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Abstract

In this paper we examine the change in material response, in particular the dilatational response, due to cavitation 
damage arising from tensile hydrostatic stresses of sufficient magnitude. A general discussion of stress softening and 
cavitation is followed by a description of some new experimental results concerning the change in response in hy-
drostatic tension or compression or in shear due to cavitation damage. In hydrostatic tension there is a progressive 
reduction in the value of the tensile bulk modulus of the material during loading and significant stress softening on 
unloading. As a result of the cavitation damage the tensile bulk modulus in the natural configuration is reduced. 
Ultimately, failure of the material occurs at sufficiently large hydrostatic tension, typically when the volume increase 
locally exceeds a critical value, of the order of 2–3%. However, the compressive bulk modulus is unaffected by the 
cavitation damage. Moreover, it is also found that the shear modulus is likewise unchanged by cavitation. The ex-
perimental data are used to develop a theoretical model, based on the concept of pseudo-elasticity, to describe these 
phenomena. Specifically, the dilatational part of the strain-energy function of an elastic material depends on a damage 
parameter which provides a means for switching the form of the strain-energy function, thereby reflecting the stress 
softening associated with unloading. A good correspondence between the theory and the data is obtained. 

Keywords: Shear; Compressive; Stress softening; Cavitation damage

1. Introduction

When rubberlike materials are subjected to repeated loading and unloading to a fixed strain amplitude
the relationship between stress and strain is, in general, noticeably different in loading and unloading. In
particular, in a simple tension test, for example, the stress on unloading is less than that on loading at the
same value of strain. This effect is known as stress softening. Stress softening may be associated with the
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Mullins effect (see e.g. Mullins (1947), Mullins and Tobin (1957), Mullins (1969)), which is evident when a
virgin specimen of material is first deformed to a given strain level (pre-conditioning) or, subsequently, in
loading/unloading cycles for strains up to the fixed level. Most experimental studies of the Mullins effect
focus on uniaxial tension; however, similar stress softening effects have been noticed in periodic com-
pressive tests by Bergstr€oom and Boyce (1998), in oscillatory shear tests by Ernst and Septanika (1999) and,
recently, in cyclic torsion tests by Sedlan (2000). These stress-softening phenomena are in general associated
with the fracture or slip of relatively weak secondary bonding of the polymer chains and the filler particles.
The main part of the paper (Sections 2 and 3), however, will be concerned with stress softening in

rubberlike solids associated with cavitation damage. This is evidenced by a reduction in the bulk modu-
lus as a result of increases in volume. During cyclic testing, a critical state may be reached where micro-
cavities suddenly grow inside the rubber, possibly initiated at sites of internal imperfections. Microscopic
observations suggest that rubberlike solids contain cavities with a wide range of sizes, and these will tear
open to form running cracks when the maximum extensibility of the rubber is reached. Some new exper-
imental results are reviewed in Section 4 to illustrate the shear, compressive and dilatational response of
unfilled rubber subjected to cavitation damage. One feature of the results is the observation that the bulk
modulus of the material in hydrostatic tension reduces progressively after some critical value of the hy-
drostatic tension has been exceeded. The material is now permanently damaged and, after unloading, it is
seen that the tensile bulk modulus (but not the compressive bulk modulus) in the unloaded configuration is
changed. It is also found that the shear modulus is unchanged after the cavitation damage has occurred.
In Section 5, a theory of pseudo-elasticity is described and then used to model the change in the material

response induced by cavitation damage. This is accomplished by incorporating into the elastic strain-energy
function of an undamaged material an additional (damage or softening) variable, denoted g, associated
purely with the volumetric part of the response. The inclusion of g provides a means of changing the
form of the energy function during the deformation process. Since the cavitation damage is isotropic, a
single variable g is sufficient to describe the softening process. Some concluding remarks are contained in
Section 6.

2. Cavitation damage

It has long been known that rubber subjected to a hydrostatic tensile stress causes internal rupture
known as cavitation; see for example, Gent (1990) and the references contained therein. Void nucleation
and the growth of microcavities in natural rubber is a complex process that involves breakage of bonds in
the polymer network, fracture of filler clusters and detachments of rubber chains from reinforcing particles.
The purpose of this study is to focus on the experimentally observed loss of stiffness when rubber is sub-
jected to cyclic hydrostatic tensile loading. In fact, a critical state may be reached when internal imper-
fections or cavities suddenly grow inside the rubber. Currently, we know little about these precursors. It is
not clear if they are really submicroscopic bubbles, dust particle inclusions or possibly weakly cross-linked
regions, but these microscopic material imperfections are the origin of bubble and crack formation when
local hydrostatic tensile stresses larger than a material-dependent critical value are generated.
In spite of the importance that such phenomena play in fracture, crazing and other failure mechanisms,

the behaviour of rubber subjected to hydrostatic tension has not received sufficient attention. The softening
in the (hydrostatic) tension–volume response of rubber components may ultimately result in premature
material failure. Typical applications in which stress levels sufficiently large to initiate cavitation may exist
are multilayered elastomeric bearings where thin rubber layers are highly restrained by steel plates; see, for
example, Burtscher and Dorfmann (1999) and Dorfmann and Burtscher (2000). Depending on the par-
ticular application, such plates may be subjected to bending or tilting, as discussed by Gent and Meinecke
(1970).
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A review of cavitation in nonlinearly elastic solids has been provided by Horgan and Polignone (1995)
who describe cavitation as a bifurcation problem for a sphere of isotropic (or anisotropic) material under
hydrostatic tension. In this work an explicit equation for the critical tension at which an internal cavity may
be initiated is obtained. Their work relates to an earlier study by Ball (1982) in which, for a neo-Hookean
material (incompressible), the critical tension is found to equal 5E=6, where E ¼ 3G is Young’s modulus in
the natural configuration of the material, G being the shear modulus.
Consider a rubber specimen, in the shape of a cube say, subjected to uniform cyclic tensile loading on its

boundary. Fig. 1(a) shows the idealized tension–volume response for unfilled natural rubber and Fig. 1(b)
typical experimental results (see, for example, Kakavas and Chang (1991)). Let the loading procedure in
Fig. 1(a) start with a stress-free fully unloaded specimen. The initial loading corresponds to the linear
tension–volume response characterized by an elastic undamaged bulk modulus along path a. It will be
shown in this section that a volume increase of 0.1% creates a critical hydrostatic tension in the material
sufficient to initiate growth of microcavities and a subsequent reduction in the bulk modulus of the ma-
terial. This is evidenced in Fig. 1(a) by a reduction in the slope of path a.
If unloading is initiated at a point 1, for example, the equilibrium tension states during unloading are

located along path b. Upon complete unloading, the material is assumed to have no permanent set and to
return to the stress-free state. Re-loading now follows the previous unloading path b up to the point 1,
beyond which the primary path a is rejoined and additional cavitation damage is generated as the slope
reduces progressively to almost zero (so that ultimately the material can support no further increase in
tension). The tension–volume equilibrium states remain located on path a until a new unloading path is
initiated at point 2. The material memorizes the maximum volumetric dilatation it has seen; if subsequent
cyclic volumetric changes remain below this threshold, no additional damage is accumulated in the ma-
terial. The damage may be described as a progressive deterioration of the bulk stiffness in the material, as
exemplified by the loading/re-loading paths a, b, c and d.

3. Hydrostatic loading of rubber

The shear modulus of natural rubber varies with temperature and strain from approximately 0.5–6.0
MPa. On the other hand, the bulk modulus is in general assumed to be strain independent and typically has
values between 2000 and 3000 MPa depending on the vulcanizate and temperature. Because of the high
ratio of bulk to shear modulus rubber is often treated as an incompressible material. Numerical results

Fig. 1. Tension–volume relationship with cavitation: (a) idealized cavitation damage response; (b) typical experimental cavitation

results for rubber.
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based on use of fully incompressible material models give good accuracy for applications involving plane
stress states such as those arising in shells or membranes (e.g. inflation of a balloon). However, if the
material is highly constrained, as might be the case in a plane strain configuration of a thick body, the
incompressibility assumption can be problematic, and the assumption of strict incompressibility must be
relaxed by inclusion of a dilatational term in the strain-energy function, as discussed by, for example, Peng
and Chang (1997).
This is the case, for example, in multilayered elastomeric bearings, where the pressure–volume relation of

the material must be accounted for in order to obtain realistic results. In Fig. 2 the cross-section of a single
rubber layer constrained by steel plates on its upper and lower surfaces under plane strain conditions is
shown. The deformed shapes and the corresponding states of stress on the free edges and in the centre
region are indicated schematically for both compressive and tensile loading. Because of the symmetry no
out-of-plane deformation exists. On the free edges there are stress components in the loading and the out-
of-plane directions, but the material is not constrained in the horizontal direction. This situation changes
toward the centre, where the material is confined in all three directions and a positive or negative hydro-
static state of stress develops.
In compression the rubber can easily withstand high pressure without accumulation of damage. On the

other hand, Gent (1990) has shown analytically that in hydrostatic tension internal cracking nucleated by
precursors can expand to an indefinitely large size under a hydrostatic stress of approximately 5E=6, where
E is Young’s modulus in the natural configuration. The initial size of the existing precursors has an im-
portant influence on the minimum cavitation stress. It was observed by Gent that small cavities are much
more resistant to expansion and fracture than larger ones. For voids with diameter of the order of 0.5 lm
pressures up to 3E are necessary to induce crack opening. Since microscopic voids with a wide range of sizes
are always present, cavitation damage starts to develop at relatively low stress values. Initiation of cavi-
tation damage is not visible from the outside but can be detected by a sudden drop in the load-extension
curve or, in some cases, by audible cracking sounds.
Experimental results by Gent and Lindley (1958) showed that the critical stress for rupture is related to

the elastic characteristics of the material and is independent of its strength properties. Taking advantage of
the incompressibility of rubber, Gent and Tompkins (1969) were able to design a complementary method to
confirm these findings. The work by Gent and Lindley (1958) formed the background for further experi-
mental results obtained by Lindsey (1967). Using an approximate analytical solution, Lindsey quantified
the value of the aspect ratio of the test specimen (diameter/thickness) for which the stress is essentially
hydrostatic. This value depends on the compressibility of the material and increases as the material becomes
more compressible. For example, for an almost incompressible material (Poisson’s ratio about 0.49) a
minimum aspect ratio of about 15 is required. See also the finite element study by Chang and Peng (1992).

Fig. 2. Deformed shapes of a single rubber layer between two steel plates: (a) compression; (b) tension.
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3.1. Cavitation tests using dissolved gases

In the method suggested by Gent and Tompkins (1969) soluble gas under high pressure was applied to
rubber blocks so as to fill the internal microscopic voids. It was found that upon a sudden release of the
gas pressure, the cavities within the rubber expanded. Because of the assumed incompressibility of the
material, a pressure applied to the interior of the cavities has the same dilating effect as the application of an
equivalent far field triaxial stress field. Gent and Tompkins were able to establish the existence of a critical
pressure Pc for the internal gas that is sufficient to cause submicroscopic voids to expand, this value de-
pending upon the initial size. They showed that the value of Pc is extremely large for small voids, having
radii in the order of 1–10 �AA, but that it approaches the lower limit of 5G=2 for cavities with initial radius of
the order of 10�7 m. In other words, the minimum supersaturation pressure of a dissolved gas required to
form visible bubbles is 5G=2. These openings will be filled when gas is dissolved in the rubber. When the
external pressure is then suddenly released, the internal gas pressure will inflate the bubbles. The kinetics of
expansion is complicated by, among other factors, the surface energy of rubber, the diffusion coefficient, the
solubility of gas in rubber and the material properties. As the bubbles expand in volume, the inside pressure
reduces and diffusion into the cavity will eventually occur, thereby providing a means of relieving the
supersaturation pressure in the specimen. In laboratory applications, the voids do not expand indefinitely
because of the limited supply of gas in the rubber specimen and because of diffusion of the gas outward
through the sides of the rubber block.
Trial end error experimental analysis provided upper and lower bounds on the supersaturation pressure

that initiates bubble formation. The necessary minimum cavitation pressure was determined by an ex-
perimental arrangement that created a linear pressure gradient through a rubber specimen. On two op-
posite sides of the rubber sample different gas pressures were applied for a sufficient period of time to attain
pressure equilibrium. After the sudden release of the pressure on both sides, bubbles started to form on one
side of the specimen only. The pressure in the transient region was determined based on a linear variation
between the two applied end values and the minimum pressure value Pc was determined as approximately
5G=2.
To validate the critical conditions for bubble formation different pressures were applied to compounds

characterized by different values of G. The lowest gas pressure for bubble formation was in good agreement
with the 5G=2 value found previously. For many compounds, however, no bubbles appeared even at
substantially higher pressures. This might be explained by the absence of initial cavities of 10�7 m or larger.
Similar findings were reported in later studies by Cho and Gent (1988) and Gent and Wang (1990).

4. New experimental results

New insight into cavitation damage and the progressive deterioration of the bulk stiffness was recently
obtained by performing a sequence of tests on thin unfilled rubber discs cured at 140 �C. The experiments
were conducted in the TARRC laboratory on single and double rubber discs bonded between rigid plates
and subjected to a sequence of different loading conditions. The question of interest was if and how a
change in the tension–volume behaviour influences the shear and compressive response.
Each rubber disc in Fig. 3 has a diameter of 50 mm and an initial thickness of 1.7 mm. These dimensions

were selected in order to create an effective state of hydrostatic stress in the central part of the disc whenever
the specimen is subjected to tensile or compressive loading, as discussed in Section 3. The lateral strains in
the central region of the disc are vanishingly small and the deformation can therefore be regarded as ap-
proximately uniaxial in this region.
Sequences of shear, compression and tension tests were performed using a screw-driven testing machine

at the TARRC laboratory. The head speeds for the tests were 2 mm/min for the double shear test (1),
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0.4 mm/min for the compression test (2), 0.2 mm/min for the three cycles of the tension test below the
cavitation stress (3), and 0.4 mm/min for the other tension tests (4). These specifications are summarized in
Table 1.
Table 1 summarizes the initial material characterization tests (1–3) performed on the rubber discs to

determine the material response before any accumulation of cavitation damage. The specimens were
subjected to three loading–unloading cycles in double shear up to a maximum strain of 100%. Next, each of
the specimens was subjected to three cycles in compression up to a maximum load of 20 kN and finally
three loading–unloading cycles in tension with a maximum applied load just below the initial cavitation
stress (which is approximately 5G=2Þ. The test results are shown in Fig. 4.
While in the central region of the disc the stress is effectively hydrostatic, this is certainly not the case

towards the edges of the specimen. This means, in particular, that the load distribution over the plates is
initially highly nonuniform. Hence, in tension for example, the hydrostatic stress in the central region is
not given by the resultant normal load on a plate divided by the area of the plate. The latter ratio un-
derestimates significantly the hydrostatic stress in this region. The slopes of the loading curves in the
uniaxial tensile test shown in Fig. 4 do not therefore give the correct value of the bulk modulus of the
material. The slope is approximately 250 MPa, which is an order of magnitude lower than the actual bulk
modulus for this material.
The shear test results in Fig. 4 show typical curves associated with the response of unfilled natural

rubber. Specifically there is some initial stress softening associated with the Mullins effect followed by
loading–unloading cycles with small hysteretic loops and some residual strains. The shear stiffness is esti-
mated from the linear portion of the third loading curve as 1.11 kN/mm, as indicated in Table 2.

Fig. 3. Test configuration for (a) uniaxial tension or compression and (b) double shear.

Table 1

Test sequence and type for cavitation damage characterization

Test Test type Test specification Head speed (mm/min)

1 Double shear test 3 cycles to 100% shear strain 2

2 Compression test 3 cycles to 20 kN 0.4

3 Tension test 3 cycles below cavitation stress 0.2

(2 kN tensile force)

4 Tension test 3 cycles above cavitation stress 0.4

(nominal 6% strain)

5 Double shear test 3 cycles to 100% shear strain 2

6 Compression test 3 cycles to 20 kN 0.4

7 Tension test 3 cycles above cavitation stress 0.4

(nominal 50% strain)

8 Double shear test 3 cycles to 100% shear strain 2
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The results for compressive loading do not reveal any Mullins effect or residual strain and the hysteretic
effects are not evident because of the small strains compared with those for shear. For future reference,
the compressive stiffness is evaluated for the linear portion of the third loading curve as 189 kN/mm (see
Table 2).

Fig. 4. Initial material characterization tests.
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The undamaged stiffness for tensile loading is determined using the best fit straight line and the result is
217 kN/mm. The oscillating nature of the curves is due to the extremely small displacement increments.
Particular care was taken not to induce void growth and associated damage so as to provide a set of
reference values for the undamaged material in shear, compression and tension. It should be noted that the
initial slopes of the compression and tension curves approximately coincide. The tensile loading was then
increased to generate almost 6% nominal axial strain in the material and a corresponding state of hy-
drostatic tension sufficient to initiate growth of microscopic cavities inside the rubber. The rapid change in
slope of the force–displacement curve for the first loading in tension is apparent in Fig. 5. Upon unloading,
the material response reflects the stress softening due to cavitation damage. Further, it is noted that this
damage is not recovered and the initial slopes of the reloading curves are smaller than that of the original
loading curve. This indicates a permanent reduction in the tensile bulk modulus due to damage.
Following the tensile test, the double shear and compression tests were then repeated in order to de-

termine if cavitation damage influenced the response in shear or compression. The result are shown in Fig. 5
and comparison with Fig. 4 does not indicate any change.
During the third and final tensile test, the load is increased to generate 50% nominal strain so that the

damage propagates to a larger part of the rubber specimen. Fig. 6 shows that the damage is irreversible and
the bulk modulus reduces substantially when the material enters further into the critical region. The tensile
force versus displacement curve in Fig. 6 also shows that the material has essentially failed and that no
higher load can be supported. It is noted that the slope of the first tensile loading curve in Fig. 6 coincides
with that of the reloading curves of the previous tension test (see Fig. 5). Also, in Fig. 6, results for sub-
sequent double shear tests are shown. These confirm the earlier finding that the shear response is inde-
pendent of cavitation.
The values of the stiffnesses and the applied load range within which each stiffness has been determined

are summarized in Table 2. These indicate clearly that cavitation damage does not affect the shear modulus
or the compressive bulk modulus. We believe that this is an important finding.
The results for tension can be seen more clearly in Fig. 7, where the curves for the different loading

sequences are superimposed for comparison. The different horizontal scales of the two figures should be
noted.

5. A pseudo-elastic model for cavitation damage

5.1. Hyperelasticity

We consider first a multiplicative decomposition of the deformation gradient F into a volume-changing
(dilatational) and a volume-preserving (isochoric) part in the form

Table 2

Quantitative evaluation of the effect of cavitation on stiffness parameters

Test Type of stiffness Load range (3rd cycle) Stiffness value

1 Shear stiffness 250–1750 N 1.11 kN/mm

2 Compression stiffness 5–15 kN 189 kN/mm

3 Tension stiffness (Best line) 217 kN/mm

4 Tension stiffness N.A. N.A.

5 Shear stiffness 250–1750 N 1.14 kN/mm

6 Compression stiffness 5–15 kN 189 kN/mm

7 Tension stiffness N.A. N.A.

8 Shear stiffness 250–1750 N 1.09 kN/mm
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F ¼ ðJ 1=3IÞF ¼ J 1=3F; ð1Þ

following Flory (1961) and Ogden (1976, 1978). The modified deformation tensor F describes the volume-
preserving part of the deformation, while the dilatational part is given in terms of the determinant

Fig. 5. Material characterization after initial cavitation damage.
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J ¼ det F. It follows from (1) that

detF ¼ 1: ð2Þ
We denote by ki, i ¼ 1, 2, 3, the principal stretches of the deformation and the modified principal

stretches �kki, i ¼ 1, 2, 3, are defined by
�kki ¼ J�1=3ki: ð3Þ

It follows that

�kk1 �kk2 �kk3 ¼ 1: ð4Þ
Here, we consider the material to be isotropic and elastic, so that the strain-energy function is a sym-

metric function, W ðk1; k2; k3Þ say, of the principal stretches.

Fig. 6. Material shear response after further cavitation damage.
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In order to separate the dependence of W into the isochoric and dilatational parts of the deformations,
we regard it as a function of �kk1; �kk2; �kk3 and J subject to (4), and we write

W ð�kk1; �kk2; �kk3; JÞ ¼ W ð�kk1J 1=3; �kk2J 1=3; �kk3J 1=3Þ; ð5Þ

which defines the notation W . The principal Cauchy stresses ri are then given by

Jri ¼ �kki
oW
o�kki

� �pp; ð6Þ

where �pp is defined by

�pp ¼ 1
3

X3
j¼1

�kkj
oW
o�kkj

� J
oW
oJ

: ð7Þ

Fig. 7. Comparison of tensile load–displacement curves for undamaged and damaged material: (a) first and second test sequences;

(b) second and third test sequences. In each case the dashed curves correspond to the second test sequence.
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The hydrostatic part of the stress is given simply by

1

3
ðr1 þ r2 þ r3Þ ¼

oW
oJ

: ð8Þ

For a purely hydrostatic tension T we have

ri ¼ T ¼ oW
oJ

; i ¼ 1; 2; 3: ð9Þ

For the special case in which W is decoupled into dilatational and volume-preserving parts we write

W ðk1; k2; k3Þ ¼ W ð�kk1; �kk2; �kk3; JÞ ¼ WvolðJÞ þ Wisoð�kk1; �kk2; �kk3Þ; ð10Þ
where WvolðJÞ and Wisoð�kk1; �kk2; �kk3Þ respectively are the volumetric and volume-preserving parts of the energy.
Over the last 30 years extensive research has been conducted into the development of constitutive laws

for both incompressible and compressible elastic materials, but to the best of the authors’ knowledge there
is no formulation currently available in the literature that accounts for the nonlinear tension–volume re-
sponse due to cavitation damage. This may be due to the assumption of incompressibility frequently used
for the analysis of rubber. However, the experimental evidence discussed in Section 4 indicates clearly that
incompressibility is not appropriate, and, when the material is subject to hydrostatic tensions beyond a
critical value, neither is a linear tension–volume response.
We propose first to derive an expression for the volumetric part WvolðJÞ of the strain energy, the first

derivative of which gives the hydrostatic pressure in accordance with Eq. (8). This is depicted schematically
by the curve a in Fig. 1. The second derivative is the bulk modulus. For an increase in volume (J > 1)
it is important that the strain energy function takes into account the growth of microcavities and fracture
of weak junctions in polymer chains. Failure of physical links and growth of cavities manifest themselves
in the reduction of the tension–volume stiffness at the macroscopic level (see Figs. 5 and 6). Secondly, to
include the noticeable difference in the dilatational response during loading and unloading (stress softening)
we propose to use different elastic formulations that reflect the accumulated damage in the material.

5.2. Pseudo-elasticity

The development is based on the pseudo-elasticity theory developed by Ogden and Roxburgh (1999a,b)
and Ogden (2000, 2001), in which the material response is described by different forms of strain-energy
function on primary loading and subsequent unloading. The starting point of this approach is the com-
pressible isotropic theory of hyperelasticity outlined above. An additional single scalar damage parameter g
is incorporated as a means of modifying the energy function. For the decoupled strain-energy function (10),
g is included only in the volumetric part, and the resulting pseudo-elastic energy function is written

W ðk1; k2; k3; gÞ ¼ WvolðJ ; gÞ þ Wisoð�kk1; �kk2; �kk3Þ: ð11Þ
During the deformation process the parameter g may be either active or inactive and may switch from

inactive to active and conversely provided it remains continuous in so doing. When it is inactive, the
material behaves as an elastic material described by a dilatational strain energy function WvolðJ ; gÞ, where g
is held constant. Without loss of generality, we set this value equal to one and define for the initial (hy-
drostatic) loading from an unstressed configuration of an undamaged material through the dilatational parteWWvolðJÞ ¼ WvolðJ ; 1Þ ð12Þ
of the strain energy, where the superposed tilde refers to primary loading path. The first derivative of this
expression gives the tension–volume response

eTT ðJÞ ¼ d eWWvol

dJ
ðJÞ ð13Þ
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for a perfectly elastic material for which the primary loading path is also the unloading path.
On the other hand, when g is active it is determined implicitly in terms of J by the constraint equation

oWvol
og

ðJ ; gÞ ¼ 0: ð14Þ

Under appropriate conditions this equation is equivalent to writing the damage parameter g as a function
of the volumetric change J in the form g ¼ vðJÞ. The material properties are again described in terms of
a strain-energy function, but with its volumetric part given by WvolðJ ; vðJÞÞ instead of WvolðJ ; 1Þ.
Standard energy functions given by, for example, Ogden (1972), Simo and Pister (1984) or Simo and

Miehe (1992) cannot be used as representative of eWWvolðJÞ since they do not include the stress softening effect
attributed to cavitation damage. However, the requirements that eWWvolðJÞ has a global minimum of 0 at
J ¼ 1 and that eWWvolðJÞ is an increasing function of J are applicable.
It is assumed that unloading from any point along the primary loading path activates g, which is then

given in terms of J during unloading by Eq. (14). We write the resulting volumetric part of the strain energy
for unloading and subsequent submaximal loading and unloading paths as

W volðJÞ ¼ WvolðJ ; vðJÞÞ ð15Þ

and the corresponding tension as

T ðJÞ ¼ dW vol

dJ
ðJÞ ¼ oWvol

oJ
ðJ ; vðJÞÞ: ð16Þ

The damage parameter g is expressed in terms of the deformation to provide both an evolution equation
for the damage and a means of modifying the strain-energy function. Thus, for consistency with Eqs. (12)
and (15), at the point where unloading is initiated from the virgin (primary) loading path, the maximum
value of J is denoted Jmax and vðJmaxÞ assumes the value 1. This implies that the function v and hence
WvolðJ ; vðJÞÞ depends on the point from which unloading starts.
Following the work of Ogden and Roxburgh (1999a,b), specialized to the volumetric part of the energy

function, we adopt a pseudo-energy function for the tension–volume response in the form

WvolðJ ; gÞ ¼ g eWWvolðJÞ þ /ðgÞ; ð17Þ

where /ðgÞ is referred as a damage function, which, for consistency, vanishes during primary loading, i.e.
when g ¼ 1. Thus,

/ð1Þ ¼ 0: ð18Þ

During primary loading, the tension eTT ðJÞ is given by Eq. (13). For unloading and subsequent sub-
maximal cyclic loading the tension is

T ðJÞ ¼ g
d eWWvol

dJ
ðJÞ ¼ geTT ðJÞ: ð19Þ

Eq. (14), when applied to (17), yields the connection

eWWvolðJÞ þ /0ðgÞ ¼ 0 ð20Þ

between g and J, where the prime indicates differentiation with respect to g. At the initiation of unloading
Eq. (20) gives

/0ð1Þ ¼ � eWWvolðJmaxÞ � �Wmax; ð21Þ

wherein the notation Wmax is defined.
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The function / is also required to satisfy the condition /00ðgÞ < 0. As a result, when the material is
unloaded, i.e. not subjected to any volumetric change (J ¼ 1), g will assume its minimum value, gmin say,
such that

/0ðgminÞ ¼ � eWWvolð1Þ ¼ 0: ð22Þ

Since the function / depends on the point where unloading begins then so does gmin, that is, it depends
through Wmax on the value Jmax.
The selection of /ðgÞ is subject to the above constraints and serves to determine the damage parameter

g in terms of the volumetric deformation J through Eq. (20). For a more detailed discussion on the subject
of pseudo-elasticity, we refer to Ogden and Roxburgh (1999a,b) and Ogden (2000, 2001).

5.3. Comparison of experimental and numerical data

The theory described in Sections 5.1 and 5.2 applies locally or, in the case of a homogeneous defor-
mation, to the overall response of the body. In the experiments discussed in Section 4, however, the de-
formation is not homogeneous and it is not a straightforward matter to derive expressions for the overall
force–displacement response from the local stress–strain relations such as Eqs. (13) and (14).
To circumvent this problem, we consider the response to be that of an equivalent homogeneous material

for which the deformation is homogeneous. In particular, for this purpose, we focus here on the tensile
response, in which the local relation (13) is replaced by an overall counterpart, written

T �ðJ �Þ ¼ dW
�
vol

dJ � ðJ �Þ; ð23Þ

where T � is the total applied force on the plate per unit area, J � is a measure of the overall volume change
in the cylindrical specimen subject to homogeneous uniaxial extension. It is equal to the ratio of the current
to the initial thickness of the specimen. The term W �

volðJ �Þ is the volumetric part of total stored energy per
unit initial volume, and is equal to the mean value of eWWvolðJÞ over the actual volume of the specimen.
Analogous expressions can be given for the overall counterparts of the other equations in Sections 5.1 and
5.2, but we do not list these separately. We emphasize that J � and the overall counterpart of g are uniform
for this equivalent homogeneous material. In a numerical analysis, based on, for example, the finite element
method, J and g are nonhomogeneous and the pseudo-energy function applies locally. This would enable a
detailed analysis of the size of the damaged zone to be conducted, but this is not our objective here.
Our aim now is to develop a particular model for W �

vol capable of describing the (overall) tension–volume
response of the thin rubber discs shown in Fig. 3.
As mentioned earlier, the dimensions of the test specimens were selected in order to ensure a hydrostatic

state of stress with three equal principal stresses during uniaxial loading. For the equivalent homogeneous
deformation the three principal stresses are approximately equal to T �. Thus, effectively, lateral stresses are
needed to ensure the homogeneity. The uniaxial stress–strain tensile data can therefore be viewed as
equivalent to hydrostatic tension–volume data suitable for the characterization of the volumetric part of
the strain-energy function. The volume changes have been calculated from the experimental data with the
edge effects neglected. The errors in this approximation are negligible because the aspect ratio used in the
experiments is about 30.
The choice of the function W �

volðJ �Þ is arbitrary, subject to the usual requirements that it has an absolute
minimum at J � ¼ 1 and that its first derivative gives the tension–volume response. Its second derivative
gives the bulk modulus of the equivalent homogeneous material. As we see below, this is an order of
magnitude lower than the actual bulk modulus, which, we recall, is given by the second derivative of eWWvolðJÞ
with respect to J.
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To describe the pressure–volume relation during the initial loading process, we propose to use the error
function with two material parameters m� and j� such that the dilatational strain-energy can be expressed
as

W �
volðJ �Þ ¼ m�j�

Z J�

1

erf
1

m� ðJ
�

� 1Þ
�
dJ ; ð24Þ

where j� is the bulk modulus described above for the material in the natural configuration before any
damage occurs. The tension–volume relation is then

T �ðJ �Þ ¼ m�j�erf
1

m� ðJ
�

�
� 1Þ

�
: ð25Þ

The parameter m� provides enough flexibility to enable the bulk modulus to be changed gradually from
its initial value j� to essentially zero, as shown below. It is emphasized that this expression represents the
overall material response only for the initial monotonic loading process, as indicated schematically by curve
a in Fig. 1. A nonlinear least squares method can be used to determine the value of the parameter m� with a
suitable degree of accuracy in order best to fit the data.
In order to compare the theory with the available test results, we consider the uniaxial test data shown

in Fig. 5 and, for convenience, convert the data into tension–volume results. An appropriate value of j� is
about 154 MPa (which compares with a value of 2360 MPa for bulk modulus of the actual material), while
a suitable value of the parameter m� is 0:013. The experimental and numerical data are shown in Fig. 8. Fair
agreement is demonstrated between experimental data and the results of the numerical simulation. Fig. 8
shows that upon unloading a different path is followed and thus a modified strain-energy function needs to
be determined in order to describe the accumulated damage in the material. This is accomplished by in-
troducing the scalar damage parameter g�, as for g in Eq. (17). In view of the interpretation given above,
it is no longer appropriate to view W �

volðJ �; g�Þ as a stored energy function. The term pseudo-energy function
is preferred.
The damage function, now denoted /�, serves to determine the damage parameter g� and can be selected

arbitrarily subject to the constraints on / identified in Section 5.2. Furthermore, from Eq. (19) it is evident
that g� must satisfy the inequalities 0 < g�

6 1.

Fig. 8. Experimental and numerical pressure–volume response.
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Let us assume that unloading starts at any arbitrary point along the primary loading path at which the
value of J � is J �

max. The accumulated energy is then given by W �
max ¼ �/�0 ð1Þ, analogously to Eq. (21). We

choose the function /�ðg�Þ to describe stress softening in the form

/�0 ðg�Þ ¼ �nj�erf�1 s�ðg�½ � 1Þ
 þ W �
max; ð26Þ

where n� and s� are positive dimensionless material constants and erf�1 is the inverse of the error function.
After rearrangement, we obtain g� explicitly in the form

g� ¼ 1� 1

s�
erf

1

n�j� W �
max

��
� W �

volðJ �Þ
��
: ð27Þ

Since n� and s� are positive it follows that g�
6 1, with equality holding only when W �

volðJ �Þ ¼ W �
max. Finally,

on use of (22), the minimum value g�
min of g� is given by

g�
min ¼ 1�

1

s�
erf

W �
max

n�j�

� 	
: ð28Þ

This value is positive for all W �
max > 0 and n� > 0 if s� > 1.

To validate the proposed formulation, the damage parameter g� associated with the tension–volume
unloading data shown in Fig. 8 is obtained, with a best fit corresponding to the parameter values s� ¼ 1:01
and n� ¼ 0:022.

6. Conclusions

The experimental results described in this paper highlight the progressive reduction in the value of the
bulk modulus of the material during hydrostatic tensile loading and the significant stress softening that
occurs during unloading from a state of hydrostatic tension. The ultimate failure of the material, which
occurs at sufficiently large hydrostatic tension and typically when the volume increase locally is of the order
of 3%, illustrates the caution that needs to be adopted when using constitutive laws for compressible elastic
materials for engineering calculations, particularly in finite element calculations, in situations where there
might be a large local hydrostatic tension. Moreover, there is a permanent reduction in the (hydrostatic)
tensile stiffness of the material due to increased cavitation damage. On the other hand, not surprisingly,
there is no change in the (hydrostatic) compressive stiffness. It is also found that the shear stiffness in the
unstressed configuration is unchanged as a result of the cavitation.
The experimental data have been used as the basis for constructing a theoretical model to describe these

effects. Specifically, we have focussed on the dilatational part of the strain-energy function of an elastic
material. First, we obtained a form of this function which reflects the overall hydrostatic tension–volume
response described above. Then, we used the notion of pseudo-elasticity, in which the dilatational part of
the energy function depends on a damage parameter. This enables the form of the dilatational response to
be changed when loading terminates and unloading is initiated, and thus reflects the stress softening as-
sociated with unloading. The theoretical model provides a good characterization of the experimental results
described.
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