the event mapping for complete chat-
tering is smooth, we know that these large elements
must in fact cancel out. Numerically, however, we see
that there is a risk of accuracy loss due to cancella-
tion, if we wait too long before using the chattering
map, especially if H(x) is more complex than just the
value of one of the coordinates. We can make the sys-
tem better scaled if we, when a complete chattering
sequence is suspected, introduce two new state vari-
ables: u which is the outgoing velocity of the latest
impact, and h which is equal to H(x)/u. With the ex-
tended state variable

x̂ =
⎛

⎝
x

h

u

⎞

⎠ (44)

we use the extended impact mapping

x̂ ← R̂(x̂) =
⎛

⎝
R(x)

0
v(R(x))

⎞

⎠ ,

the extended impact surface function Ĥ (x̂) = h and
the extended vector field

˙̂x = F̂ (x̂) =
⎛

⎝
F(x)

v(x)/u

0

⎞

⎠ .
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Fig. 3 (a) The norm
‖Dkx‖1 of the Jacobian of
the discontinuity mapping
at the kth impact in a
chattering sequence
(see (43)) when using the
original (•) and extended
(◦) systems for an
impacting ball. The value of
H(x) (b) and h(x̂) (c)
versus time in the tail of the
complete chattering
sequence of the bouncing
ball in (a)

Then we find that the transversality quantity
L

F̂
(Ĥ )(x̂) will instead converge to −1 as the im-

pact velocity decreases, and the problem with small
numbers in the denominator disappears (see Fig. 3(a),
where ‖Dk‖1 versus k is plotted). Using h = 0 instead
of H(x) = 0 also avoids problems with scaling in the
event detection. In Figs. 3(b) and (c) we compare the
values of H and h in the tail of a complete chatter-
ing sequence for an impacting ball (cf. Sect. 3.5 and
Fig. 1). Notice especially the different scales on the
vertical axes and the rate in which the envelopes de-
crease to zero. Note also the jumps in time that occur
at the chattering events.

4.4 On the behavior of the Jacobian during a
complete chattering sequence

Just after a complete chattering sequence, the system
is in a sticking phase, and the Jacobian Px must have
at least co-rank 2 since HxPx = 0 and vxPx = 0. In
fact, this loss of rank can be viewed as taking place in
two distinct phases. By changing the final time T we
can study the evolution of Px , keeping in mind that Px

is double valued at times of impact, and is left unde-
fined during the time jump associated with the com-
plete chatter mapping. This later difficulty disappears
if we postpone the use of the chatter mapping.

Suppose that the system completes chattering at
state x∗ and time t∗, with a(x∗) < 0, and that we
are using the extended system introduced above in
Sect. 4.3. The product of the impact and subsequent
flow Jacobians is

P̂ k x̂ (x̂k)D̂k−1x̂ (x̂
′
k−1) = A(x∗) + O

(
v(x′

k−1)
)

where

A(x∗) =
⎛

⎝
I 0 0
0 1 0
0 0 0

⎞

⎠

+
⎛

⎝
W(x∗)

2r(x∗)/a(x∗)
−r(x∗)

⎞

⎠(
vx(x

∗) a(x∗) 0
)
.

Here the second-to-last row and column correspond
to the extended variable h, and the last row and col-
umn to u. A(x∗) has n eigenvalues equal to 1 and two
eigenvalues equal to r and 0 respectively. The sub-
space invariant under A(x∗) is spanned by
⎛

⎝
I

−vx(x
∗)/a(x∗)
0

⎞

⎠ .

If we write

pk = P̂ k x̂ (x̂k)D̂k−1x̂ (x̂
′
k−1)P̂ k−1x̂ (x̂k−1) · · ·

· D0x(x
′
0)P0x(x0)

(the switch to extended variables occurs somewhere
before event k − 1), then

pk+1 = (
A(x∗) + O

(
v(x′

k)
))

pk

and since v(x′
k) → 0 like rk , the matrices pk will con-

verge to a matrix p∞ that is invariant under A(x∗).
Now we are mostly interested in the upper n rows of
pk (corresponding to the original variables), so let us
call that submatrix

Jk = (
I 0 0

)
pk.

The h and u dependence on the initial condition,
as recorded by the two last rows of pk , is bounded,
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and we also know that the values of both h and u de-
crease like r(x∗)k . Thus the dependence of H = hu

on initial conditions must also be ∼ r(x∗)k . Therefore
we conclude that Hx(x

∗)J∞ = 0. We have no reason
to expect any other loss of rank, and thus towards the
end of the chattering sequence,

Jk = J∞ + O
(
v(x′

k−1)
)
,

and J∞ in general has co-rank 1.
Finally, if we put the chattering map back again, the

Jacobian of the discontinuity mapping associated with
complete chattering (and also dropping the extended
variables) is D̂K x̂(x̂

′
K) = D(x∗) + O(v(x′

K)), where

D(x∗) =
(

I − W(x∗)vx(x
∗)

vx(x∗)W(x∗)
0 0

)
, (45)

and clearly vx(x
∗)D(x∗) = 0.

In the original variables, the behavior of the Jaco-
bian Px during a chattering sequence is that HxPx → 0
like rk , where k is the number of impacts during the
chattering sequence, while vxPx converges to a non-
zero value. At the moment the sequence completes,
vxPx also jumps to 0.

We finish by illustrating the behavior of the Jaco-
bian for the bouncing ball problem (see Sect. 3.5). As-
sume that the ball is released from rest at the height
s > 0:

x0 =
(

s

0

)
. (46)

Reconstructing the extended state variables h and u

from the initial conditions, we find the Jacobian P̂ 0x

of the extended state with respect to the two compo-
nents of the initial conditions after the first flight, the
Jacobian D̂kx̂ of any subsequent impact discontinu-
ity mapping, and the Jacobian P̂ k x̂ of any subsequent
flight:

P̂ 0x =

⎛

⎜
⎜⎜
⎜⎜
⎝

1 − v′
0
g

0 1

− 1
v′

0

1
g

− g

v′
0

0

⎞

⎟
⎟⎟⎟⎟
⎠

,

D̂kx̂ =

⎛

⎜⎜
⎝

1 0 (1 + e)v′
k 0

0 −e (1 + e)g 0
0 0 −1 0
0 −e eg 0

⎞

⎟⎟
⎠ , (47)

P̂ k x̂ =

⎛

⎜⎜⎜⎜
⎝

1 2vk

g
0 0

0 1 0 0

0 2
g

1 0

0 0 0 1

⎞

⎟⎟⎟⎟
⎠

,

where the first impact velocity is v′
0 = −√

2gs, and
v′
k = −vk = ekv′

0. Recall that 0 ≤ e < 1. We compute

pn =
(

n∏

k=1

P̂ k x̂D̂k−1x̂

)

P̂ 0x

= 1

1 − e

⎛

⎜⎜⎜
⎜
⎜
⎝

en(1 + e − 2en+1) − v′
0
g

en(1 − e)

− g

v′
0
(1 + e)(1 − en) 1 − e

− 1
v′

0
(1 + e − 2en+1) 1

g
(1 − e)

− g

v′
0
en(1 − en) 0

⎞

⎟⎟⎟
⎟
⎟
⎠

,

(48)

which indeed is O(v′
n) = O(en) close to the limit ma-

trix p∞. The dependence of the original two state vari-
ables, that is given by the matrices Jk consisting of
the two top rows of each pk , shows that the H depen-
dence (the first row) converges to 0 like en, whereas
the second row (the v dependence) converges to non-
zero values.

We can replace the tail of the chattering sequence
by applying the chattering map (and dropping ex-
tended variables) after flight with N impacts. Since we
have an exact expression for this event mapping (see
(37))

ÊN(x̂) =
(

x1

0

)
, êN (x̂) = −2ex2

g(1 − e)
, (49)

we can compute the Jacobian D̂N x̂ of the correspond-
ing discontinuity mapping and finally the Jacobian
D̂N x̂pN of the state after chattering completes with
respect to the initial conditions:

D̂N x̂ =
(

1 0 env′
0 0

0 0 0 0

)
, D̂N x̂pN =

(
0 0
0 0

)
.

(50)

The last result shows that the sticking state is indeed
independent of initial conditions. The time evolution
of the derivative of the position and velocity with re-
spect to the initial position are shown in Fig 4. We note
the gradual decay to 0 for the position, and the sudden
jump to 0 when chattering ends for the velocity.
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Fig. 4 Time evolution of two components of the Jacobian matrix for the bouncing ball with g = 9.8 and initial height s = 1. Left:
∂x1(t)
∂x1(0)

, right: ∂x2(t)
∂x1(0)

. The chattering map was applied at N = 15

5 Numerical scheme

In this section we will describe our proposed numer-
ical scheme for solving impacting systems with one
impacting surface. In particular we will focus on tran-
sitions that occur at various events, such as at impacts
and release from stick.

To solve impacting systems with a hybrid-system
approach (see Sect. 1) is basically the same as solv-
ing any smooth system since in both cases a smooth
solver is used to solve IVPs. The main difference is
that when an event is detected in an impact problem, a
discontinuity map is applied and a new IVP is solved.

As with any ODE solver for smooth systems, one
first has to give a vector field, initial conditions, sim-
ulation times and various tolerances. On top of this,
information about the impact surface and the impact
law at the surface has to be provided.

In what follows we will assume that an ODE solver
for smooth systems combined with an event-detection
routine exists. Therefore the focus will be on the local
maps, state shifts and the logic used to keep track on
what system of ODEs to use in a particular situation.
Also, to show that our proposed methodology works
for both simulation and stability analysis we have in
Sect. 6 used a simulation driver that is based on the
methodology described here on top of one of MAT-
LAB’s ODE solvers that has a built-in event-detection
routine. However, it is of course possible to write your
own ODE solver and event-detection routine, which
could for instance be based on interval halving or the
secant method.

Let us now describe what the proposed simulation
driver for impacting systems with chattering can look
like.

5.1 Simulation driver

The basic idea for the simulation driver using the
hybrid-system approach is based on discrete states Sk .
Following the methodology described in Sect. 4.1,
there are two discrete states, Sk = f for the free flight
and Sk = s for sticking, and three possible events that
can occur. When solving an IVP with a time stepper it
is well known that near-grazing zero crossings are of-
ten missed. Therefore we will extend this idea in two
steps.

Let us first make the basic idea described above
more robust from a numerical point of view by extend-
ing Sk so that

Sk =

⎧
⎪⎨

⎪⎩

f +, x ∈ S+
1 ,

f −, x ∈ S−
1 ,

s, x ∈ Σ−
2

and

(51)

Fk =
{

F, Sk ∈ {f +, f −},
F ′, Sk = s.

Five different events can now occur: (i)—an impact
with negative velocity, (ii)—a complete chattering
event, (iii)—release from stick, (iv)—negative veloc-
ity becomes positive, and (v)—positive velocity be-
comes negative. A flow diagram of this is presented in
Fig. 5(a).
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Fig. 5 (a) A flow diagram
showing the state
transitions that occur during
simulation. (b) A flow
diagram showing the state
transitions that occur during
simulation for the extended
simulation algorithm

Fig. 6 A schematic description of the time history for a state
variable x(t) from an impacting system. The impacting surface
is given by the scalar function H(x) = 0 and the different states,
used in the simulation algorithm, are given by si , i = 1, . . . ,6.
The roman numerals correspond to some of the transitions de-
scribed in the flow diagram in Fig. 5

Secondly, if we use the same idea as in Fig. 5(a)
but also introduce the extended state and vector field
introduced in Sect. 4.3, we end up with a slightly more
complicated situation. To deal with this, we define six
states, si for i = 1, . . . ,6, to keep track on what ODEs
to use, what events to look for, and what state variables
to use, the original or the extended (see (44)). In Fig. 6
we present a schematic trajectory corresponding to a
general dynamical system

ẋ = f (x, t), x ∈ R
n

with an impacting surface at H(x) = 0. In the figure
we have indicated where the different events occur
with Roman numerals (see further, Fig. 5(b)). In be-
tween the events the system is in one of the different

states si and transitions from one state to another occur
at the events. Short descriptions of the different states
are given below:

State s1: Free flight with v(x) > 0. Impacts are not
possible.

State s2: Free flight with v(x) < 0. Impacts are possi-
ble.

State s3: Free flight with v(x) > 0, a(x) > 0. Impacts
are not possible.

State s4: Stick phase with v(x) = 0, a(x) < 0.
State s5: Free flight with v̂(x̂) > 0, â(x̂) < 0. Impacts

are not possible.
State s6: Free flight with v̂(x̂) < 0. Impacts are possi-

ble.

Recall that v(x) and a(x) are respectively the veloc-
ity and acceleration relative to the impacting surface
(cf. (2) and (3)). Notice also that x̂, v̂(x̂) and â(x̂)

are the extended state, the extended relative velocity
and acceleration, respectively. The states s1–s4 use the
original state variable x and in states s5 and s6 the ex-
tended state variable x̂ is used with a different event
function to locate the impacting surface (see Sect. 4.3).

To further clarify how our proposed algorithm
works, we show in Fig. 5(b) a flow diagram over the
transitions between the states s1–s6. The Roman nu-
merals I–XII correspond to the event locations (zero
crossings), state transitions, and discontinuity map-
pings at specific events (cf. Fig. 6). In Table 1 we have
listed, from left to right, the transition labels, zero-
crossing functions, accelerations at the events, state
transitions and local mappings. In the second column
we have listed what zero crossing to looking for to
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Table 1 A table
corresponding to the time
history in Fig. 6 and the
flow diagram in Fig. 5 that
shows the transition label,
what zero crossing to look
for to get a specific event,
and the acceleration, state
transition and the local
mapping at that event

Transition Zero crossing Acceleration State Mapping

I v(x) ↓ 0 a(x) � 0 s1 → s2 x → x

II v(x) ↑ 0 a(x) > 0 s2 → s1 x → x

III H(x) ↓ 0 a(x) < 0 s2 → s5 x → x̂ → R̂(x̂)

IV H(x) ↓ 0 a(x) < 0 s2 → s4 x
r=0→ R(x)

V H(x) ↓ 0 a(x) > 0 s2 → s3 x
r=0→ R(x)

VI v̂(x̂) ↓ 0 â(x̂) < 0 s5 → s6 x̂ → x̂

VII h(x̂) ↓ 0 â(x̂) < 0 s6 → s5 x̂ → R̂(x̂)

VIII â(x̂) ↑ 0 a(x) = 0 s5 → s1 x̂ → x

IX v̂(x̂) ↓ 0 â(x̂) < 0 s6 → s4 x̂ → Q̂(x̂) → x, t → q̂(x̂)

X v̂(x̂) ↑ 0 â(x̂) > 0 s6 → s1 x̂ → x

XI a(x) ↑ 0 a(x) = 0 s4 → s3 x → x

XII a(x) ↓ 0 a(x) = 0 s3 → s1 x → x

get the transition in the corresponding row, and also
if the zero crossing is from negative to positive (↑) or
positive to negative (↓).

5.2 Error checking for the complete chattering event

At the complete chattering event there are two things
that the algorithm has to check for. First, the al-
gorithm has to make sure that the acceleration af-
ter the complete chattering mapping is negative, i.e.
a(Ek(x

′
k)) < 0 (see (38)), so that there will indeed be a

transition to sticking. Second, to make sure that the er-
ror of using the approximate mapping at the complete
chattering event is within the numerical tolerance, the
method calculates xk+1, tk+1, given by (30) and (31),
using the acceleration both at x′

k, t
′
k and at xk+1, tk+1.

When the difference between these mappings is of the
order of the tolerance, the method goes ahead with the
complete chattering mapping. However, this method
can be improved by comparing two consecutive im-
pacts along the lines discussed in Sect. 3.4. An analy-
sis of the proposed and an improved error indicator is
given next.

5.2.1 Analysis of the error indicator

Recall the analysis in Sects. 3.1–3.4 and assume that

X3(x, v) = x + K(x)v + A(x)v2 + O
(
v3),

V3(x, v) = r(x)v + B(x)v2 + O
(
v3),

for some coefficients A(x) and B(x), and that the first-
order truncation of X5 is X

(1)
5 (x, v) = x + C1(x)v.

From this we can compute the error estimate (cf. (35))

X5(x, v) − X
(1)
5 (x, v)

= A(x) + C1(x)B(x) + r(x)C1x(x)K(x)

1 − r(x)2
v2

+ O
(
v3).

Above, in Sect. 5.2, it is mentioned that the error indi-
cator

X5(x, v) − X
(1)
5 (x, v)

∼ x + C1
(
X

(1)
5 (x, v)

)
v − X

(1)
5 (x, v)

= C1x(x)K(x)

1 − r(x)
v2 + O

(
v3)

is instead used. We see that this indicator neglects the
influence of the v2 terms in X3 and V3, and that it is
further off by a factor r(x)/(1 + r(x)). This suggests
that if it is possible to simulate an extra impact, before
using the map at the chattering event, this should be
done in order to find a better error estimate.

6 Example

Consider a double pendulum subject to gravitational
acceleration g, depicted in Fig. 7, where q1 is the ab-
solute angle of the upper bar with length L1 and q2

is the absolute angle of the lower bar with length L2.
The two bars are considered to be massless, but the
end-point of each bar has mass m1 and m2, respec-
tively. Both joints are rigid and at the upper joint a

16



Fig. 7 The (a) front and (b) side view of a forced double pen-
dulum with a unilateral constraint

constant torque T and viscous damping Dq̇ are ap-
plied, where D is the damping coefficient, while the
lower joint is considered frictionless. The lower mass
can impact with a rigid wall, a horizontal distance d

away from the upper joint. A restitution law is applied
when impacting.

By letting

q = (q1 q2)
T, q̇ = (q̇1 q̇2)

T

and

si = sin(qi), ci = cos(qi), sij = sin(qi − qj ),

cij = cos(qi − qj ),

the horizontal and vertical positions of the impacting
mass m2 relative to the upper joint can be written

X(q) = L1s1 +L2s2 and Y(q) = −(L1c1 +L2c2),

respectively. Consequently, the distance from the
lower mass m2 to the rigid wall can be written as

H(q) = X(q) + d, (52)

and thus an impact occurs as H(q) = 0. The equations
of motion for this system can be written as

M(q)q̈ + L(q, q̇) + V (q) = K(q)q̇ + λN(q), (53)

where

M(q) =
(

(m1 + m2)L
2
1 m2L1L2c12

m2L1L2c12 m2L
2
2

)

,

L(q, q̇) = L1L2s12

(
m1q̇

2
2

m2q̇
2
1

)

,

V (q) =
(

(m1 + m2)gL1s1 − T

m2gL2s2

)
,

K(q) =
(−D 0

0 0

)
,

N(q) =
(

dH(q)

dq

)T

= (L1c1 L2c2)
T,

and where λ is a Lagrange multiplier.
If we let q̇− and q̇+ be the velocity just before and

just after impact, respectively, we have at impact that

M(q̇+ − q̇−) = −NΛ, (54)

NTq̇+ = −eNTq̇−, (55)

where NΛ is the impulse and e is the restitution coef-
ficient. Equations (54) and (55) can be written as

(
M N

NT 0

)(
q̇+
Λ

)
=

(
Mq̇−

−eNTq̇−

)

, (56)

and solving (56) yields

Λ = (1 + e)

NTM−1N
NTq̇−, (57)

q̇+ = q̇− − M−1N(1 + e)

NTM−1N
NTq̇−, (58)

and if we use x = (qT q̇T)T as our state variable, we
get the vector field F as

F =
(

q̇

M−1(q)(−L(q, q̇) − V (q) + K(q)q̇)

)
(59)

and the impact law can be written as (5), where

W =
(

0

−M−1N(1+e)

NTM−1N

)

.

Now we have all information we need to simulate
trajectories that have both impacts and chattering se-
quences, as well as calculate the stability of periodic
orbits and continue them under parameter variations.
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In what follows we will look at three typical scenarios,
namely, transition from periodic orbits with complete
chattering to motion with incomplete chattering, and
local (period-doubling) and global (homoclinic) bifur-
cations. In the three examples we let

g = 9.81, m1 = 1, m2 = 2, L1 = L2 = 1,

D = 10

and we will vary e, T an d in order to highlight the
different aspects of impacting systems with chatter-
ing mentioned above. Also we demonstrate that our
proposed simulation algorithm works in the way one
would expect.

6.1 Transition from complete to incomplete
chattering

Consider the double pendulum with vector field (59)
and let d = 0.5 and T = −31.15. First we let the co-
efficient of restitution be e = 0.89. For this value of
e we have a stable period-1 orbit with complete chat-
tering, as shown in Fig. 8(a). In the figure we have
indicated the non-zero time spent in sticking mode as
τ > 0. To see what happens to the stable period-1 orbit
as e is increased we calculated a brute-force bifurca-
tion diagram, which can be seen in Fig. 8(b). It is clear
that there is a transition from a stable period-1 orbit
to some other attractor. What happens here is that as
e is increased the time τ spent in sticking mode is de-
creased until ultimately τ becomes 0 for some e∗. Pre-
cisely what happens to the orbit at e∗ is that there is an
infinite number of impacts that end at a point in Σ+

3 ,
so that no sticking can occur. In Fig. 8(c) a part of a

trajectory for e = 0.896 is depicted to show the spe-
cial situation where there is a finite, but large, number
of impacts.

The continuous transformation of a trajectory like
(a) into one like (c) clearly involves the loss of an
infinite number of impacts, and at a point where the
number of impacts decreases, the trajectory must have
a grazing impact. Thus we expect that the parame-
ter value e∗ is the accumulation point of an infinite
sequence of grazing bifurcation points. Preliminary
theoretical analysis on one-degree of freedom models
[26] leads us to conjecture that the size of the attractor
for e > e∗ is asymptotically proportional to (e − e∗)κ ,
where κ is very close to but slightly larger that 1.2.
This means that the size of the attractor is continuous
at e∗, which is indicated in Fig. 8(b). Although the
attractors in Fig. 8(b) seem to be mostly chaotic, we
conjecture that asymptotically the attractor should be
a stable finite number of impact period-1 orbits sim-
ilar to Fig. 8(c) with a probability approaching 1, as
e → e∗.

6.2 Period-doubling bifurcation

Consider the double pendulum and let e = 0.19, T =
−40. For d = 0.5009 a stable period-2 orbit with two
time intervals of sticking can be located, which is de-
picted in Fig. 9(a). The Poincaré section is given by
q1 − π/2 = 0 so one period corresponds to one revo-
lution of the upper bar. A brute-force bifurcation dia-
gram, see Figs. 9(b) and (c), reveals that as the distance
to the impacting surface is increased the period-2 or-
bit undergoes a period-doubling cascade, and the first
period-doubling bifurcation occurs at d ≈ 0.5010. To

Fig. 8 (a) A time history of the lower mass X for one period of
the system where e = 0.89. The trajectory has a complete chat-
ter sequence and the time spent sliding is τ > 0. (b) A brute-
force bifurcation diagram showing q2 versus the coefficient of

restitution e at the Poincaré section q1 − π
2 = 0. (c) A time

history of the lower mass X with an incomplete chattering se-
quence and where the time spent in sticking phase is τ = 0 for
e = 0.896. In all three figures d = 0.5 and T = −31.15
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Fig. 9 (a) A trajectory for
the lower mass m2 for
d = 0.5009, e = 0.19,
T = −40. The scalars τ1
and τ2 represent two
intervals of sticking motion.
(b) A brute-force
bifurcation diagram and
(c) a zoom-in, where the
Poincaré section is
q1 = π/2. (d) The
eigenvalues λi

corresponding to the branch
of period-2 limit cycles
in (b) and (c). The dashed
line represents λi = −1

Fig. 10 (a) A time series for X(t) showing seven periods of
a stable period-1 orbit for T ≈ −31.09, which corresponds to
the point I in (b). (b) The period time versus the torque T when
continuing a stable period-1 orbit. Trajectories corresponding

to the points I and II can be seen in (a) and (b), respectively.
(c) A time series for X(t) showing about 1.7 periods of a sta-
ble period-1 orbit for T ≈ −31.0017, which corresponds to the
point II in (b)

verify that the proposed algorithm for stability analy-
sis performs as it should, we continued the periodic
orbit in Fig. 9(a) as the parameter d was varied. In
Fig. 9(c) the unstable part of the branch is denoted with
a ‘u’ and the corresponding eigenvalues are shown in
Fig. 9(d). Recall that when an eigenvalue λi for a peri-
odic orbit becomes −1 the system undergoes a period-
doubling bifurcation, and one of the eigenvalues is 1
since the trajectory is a limit cycle.

6.3 Homoclinic bifurcation

Consider the double pendulum and let d = −0.5,
e = 0.9. For T ≈ −31.09 there exists a stable period-1

orbit, with a period time of ≈7.25, which is depicted
in Fig. 10(a). By varying the torque T it is possible
to continue this stable period-1 orbit and record the
period time of the orbit. The change in period as the
torque T varies is shown in Fig. 10(b). It is clear that
as T approaches −31 the slope of the curve and the pe-
riod increase. In Fig. 10(c) approximately 1.7 periods
of the motion at the point II in Fig. 10(b) are shown.
We can see that the free-flight motion and the complete
chattering sequence are very similar in both the cases
depicted in Figs. 10(a) and (c), but the main differ-
ence is the time spent sticking. This behavior suggests
that there is a homoclinic orbit for a nearby parameter
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Fig. 11 (a) A projected
phase portrait showing Ẏ

versus Y for
T ≈ −31.001666 with a
period time of ≈ 76.26.
(b) A zoom-in of the
projected state portrait
in (a), in a vicinity of the
saddle equilibrium S. The
arrows show the direction
of the flow

Fig. 12 (a) A time history
of |Ẏ | corresponding to the
phase portrait in Fig. 11(a).
(b) A close-up of (a) near
the time when the trajectory
of the periodic orbit passes
that saddle equilibrium S in
Fig. 11(b). Notice the
logarithmic scale

value and thus there should exist a saddle equilibrium
close to the periodic orbit. As it happens, this equilib-
rium is constrained to a surface where the lower mass
is sticking against the impacting wall. Let us now take
a closer look at this situation to verify that the pro-
posed algorithms behave as they should in this situa-
tion.

Assuming that there is an equilibrium (q, q̇, λ) =
(q∗, q̇∗ = 0, λ∗), we have from (53) that

V (q∗) = λ∗N(q∗), (60)

H(q∗) = 0, (61)

which can be solved numerically. For

T = −31.00166609425

the saddle equilibrium is given by

q∗
1 = 4.91990567552337,

q∗
2 = 0.49899755317827,

λ∗ = 10.69293096743960,

with non-trivial eigenvalues

μ1 ≈ 0.3366, μ2 ≈ −3.2953.

For this specific value of T we show in Fig. 11(a) the
projected phase plane Y –Ẏ for the stable periodic orbit
with period time ≈ 76.26. In Fig. 11(b) the close-up of
Fig. 11(a) in a vicinity of the saddle equilibrium ‘S’ is
shown. It is clear from Fig. 11(b) that the trajectory
comes very close to the saddle equilibrium before it
leaves the same.

In Fig. 12(a) the time series of |Ẏ | corresponding to
the projected phase diagram is shown and we see that
the magnitude of the velocity Ẏ is very small, as ex-
pected for a periodic orbit close to a homoclinic orbit.
Let now

Ŷi (t) = e−21.8+μi(t−t̂ ), i = 1,2,

where μi are the two eigenvalues for the saddle equi-
librium and t̂ = 10.17727070016352. The two curves
Ŷi (t) are plotted in Fig. 12(b), and they confirm that
the dynamics of the stable periodic orbit close to the
saddle equilibrium is very similar to what one would
have along its stable and unstable manifolds. This also
confirms that our simulator gives the results as ex-
pected.
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7 Discussion

In this manuscript we have introduced a novel numeri-
cal algorithm to simulate impacting systems with com-
plete chattering. The new approach introduces a map-
ping that takes the state forward in time, bypassing the
tail of complete chattering (that consists of an infinite
number of impacts), and thus only a finite number of
impacts needs to be handled in the simulation algo-
rithm. We have chosen an event-driven approach since
it is relatively straightforward to include the special
mappings needed at the impacts and the tail of chat-
tering sequences. Another important aspect of the pro-
posed method is that it is possible to extend the pure
simulator to also be able to perform stability analy-
sis, by solving the first variational equations and merge
the fundamental solution matrices from the free-flight
phases with saltation matrices at the impacts and the
complete chattering.

We showed that the method worked well for a
forced double pendulum by numerically solving the
equations of motion, locating periodic orbits, calculat-
ing their stability and continuing them under parame-
ter variations. In particular we showed that the pro-
posed methods can deal with situations that are com-
mon in impacting systems, namely, the loss of sticking
and the location of local and global bifurcations.

The ultimate aim of this and similar work is to come
up with numerical methods that can be included in nu-
merical simulation packages, and make them available
for not only specialists on non-smooth systems, but
also to students, engineers and professionals simulat-
ing and analyzing some specific applications.
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