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Experimental and numerical verification of bifurcations and 

chaos in cam-follower impacting systems

R. Alzate · M. di Bernardo · U. Montanaro · S. Santini

Abstract In this paper, we present the design,

modelling and experimental validation of a novel ex-

perimental cam-follower rig for the analysis of bifur-

cations and chaos in piecewise-smooth dynamical sys-

tems with impacts. Experimental results are presented

for a cam-follower system characterized by a radial

cam and a flat-faced follower. Under variation of the

cam rotational speed, the follower is observed to de-

tach from the cam and then show the emergence of

periodic impacting behaviour characterized by many

impacts and chattering. Further variations of the cam

speed cause the sudden transition to seemingly aperi-

odic behaviour. These results are compared with the

numerical simulation of a mathematical model of the

system which shows the same qualitative behaviour.

Excellent quantitative agreement is found between the

numerical and experimental results.

Keywords Piecewise-smooth dynamical systems .

Impacting systems . Cam-follower . Bifurcations

1 Introduction

The analysis of complex behaviour in mechanical de-

vices with impacts and other types of piecewise-smooth

systems has been the subject of much on-going re-

search (for example, see [9, 18, 33] and references

therein). It has been shown that such systems can ex-

hibit a novel class of non-linear phenomena, termed

as discontinuity-induced bifurcations (DIBs). These

events occur whenever one of the system invariant sets

interacts nontrivially with the phase space boundaries

where the system is discontinuous. DIBs can lead to

dramatic changes of the system qualitative behaviour.

It has been shown, for instance, that the transitions to

chaos often observed in mechanical systems with im-

pacts are due to grazing bifurcations of limit cycles

[34]. These phenomena have been studied in detail and

a consistent theory for their classification has been de-

rived by a number of authors (e.g. see [19, 31] and

references therein).

As the analysis of bifurcations in piecewise-smooth

systems is further expanded, it is becoming increas-

ingly important to carry out an extensive experimen-

tal investigation and validation of the theoretical re-

sults obtained. Complex behaviour in impacting sys-

tems has been observed experimentally in a number

of papers in the literature. Examples include the early

work on impact oscillators in [3, 5, 27, 37, 46, 48].

More recent papers include the work by Wiercigroch

et al. reported in [52] and the results of Piiroinen et al.

on impacting pendula [39]. (For further references see



also the books [7, 51] and references therein). Partic-

ularly, cumbersome dynamics can be observed in the

case of impact oscillators with moving boundaries. For

example, in [11], it is suggested that a novel bifurcation

phenomenon termed as corner-impact can occur in dis-

continuously forced impact oscillators.

Cam-follower devices are an important class of im-

pacting systems which are indeed used in a wide range

of applications. Typically, the rotation of the cam at

some constant speed provides the forcing to operate the

follower. The most common example is that of valve

trains of internal combustion engines, where the cam

rotation imparts through the follower the proper mo-

tion to the engine valves while a spring provides the

restoring force necessary to maintain contact between

the components [25].

Typically, the cam is designed to rotate at a constant

velocity. In practice, often such velocity is varied either

by unwanted fluctuations and noise or to satisfy cer-

tain design specifications. For instance, in a valve train

the cam-follower mechanism works at speeds ranging

from about 2500 rpm in large automobile engines to

over 10000 rpm in motorcycle racing engines. Despite

the design effort, as the engine speed increases, the

follower motion can be substantially different from the

desired kinematic behaviour [40]. In particular, above a

critical rotational speed, the follower detaches from the

cam and then impacts intermittently with it (causing the

well-known valve floating phenomenon in automotive

applications) [35].

It has been observed that, under variations of the cam

rotational speed and other parameters, the follower can

exhibit complex behaviour including bifurcations and

chaos [53, 54]. Despite their importance in applica-

tions, the investigation of these phenomena has been

studied little in the existing literature and mostly in the

context of smooth non-linear dynamics. Thus, little is

known of the nature of the bifurcation phenomena lead-

ing to the complex behaviour which is often observed

after the follower detachment from the cam.

This paper is concerned with the design, modelling

and investigation of a novel experimental rig aimed at

testing and analyzing the behaviour of impacting sys-

tems and in particular cam-follower systems. Specifi-

cally, the aim is to gain an understanding of the complex

dynamics associated to the impacting motion following

the detachment of the follower from the actuating cam.

The aim of the experiment is twofold: (i) to observe

and classify the bifurcation phenomena detected in the

system; (ii) to provide a new, versatile test rig to vali-

date the latest theoretical results on impacting mechan-

ical systems. In this context, cam-follower based sys-

tems can be chosen as a general and useful benchmark

problem as they are widely used in various machines

and mechanical engineering devices [35].

Also, we wish to point out some practical issues that

further motivate our research (although an exhaustive

discussion on all the implications deriving from the use

of novel non-linear analysis tools within the context of

cam-follower system design is out of the scope of this

work).

– In high-speed cams, the presence of unavoid-

able camshaft fluctuations can affect the accuracy

of the follower motion [16, 53]. Starting from

the pioneering work of Rothbart [41], engineers

have highlighted the potential advantages of using

variable-speed cams and embedding their variable-

speed explicitly as a parameter into the design pro-

cess. We wish to emphasize that the experimental

investigation of the non-linear dynamics of the fol-

lower after its detachment from the cam can be used

to improve the cam design. For example, bifurcation

diagrams can be obtained to evaluate the influence

on the cam-follower dynamics of various parameters

including the cam rotational speed, variable stiffness

characteristics, different cam profiles, etc [54].

– The occurrence of impacts is particularly undesired

in those applications that require to operate the cam

at very variable velocities. Here, as mentioned above,

the most common and significant example is the

valve train of an internal combustion engine where

the occurrence of a contact loss between the cam and

the follower at a high speed revolution [29, 47] causes

a reduction in the engine performance (due to valve

bouncing and floating) in terms of engine efficiency,

fuel consumption and emissions [15]. It has been ex-

perimentally observed, that at a certain engine speed

termed limit speed, the valve bounce amplitude

increases dramatically, thereby resulting in what

seems to be a chaotic valve motion [35]. Although

the occurrence of impacts sets narrow bounds onto

the maximal engine velocity, there is a generic trend

to advance the limit speed in both passenger and rac-

ing automobiles and/or motorbikes. Increasing the

engine limit speed allows the engine to run faster and

in turn to produce more power. In addition, operating

at higher engine speed is also strongly desirable since



it is possible to design smaller and lighter engines

that produce the same power as larger, heavy engines.

Therefore, the reduction of valve bouncing and/or

valve floating, as the velocity increases, is established

as a primary goal of valve design based on the cam-

follower mechanism [15, 32]. We remark that in cur-

rent engines, a prefixed and sufficiently large spring

force (and pre-load) is always applied to the cam-

follower joint to keep the contact throughout the en-

tire rotation [40]. As a natural consequence, there is

an increase in the contact force, which induces higher

stresses possibly leading to early surface failure of the

parts. Moreover, the high-friction valve train reduces

the efficacy of the engine system, that works harder

to push the follower through its motions [49].

Understanding the complex dynamics of these

systems can then be relevant in those applications

where it is essential to avoid unwanted impacting

behaviour. Indeed, a deeper insight of the post-

detachment dynamics could unveil less conservative

solutions for detachment avoidance. For example,

bifurcation control techniques or active controllers

could be used without requiring the use of a stiff

closing spring or the design of much more complex

desmodromic valves [12]. Also, an exhaustive

study on the occurrence of gaps between connecting

components will also allow a better understanding of

the nature of the resulting noise, vibration, wear and

mechanical stress often observed in applications.

The rest of the paper is outlined as follows. In

Section 2, the experimental rig is presented together

with its implementation. Then, experimental runs are

reported in Section 3, showing the main types of dy-

namical behaviour exhibited by the system. A detailed

model of the rig is derived in Section 4, while param-

eter identification is carried out in Section 5. Here, the

comparison between the experimental and numerical

results is presented, showing excellent agreement be-

tween the expected and observed dynamics.

2 The experimental rig

2.1 Description

The experimental rig considered in this paper is shown

in Fig. 1. As mentioned above, the aim of the rig is to

investigate the dynamics of a cam-follower system with

particular attention to the impacting behaviour follow-

ing the detachment of the follower from the cam. In

contrast to what presented in [53], our rig is based on a

radial cam with an oscillating flat-faced follower. This

type of cam-follower systems are increasingly used in

automotive industry in the actuation of overhead valve

trains [35].

Notice that the small follower mass and its high rota-

tional speed do not allow feasible and accurate contact

measures (by means of piezoelectric transducers).

Fig. 1 Schematic of the experimental rig



Moreover, the high frequency range makes it unfeasible

to use proximity transducers. Therefore, a different

geometry (where for example the cam rotation results in

a linear motion imparted to the follower) would make

the accurate measurement of the relative motion be-

tween the cam and the follower more cumbersome and

possible only by sophisticated optical laser transducers.

In general, such transducers are expensive and their use

implies several constraints on the design.

The rotational geometry of the rig proposed here

makes it easier to measure the follower motion and the

cam position directly from the cam-shaft and follower-

shaft rotational angles. Furthermore, the choice of an

oscillating arm gives a great advantage in terms of re-

duction of friction at contact points and consequently

wearing of pieces and ease of replacement [35]. Also,

from a non-linear dynamics viewpoint, the rotational

nature of the follower motion makes it easier to avoid

the presence of unwanted stick-slip motion due to fric-

tion which would make the theoretical understanding

of the phenomena observed particularly cumbersome.

These considerations informed the design of the ex-

perimental apparatus shown in Fig. 1 where the cam

pushes a rotational follower attached through a spring

to a rigid fixed iron frame. Note that the cam-follower

system in the rig can be assumed to be stiff and large

enough to reduce possible vibrations induced by the in-

ertial force. The cam is also equipped with a flywheel

which is designed ad hoc in order to compensate un-

desired oscillations and torque variations due, for ex-

ample, to the occurrence of impacts. Additional details

on the material and the dimensions of each individual

components of the rig are given in Table 1.

Table 1 Details on materials and dimensions

Part Description

Cams, flywheels and Made of low-alloy hardened

follower contact surface stainless steel

UNI38NiCrMo4
Follower body Made of aluminium (Al)

Cam internal radius 30 mm

Cam external radius 60 mm

Cam eccentricity 15 mm

Flywheel radius 80 mm

Follower length 600 mm

Follower width 16 mm

Follower height 60 mm

2.2 The cam profile

An important aspect of cam-follower systems is the

cam profile. This is typically designed in order to

provide the forcing to the follower which is required

for it to operate in some desired manner. Usually, the

cam profile is obtained by solving a constrained opti-

mization problem (see [35] for further details). Given

the wide range of applications, there is a wide variety of

possible cam geometries ranging from cycloidal cams

to those designed using splines that can even provide

discontinuous acceleration to the follower [36]. For this

reason, the experimental rig was designed in order to

allow easy and direct access to the cam and the flywheel

for their possible replacement. Currently, two different

types of cam can be alternatively mounted on the exper-

iment which provide, respectively, a simple harmonic

motion (eccentric circular cam) and a profile character-

ized by discontinuities in the acceleration. In this work,

we will show experiments related to an eccentric cir-

cular cam, which are often used to produce motion in

pumps or to operate steam engine valves [35]. Other

examples of various applications based on the eccen-

tric circular cam can be found in [10, 14, 20, 22, 50].

The use of circular cams in the automotive field is in-

stead reported in [13, 44]. On-going research activity

is dealing with evaluating the effects on the follower

motion of a discontinuity in the forcing [38].

It is worth mentioning here that by appropriately

designing the cam profile it would be possible to impart

any type of desired motion to the follower. This makes

the experiment described in this paper an extremely

versatile and flexible tool to investigate the non-linear

dynamics of impacting mechanical systems.

2.3 Implementation

The physical implementation of the experimental rig

described above is depicted in Fig. 2(a)–(b), where the

mechanical device is shown to be appropriately coupled

to electronic systems for the acquisition, storage and

processing of experimental data. The main feature of

the experimental set-up can be summarized as follows:

– The cam motion is controlled by a brushless motor

driven through an embedded controller. Notice that

the angular position and velocity of the cam and the

driving motor are assumed to be identical because



of a rigid coupling connecting the cam to the motor

shaft.

– The measures of the cam and the follower angu-

lar position are obtained through high-resolution

optical encoders mounted respectively on the cam

and follower shaft.

– Reliable AD/DA conversions and signal process-

ing are implemented through DSPACE [24], a

widely used commercial data acquisition integrated

hardware-software system (16 bit, 250 MHz, PCI

interface).

– The signals are processed and analyzed using MAT-

LAB [26].

Additional details are included in Table 2. (A more

extensive description of the experimental rig can be

found in [17].)

Table 2 Additional details on the instrumentation

Device Description

Servo (motor-driver) system Sanyo-Denki Q-series [42]

Data acquisition system dSPACE ACE-kit

ACE1104CLP [24]

Follower position encoder HENGSTLER RI-58 D [23]

Cam position resolution 5000 pulses per revolution

Follower position resolution 10000 pulses per revolution

3 Experimental results

As reported in the literature (for example, see [35]),

cam-follower systems can be particularly sensitive to

variations of the cam rotational speed, ω. Here, we shall

seek to uncover the complex dynamics observed exper-

imentally under variations of ω due to the occurrence

of collisions between the cam and the follower.

Fig. 2 Pictures of the experimental rig: (a) view from above; (b) front view



In order to visualize the experimental results, the first

step is to acquire the cam profile as described below.

3.1 Acquiring the cam profile

The exact cam profile that drives the follower motion

can be derived by an automated numerical calculation

that returns the cam profile as a function of its experi-

mentally measured angular position.

The identification has been carried out by using the

curve fitting toolbox available in MATLAB and work-

ing with a subset of data corresponding to one revolu-

tion of the cam at low steady-state values of its velocity.

This condition obviously ensures the continuous con-

tact between the cam and the follower. The estimation

procedure gives the angular displacement, θ̂c, at the

follower joint due to the rotation of the cam when the

cam and the follower are in contact, as a function of the

cam angular position, θc. In particular, a seventh-order

Gaussian model was used of the form

θ̂c := f (θc) =
7∑

i=1

ai e
−

(
θc−bi

ci

)2

(1)

where θc and θ̂c are expressed in radians, and the coef-

ficients ai , bi and ci are estimated numerically using a

least-squares algorithm as reported in Table 3.

This result was also validated by deriving a theoret-

ical estimate of the cam profile based on a geometric

approach (see Appendix B). Despite its validity, this

latter approach relies on the exact knowledge of the

cam profile that is typically available if the cam pro-

file is simple enough. In general, we found the practi-

cal methodology described above can be more easily

adapted to different cam profiles.

A typical experimental time series obtained using

such a methodology is shown in Fig. 3. Here, we depict

the time evolution of the estimated angular displace-

Table 3 Estimates of coefficients in (1)

i value ai bi ci

1 0.307 6.311 2.777

2 0 −0.19 0.349

3 0.304 −0.753 2.613

4 0.013 5.208 1.268

5 0 4.339 0.067

6 0.095 1.932 2.251

7 0.036 4.418 1.743

Fig. 3 Time evolution of θ̂c (dotted line) and θ f (solid line)
for ω = 110 rpm. We observe that the two signals are perfectly
overlapping in practice. See Fig. 4 for an illustration of the related
error signal

ment θ̂c and the measured follower angular position

θ f when the follower and the cam are in permanent

contact.

3.2 Experimental time series

Using the experimental rig and the acquisition method-

ology described above, it is now possible to uncover

the complexity of the dynamical behaviour exhibited

by the system under parameter variations.

In general, we observe three regions of different

qualitative behaviour associated to different values of

ω:

– Permanent contact, where the cam and the follower

stay in contact for all time.

– P(m, n) impacting behaviour, where the follower ex-

hibits periodic motion characterized by m impacts

per period; The period T being equal to 2πn/ω.

– Aperiodic motion and chaos.

We now give some representative examples of each

of these types of behaviour.

3.2.1 Permanent contact – low velocity regime

In Fig. 3, the dynamics of the follower at a constant

cam angular velocity ω = θ̇c = 110 rpm is shown.

At this velocity, the restoring force of the follower

is higher than the force exerted by the constraint rep-

resented by the cam. In this condition, the cam and the



follower remain in contact for all time, hence we have

θ f = θ̂c.

It is important to note that permanent contact is ex-

perimentally detected up to approximately 125 rpm of

ω. For this reason, the set of values ω < 125 rpm will

be denoted as the low velocity region.

3.2.2 Detachment

Past the low velocity region, the detachment of the me-

chanical components is observed. Detachment occurs

when the force exerted by the cam over the follower

while in contact exceeds the restoring force. As a conse-

quence, we observe temporary unconstrained follower

motion. Experimentally, this phenomenon was first ob-

served at ω = ωd ≈ 125 rpm, as shown in Fig. 4, where

the difference between the cam and the follower posi-

tion is shown for values of ω immediately lower and

higher than ωd . Clearly, as the cam speed increases we

observe the emergence of peaks in the error dynamics

associated to the temporary detachment of the follower

from the cam and the ensuing impacting behaviour.

3.2.3 Periodic solutions

For values of ω > ωd , we observe the follower motion

to exhibit periodic impacting behaviour characterized

by different number of impacts per period. Examples

of such behaviour are depicted in Fig. 5 where the cam

and follower positions are shown (left panel) together

with their difference (right panel).

3.2.4 Aperiodic solutions

Past a critical value of the cam velocity, the follower

starts exhibiting aperiodic behaviour and sensitive de-

pendence on initial conditions. Representative cases are

shown in Figs. 6 and 7 for values of ω > 155 rpm.

3.3 Experimental bifurcation diagram

To gain an understanding of the transition from peri-

odic to aperiodic motion, an experimental bifurcation

diagram was derived by sampling the follower evolu-

tion synchronously with the cam forcing period. The

experimental diagram is reported in Fig. 8. Examples

112 112.5 113 113.5 114 114.5 115 115.5 116

0

2

4

6
x 10

112 112.5 113 113.5 114 114.5 115 115.5 116

0

2

4

6
x 10

112 112.5 113 113.5 114 114.5 115 115.5 116

0

5

10

15

20
x 10

∆

Fig. 4 Time evolution of the experimental difference between θ f and θ̂c (�θ = θ f − θ̂c) for (a) ω = 110 rpm, (b) ω = 125 rpm and
(c) ω = 131 rpm



∆

Fig. 5 Sections of experimental time series for the cam (dashed line) and follower (solid line) positions and their corresponding
difference �θ at (a), (b) ω = 143 rpm and (c), (d) ω = 150 rpm

Fig. 6 Examples of (a) periodic and (b) chaotic evolution of the difference �θ between θ f and θ̂c for (a) ω = 155 rpm and (b) ω = 159
rpm



Fig. 7 Chaotic evolution of the follower position θ f (solid line) at (a) ω = 158 rpm and (b) ω = 160 rpm. The dashed line represent
the profile θ̂c

Fig. 8 Experimental bifurcation diagram of the follower posi-
tion θ f against the cam rotational speed ω

of time trajectories at different points in the diagram

are shown in Fig. 9.

The diagram shows that past the detachment point

at about 125 rpm, the periodic behaviour of the sys-

tem shares the same period of the cam forcing signal

for a relatively large range of values of the cam speed

ω. Then, suddenly at about 155 rpm, the abrupt transi-

tion is observed to qualitative different behaviour which

seems to be quickly evolving into a chaotic attractor

(points (d) and (e) in the diagram and in Fig. 9).

4 Mathematical modelling

In order to capture the qualitative behaviour of the sys-

tem and validate the observed experimental behaviour,

a proper mathematical model of the system is derived

below. The formulation of an appropriate model can be

a challenging task for most applications. In the case of

cam-follower systems, various models have been pro-

posed characterized by different degrees of complex-

ity, ranging from simple models with 1 DOF (Degree
of Freedom) [28] to complex models with 21 DOF [43]

that use the additional DOF to include the effects of

camshaft torsion and bending, backlash, squeeze of lu-

bricant in bearings and so on. Nevertheless, there is

general agreement, confirmed by experience in differ-

ent applications, that a lumped parameter single degree

of freedom model is adequate to represent most aspects

of the dynamic behaviour of a cam-follower system (for

example, see [2, 4, 21, 28]).

Rather than neglecting the presence of impacts, the

cam-follower is regarded here as a single degree of free-

dom impacting oscillator with a unilateral constraint.

More precisely, as explained in [8], we model the

follower dynamics under the external forcing u(t) ∈ IR
provided by the cam as

q̈ = g (q, q̇, u),

f (q, t) ≥ 0,
(2)
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Fig. 9 Time evolution of the system at the values of ω labelled
in Fig. 8. Specifically: (a) ω = 135 rpm, (b) ω = 145 rpm, (c)
ω = 150 rpm, (d) ω = 155 rpm and (e) ω = 160 rpm. Solid lines

represent follower position θ f while dashed lines are related with
the cam profile θ̂c



Table 4 Summary of the general notation used in Section 4

Symbol Description

θ f Angular position of follower with counterclockwise sense of rotation

θc Angular position of cam with counterclockwise sense of rotationa

θ̂c Angular displacement of the follower joint when in contact with the cam

(t̂, n̂) Reference system attached to the follower

(x̃, ỹ) Reference system obtained by translating the axes (x, y) to (x0, y0)

(x̃c, ỹc) Reference system pivoted at the cam with origin (x0, y0)

p0 = (x0, y0) Coordinates of the rotational center in the (x, y) system

pA = (xA, yA) Hooking point for spring

pB = (xB , yB ), pP = (xP , yP ) Ending points of the mechanical element that avoids rotation of spring

pC = (xc, yc) Point on the cam surface which is nearest to �

pE = (xE , xE ) Intersection between vertical line passing through pA and g(x) = tan(θ f )x
pF = (x f , y f ) Point of follower surface that will impact on the camb

pG = (xg, yg) Geometric center of the rotating cam

d Half height of follower

d0 Relaxed spring length

d1 Distance between pB and pP

d2 Distance between pP and pE

e Cam eccentricity

K Spring stiffness

J Follower moment of inertia

ρ Distance between the origin of the axis (x, y) and pE

� Boundary of follower surface that becomes in contact with cam

h Distance between pC and �c

d̄ Intersection between � and the axis y (it is equal to −d/ cos(θ f ))

aMeasured as the relative rotation of the coordinate system (x̃c, ỹc) with respect to (x̃, ỹ)
bThis point is (l, −d) in the coordinate system (t̂, n̂) and (x f , y f ) in the coordinate system (x, y)
cIt is straightforward that under contact h is zero and � is tangent to the cam at point pC

where q ∈ IRn , is the vector of the generalized coordi-

nates of the follower system, g is the system vector field

and the real valued function f represents the unilateral

constraint on the follower position q . Note that u(t) is

nonzero only when the two bodies are in contact (i.e.

when f (q, t) = 0). Using the terminology of comple-

mentarity systems, we say that the two variables f and

u are complementary in the sense that 0 ≤ u ⊥ f ≥ 0

(see [9] for further details).

The hybrid structure of model (2) allows to deal

mathematically with the presence of intermittent con-

tacts between the cam and the follower during the mo-

tion of the system. In particular, we can distinguish two

different phases of motion as follows:

1. Unconstrained mode, when no contact oc-

curs between the two bodies. From the mod-

elling viewpoint, the follower dynamics sim-

ply reduces to an unforced harmonic oscillator

( f (q, t) > 0 and u(t) = 0);

2. Constrained mode, when permanent contact be-

tween the two bodies is established. Here the

follower dynamics are induced by the specific

cam profile ( f (q, t) = 0 and u(t) > 0).1

In the following subsections, each particular mode

of the follower motion will be modelled in accordance

with both the schematic diagram depicted in Fig. 10

and the general notation reported in Table 4.

4.1 Follower motion

To derive a mathematical model of the follower motion,

we use a standard Lagrangian approach. In particular,

the system description can be obtained by solving the

1 The follower motion is constrained to a phase space region
bounded by the cam angular position.



Fig. 10 Schematic diagram of the cam-follower system: (a) unconstrained mode; (b) constrained mode. All the labels are defined in
Table 4

following equation

d

dt

∂L

∂θ̇ f
− ∂L

∂θ f
= τ (3)

where L is the Lagrangian function, defined as the

difference between the potential energy (U ) and the

kinetic energy (T ) of the system

L = T − U, (4)

and τ is the external torque given by the non-

conservative forces.

Let fe be the elastic force exhibited by the spring.

The change in the potential energy of the system can

then be given as

δU � − f T
e (pA − pB) =

= −K (yA − yE − d0 − d1 − d2) [ 0 1 ]δ

[
xB

yB

]
= −K (yA − yE − d0 − d1 − d2)



× [0 1]δ

[
xB

yE + d1 + d2

]
= −K [(yA − d0) − (yE + d1 + d2)]

× δ (yE + d1 + d2)

= δ

[
1

2
K [(yA − d0) − (yE + d1 + d2)]2

]
. (5)

We remark that only the potential energy of the spring

has been considered here because the center of mass of

the follower is assumed to be placed at a fixed point.

Consequently, the variation of the potential energy re-

lated to the gravity is assumed to be null.

Integrating Equation (5), we obtain an explicit ex-

pression for U as

U = 1

2
K [(yA − d0) − (yE + d1 + d2)]2 . (6)

Notice that, from Fig. 10, d2 can be easily obtained

as a function of the follower angular position θ f and

the parameter d as

d2

(
θ f

) = d

cos(θ f )
(7)

and, since any spring rotation is impossible by design,

i.e. xE = xA, it is straightforward to write

yE (θ f ) = xA tan(θ f ). (8)

Taking into account that T = 1
2

J θ̇ f
2

and substitut-

ing expressions (6) and (8) into Equation (4), we finally

obtain

L = 1

2
J θ̇ f

2 − 1

2
K [(yA − d0)

−(xA tan(θ f ) + d1 + d2(θ f ))]2. (9)

4.1.1 Unconstrained mode

Considering expression (9), the mathematical descrip-

tion of the unconstrained motion of the follower can

be simply obtained by solving Equation (3) in terms of

the follower angular position θ f , thus yielding

J θ̈ f + K

(
xA tan(θ f ) + d

cos(θ f )
− (yA − d0 − d1)

)

×
(

xA

cos2(θ f )
+ d

sin(θ f )

cos2(θ f )

)
= 0. (10)

Notice that the right-end side of the above equation is

zero since in the unconstrained mode only the conser-

vative elastic force has to be taken into account.

4.1.2 Constrained mode

The contact mode equation can be obtained by treating

the cam as an external input acting directly onto the

follower.

Let θ̂c(t) be the angular position of the follower when

the two bodies are in contact, then the torque τ provided

by the cam has to be such that θ f = θ̂c. Including the

external forcing of the cam τ into Equation (10), we

have the dynamical equation during permanent contact

as:

J θ̈ f + K

(
xA tan(θ f ) + d

cos(θ f )
− (yA − d0 − d1)

)
×

(
xA

cos2(θ f )
+ d

sin(θ f )

cos2(θ f )

)
= τ (t). (11)

4.2 Impacting law

To model the transient contact between the follower

and the cam, we need to add a collision rule to the

system equations. Letting tk be the time instant when

a generic impact occurs, such a rule gives the post-

impact velocity, say ḣ(t+
k ), as a function of the pre-

impact velocity ḣ(t−
k ). In general, we have

ḣ(t+
k ) = −r ḣ(t−

k ) (12)

where r is the so-called coefficient of restitution [8].

In the case of interest, if the velocity of the contact

point pC is continuous, we have

∇� · ṗF (t+
k ) = ∇� · ṗC (tk) − r ḣ(t−

k ), (13)

where � is the lower side of the follower (assumed flat)

oriented towards the cam (see Fig. 10). An analytical

expression of � as a function of θ f is derived in

Appendix A.

After simple algebraic manipulations (also reported

in Appendix A), the impacting law can be finally



expressed in terms of the follower angular position θ f

and velocity θ̇ f as

θ̇ f (t+
k ) = −r θ̇ f (t−

k ) + (1 + r )
cos(θ f )ẏc − sin(θ f )ẋc

cos(θ f )xc + sin(θ f )yc
.

(14)

Notice that Equation (14) is dependent upon the co-

ordinates of the contact point pC ≡ (xc, yc) and their

derivatives. Such coordinates are a function of the cam

geometry, position and velocity. In the case of interest,

the cam is assumed to have an eccentric circular shape.

Therefore, as shown in Appendix B, we have{
xc(θc) = e cos(θc) − R sin(θ̂c(θc)) + x0

yc(θc) = e sin(θc) + R cos(θ̂c(θc)) + y0

(15)

and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋc(θc)=−e sin(θc)θ̇c − R cos(θ̂c(θc))

∂θ̂c

∂θc
(θc)θ̇c

ẏc(θc)= e cos(θc)θ̇c − R sin(θ̂c(θc))
∂θ̂c

∂θc
(θc)θ̇c

(16)

where R is the radius of the cam, e is its eccentricity

and θ̂c (θc) is the follower angular position when there

is contact between the two bodies. Also, as explained

in Appendix B, we can obtain an analytical expression

of θ̂c, as:

θ̂c (θc)

= arcsin

(
d + R√

(e cos(θc) + x0)2 + (e sin(θc) + y0)2

)

− arctan

(
− e sin(θc) + y0

e cos(θc) + x0

)
. (17)

Note that the model derived above contains several

non-linearities and can be ill-conditioned (high stiff-

ness coefficient). These are well-known obstacles for

numerical integration schemes that may require ex-

tremely small time steps and robust integrators. It is

not the purpose of the present paper to discuss inte-

gration methods but we are completely aware of the

difficulties resulting from both non-linearities and high

frequencies. To overcome the numerical problems here,

we used an event driven integration algorithm with

adaptive stepsize implemented in the commercial plat-

form MATLAB [26]. During simulations, when an im-

pact occurs, the restitution law has been taken into ac-

count by a reset in the velocity follower value according

to Equation (14).

5 Identification of the model parameters

In order to perform the numerical validation of the ex-

perimental results presented above, the next step is that

of identifying the appropriate values of the model pa-

rameters. Many of the parameters can be obtained di-

rectly from the experiment as they are related to its

physical and geometrical features. The only notable

exception is the restitution coefficient r .

Table 5 contains all the values of the parameters

which are needed to describe the follower motion, in

the absence of impacts. The model is then validated

against the experiment in Fig. 11 where the uncon-

strained follower motion is shown. As expected, the

model shows a good agreement with the experimental

data as highlighted from the time history of the error

shown in Fig. 11(b).

5.1 Estimating the coefficient of restitution

The coefficient of restitution r is an index of how elastic

a collision is. The problem of estimating r experimen-

tally has been discussed in a large number of papers

in the literature on impacting systems and it is usually

based on bouncing ball experiments, for example, see

[1, 45]. The most common methods are usually based

on high-speed data collection of the impact sounds as

explained in [6], or on detailed analysis based on the

use of high-speed cameras and force sensors as in [30].

The most basic approach is to consider r as a constant

Table 5 Model parameters

Parameter Value

R cam radius 0.045 m

e cam eccentricity 0.015 m

(x0, y0) center of rotation of the cam (0.249, 0) m

d half of the follower height 0.021 m

J moment of inertia of the follower 0.043 kg m2

K spring coefficient 105 N/m

xA x-coordinate of the spring hooking point −0.031 m

yA − d0 − d1 spring elongation distance 0.173 m



Fig. 11 Validation results. Time history of the follower free-fall motion: (a) θ f (t) experimental (dashed) vs. numerical (solid); (b)
estimation error corresponding to difference between data plotted in (a)

Fig. 12 Coefficient of restitution r as a function of the cam
velocity ω: experimental points (asterisks), linear approximation
(solid line)

coefficient, whereas in practice it is well known that r
is actually an unknown function of the impact speed

[6].

Since the impact velocity is not easy to measure,

in this work, we assume that the coefficient of restitu-

tion r is a function of the cam rotational speed. This

is motivated by the observation that higher cam ve-

locities lead to larger detachment of the follower and

hence higher approach speed at the impact. In partic-

ular, we identified different values of r by running a

set of experiments at different constant values of ω

ranging from 130 to 155 rpm. Given a fixed cam ve-

Fig. 13 Numerical time evolution of θ̂c (dotted line) and θ f

(solid line) for ω = 110 rpm. This result agrees with waveform
features of experimental low velocity range (see Fig. 3)

locity in the range of interest, ω ∈ [130, 155] rpm,

the coefficient r is estimated from the observed first

bouncing height. A least-square approach provides a

linear interpolation of r as a function of ω. Results

are shown in Fig. 12 where the solid line represents

the linear least-squares fit which is used to obtain the

numerical results presented in the rest of the paper.

Although using the cam velocity instead of the actual

approach speed in estimating r is a strong approxima-

tion, the good agreement between simulations and ex-

periments seems to confirm the validity of the adopted

approach.



Fig. 14 Sections of numerical time series for the cam (dashed
line) and follower (solid line) positions and their corresponding
difference �θ at: (a), (b) ω = 143 rpm and (c), (d) ω = 150 rpm.

These results agrees with waveform features of experimental pe-
riodic regime (see Fig. 5)

5.2 Simulation results

Using the model and the parameters obtained as dis-

cussed in the previous section, we perform a set of nu-

merical simulations at the same values of the cam speed

used in the experiments. We present the results of the

simulation in the three regions associated to the differ-

ent qualitative behaviour observed in the experiments.

5.3 Permanent contact and detachment

We start our numerical investigation by using low val-

ues of the cam rotational speed. As shown by contrast-

ing Fig. 13 with Fig. 3, we obtained a remarkable agree-

ment between the experimental and numerical data con-

firming the presence of permanent contact in the low

range of ω values.

By using the mathematical model, we were able to

compute analytically the value of ω at which detach-

ment between the cam and follower is bound to occur.

By using an inverse kinematic approach [35], this value

was computed to be 125 rpm in perfect agreement with

the experimental results reported above.

5.4 Periodic regime

When ω is increased past the critical value at which

detachment occurs, the numerics show the same qual-



Fig. 15 Comparison between sections of simulated (dashed)
and experimental (solid) differential �θ time series for (a)
ω = 135 rpm, (b) ω = 143 rpm, (c) ω = 148 rpm and (d) ω =

150 rpm. This results evidence the preservation of dissipative
features in the numerical approach from the first bounce

itative behaviour observed experimentally. Namely, as

shown in Figs. 14 and 15, we observe a good agreement

between the periodic behaviour observed experimen-

tally and the simulated trajectories. This also confirms

the validity of the estimation strategy used to obtain the

value of the coefficient of restitution r as a function of

the cam rotational speed ω.

5.5 Bifurcation diagram

We can now verify whether the model captures the bi-

furcation behaviour observed experimentally in order

to provide a further insight on whether the sudden tran-

sition to a seemingly aperiodic behaviour observed in

the experiment is indeed a feature of the cam-follower

system of interest. The numerical bifurcation diagram

is shown in Fig. 16 and compared with the experimental

one in Fig. 17. The agreement between the numerical

and the experimental diagram is remarkable. This con-

firms that at a critical value of the cam rotational speed

the system exhibits a sudden transition from the appar-

ently robust periodic behaviour born after detachment

to a seemingly aperiodic attractor.

The theoretical classification of this bifurcation is

currently under investigation. Preliminary results in-

dicate that the sudden transition detected both exper-

imentally and numerically cannot be explained sim-

ply in terms of a grazing bifurcation typical of im-

pacting systems. There are strong indications that such

a transition might be due to the relative position of

the impact point of the follower along the cam surface

when an impact occurs. In particular, we conjecture



Fig. 16 Numerical bifurcation diagram

Fig. 17 Comparison between experimental and numerical bi-
furcation diagrams

that this phenomenon might be the smooth counterpart

of the corner-impact bifurcation whose existence was

recently conjectured in [11]. This is the subject of on-

going work.

6 Conclusions

We reported the design, modelling and analysis of a

novel cam-follower mechanical rig to test and val-

idate the complex behaviour of impacting mechani-

cal systems. After presenting the main features of the

proposed experimental apparatus, we carried out an

extensive experimental investigation of its dynamics.

We observed that the system can exhibit complex be-

haviour and aperiodic solutions following the detach-

ment of the follower past a critical value of the cam

rotational speed. A careful modelling of the rig was

carried out and used to verify the experimental results.

By using an appropriate strategy for the identification

of the coefficient of restitution as a function of ω, it

was confirmed that the model of the rig captures the

sudden transition from periodic to aperiodic solutions

observed in the experiments. Preliminary results seem

to show that such transition is due to a novel class of

bifurcations which is currently under investigation.

We wish to emphasize that the results reported in this

paper can be helpful: (i) to establish the cam-follower

experimental rig as a versatile and flexible tool for the

experimental analysis of bifurcations in impacting sys-

tems and (ii) to uncover the mechanisms leading to the

occurrence of complex behaviour in such systems. For

example, as suggested in [11, 38], different cam pro-

files can be easily mounted on the experiment in order

to validate the theoretical results on bifurcations of im-

pacting systems. Also, gaining a better knowledge of

the complex behaviour associated to the detachment of

the follower from the cam can support the design of

more sophisticated controllers aiming at avoiding its

occurrence.

Appendix A: Derivation of Equation (14)

We report here some of the analytical derivations re-

quired to obtain the model presented in Section 4. The

impacting law given in (14) can be obtained by recast-

ing the quantities in (13) as functions of the follower

angular position and velocity together with the coordi-

nates of the contact point pC .

The first step is to express h and ∇� · ṗC in terms

of the coordinates of the generic contact point, (xc,

yc), and the follower angular position θ f . From the

geometry depicted in Fig. 10, h is the distance between

the straight line of slope tan(θ f ) passing through the

point (0, −d̄) in the (x, y) coordinate system and the

point on the cam pC = (xc, yc). Then, simple geometric

arguments yield the following expression for h:

h(xc, yc, θ f ) = sin(θ f )xc − cos(θ f )yc − d. (18)

Differentiating with respect to time (18), we have

ḣ(xc, yc, θ f ) = sin(θ f )ẋc − cos(θ f )ẏc + (cos(θ f )xc

+ sin(θ f )yc)θ̇ f . (19)



Analogously, it is also possible to express � in the

(x, y) coordinate system. Namely, from Fig. 10, it fol-

lows that

� :=
{

(x, y): y = tan(θ f )x − d

cos(θ f )

}
(20)

and then, since we can define ∇� = [− sin(θ f )

cos(θ f )], we obtain

∇� · ṗC = − sin(θ f )ẋc + cos(θ f )ẏc. (21)

The second step is the derivation of an expression for

∇� · ṗF in terms of θ̇ f . Note that pF has coordinates

(x f , y f ) related to (l, −d) by the rotation matrix �(θ f )

defined as

�(θ f ) =
[

cos(θ f ) − sin(θ f )

sin(θ f ) cos(θ f )

]
. (22)

Simple algebraic manipulations then yield:

∇� · ṗF = [ − sin(θ f ) cos(θ f ) ]

×
[− sin(θ f )l + cos(θ f )d

cos(θ f )l + sin(θ f )d

]
θ̇ f = l θ̇ f .

(23)

When an impact occurs, we also have pF ≡ pC , and

therefore

l = t̂ T

[
xc

yc

]
= cos(θ f )xc + sin(θ f )yc. (24)

Finally, expression (14) in Section 4.2 can be

obtained by substituting (19), (21) and (23) into

Equation (13).

Appendix B: Derivation of Equations (15)–(17)

The coordinates of the contact point pC = (xc, yc), can

be obtained in terms of the cam rotational angle θc for

a cam with an eccentric circular shape as follows.

Firstly, we need to derive again an expression for

the distance between the cam and the follower, h. This

can be obtained by subtracting the radius R of the cam

from the distance between the cam geometric center,

say pG = (xg, yg), and the point pF on the follower (see

Fig. 10). The coordinates of the point pG can be ob-

tained in terms of the coordinates of the cam rotational

center, (x0, y0), by simple trigonometric considerations

as:{
xg(θc) = e cos(θc) + x0,

yg(θc) = e sin(θc) + y0.
(25)

Then, straightforward algebraic manipulations give:

h
(
θ f , θc

) = [e sin(θc) + x0] sin(θ f )

− [e sin(θc) + y0] cos(θ f ) − d − R. (26)

Note that, for a generic θc, it is possible to solve the

trigonometric equation h(θ f , θc) = 0 which gives ana-

lytically the angular displacement at the follower joint

when the cam and the follower are permanently in con-

tact. This is precisely the expression given in (17).

Now, let n̂ be the unit vector lying along the direction

of the lower side of the follower in contact with the cam.

Clearly, n̂ is given by:

n̂(θ̂c(θc)) = [ − sin(θ̂c(θc)) cos(θ̂c(θc)) ]T . (27)

Then, (15) can be obtained by adding to the coordi-

nates of the cam geometrical center, pG , given by (25),

the vector having modulus equal to R and direction

orthogonal to n̂. Finally, differentiating (15), we obtain

(16).
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