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Abstract. In this work we study weighted Radon transforms in multi-
dimensions. We introduce an analog of Chang approximate inversion for-
mula for such transforms and describe all weights for which this formula
is exact. In addition, we indicate possible tomographical applications of
inversion methods for weighted Radon transforms in 3D.
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1 Introduction

We consider the weighted Radon transforms RW defined by the formula

RW f(s, θ)
def
=

∫

xθ=s

W (x, θ)f(x)dx, (1)

(s, θ) ∈ R× S
n−1, x ∈ R

n, n ≥ 2,

where W = W (x, θ) is the weight, f = f(x) is a test function; see e.g. [1]. Such
transforms arise in many domains of pure and applied mathematics; see e.g. [4],
[5], [6], [8], [10], [12]. In the present work we assume that

W is complex – valued,

W ∈ C(Rn × S
n−1) ∩ L∞(Rn × S

n−1), (2)

w0(x)
def
=

1

|Sn−1|

∫

Sn−1

W (x, θ)dθ 6= 0, x ∈ R
n,

⋆ The main part of the work was fulfilled during the stage of the first author in the
Centre de Mathématiques Appliquées of Ecole Polytechnique in March-May 2016.



where dθ is the element of standard measure on Sn−1, |Sn−1| is the standard
measure of Sn−1.

If W ≡ 1, then R = RW is the classical Radon transform in Rn; see for
example [6], [9], [11], [15]. Explicit inversion formulas for R were given for the
first time in [15].

In dimension n = 2, the transforms RW are also known as weighted ray
transforms on the plane; see e.g. [10], [12]. For several important cases of W
satisfying (2) for d = 2, explicit (and exact) inversion formulas for RW were
obtained in [2], [7], [13], [14], [16].

On the other hand, it seems that no explicit inversion formulas for RW were
given yet in the literature under assumptions (2) for n ≥ 3, if W 6= w0.

In the present work we introduce an analog of Chang approximate (but ex-
plicit) inversion formula for RW under assumptions (2), for n ≥ 3, and describe
all W for which this formula is exact. These results are presented in Section 2.

In addition, we indicate possible tomographical applications of inversion
methods for RW in dimension n = 3. These considerations are presented in
Section 3.

2 Chang-type formulas in multidimensions

We consider the following approximate inversion formulas for RW under assump-
tions (2) in dimension n ≥ 2:

fappr(x)
def
=

(−1)(n−2)/2

2(2π)n−1w0(x)

∫

Sn−1

H [RW f ]
(n−1)

(xθ, θ)dθ, (3)

x ∈ R
n, n is even,

fappr(x)
def
=

(−1)(n−1)/2

2(2π)n−1w0(x)

∫

Sn−1

[RW f ](n−1) (xθ, θ)dθ, (4)

x ∈ R
n, n is odd,

[RW f ]
(n−1)

(s, θ) =
dn−1

dsn−1
RW f(s, θ), s ∈ R, θ ∈ S

n−1, (5)

Hφ(s)
def
=

1

π
p.v.

∫

R

φ(t)

s− t
dt, s ∈ R. (6)

For W ≡ 1 formulas (3), (4) are exact, i.e. fappr = f , and are known as the
classical Radon inversion formulas, going back to [15].

As a corollary of the classical Radon inversion formulas and definition (1),
formulas (3), (4) for W ≡ w0 are also exact.

Formula (3) for n = 2 is known as Chang approximate inversion formula for
weighted Radon transforms on the plane. This explicit but approximate inversion



formula was suggested for the first time in [3] for the case when

W (x, θ) = exp
(

−Da(x, θ⊥)
)

, (7)

Da(x, θ⊥) =

+∞
∫

0

a(x+ tθ⊥)dt, (8)

where a is a non-negative sufficiently regular function on R2 with compact sup-
port, and θ = (θ1, θ2) ∈ Sn−1, θ⊥ = (θ2,−θ1). We recall that RW for W given
by (7), (8) is known as attenuated Radon transform on the plane and arises, in
particular, in the single photon emission tomography (SPECT). In this case an
explicit and simultaneously exact inversion formula for RW was obtained for the
first time in [13].

We emphasize that formulas (3), (4) are approximate, in general. In addition,
the following result holds:

Theorem 1. Let W satisfy (2). Let fappr be defined by (3), (4) in terms of
RW f and w0, n ≥ 2. Then fappr = f (in the sense of distributions) on Rn for
all f ∈ C0(R

n) if and only if

W (x, θ) − w0(x) ≡ w0(x)−W (x,−θ), x ∈ R
n, θ ∈ S

n−1. (9)

Here C0(R
n) denotes the space of all continous compactly supported functions

on Rn.
The result of Theorem 1 for n = 2 was obtained for the first time in [14].

Theorem 1 in the general case is proved in Section 4.
If W satisfy (2), f ∈ C0(R

n), but the the symmetry condition (9) does not
hold, i.e.

w0(x) 6=
1

2
(W (x, θ) +W (x,−θ)) , for some x ∈ R

n, θ ∈ S
n−1,

then (3), (4) can be considered as approximate formulas for finding f from RW f .

3 Weighted Radon transforms in 3D in tomographies

In several tomographies the measured data are modeled by weighted ray trans-
forms Pwf defined by the formula

Pwf(x, α) =

∫

R

w(x+ αt, α)f(x + αt) dt, (x, α) ∈ TS2, (10)

TS2 = {(x, α) ∈ R
3 × S

2 : xα = 0},

where f is an object function defined on R3, w is the weight function defined on
R3×S2, and TS2 can be considered as the set of all rays (oriented straight lines) in
R3. In particular, in the case of the single-photon emission computed tomography
(SPECT) the weight w is given by formulas (7), (8), where θ⊥ = α ∈ S2, x ∈ R3.



In practical tomographical considerations Pwf(x, α) usually arises for rays
(x, α) parallel to some fixed plane

Ση = {x ∈ R
3 : xη = 0}, η ∈ S

2, (11)

i.e., for αη = 0.

The point is that the following formulas hold:

RW f(s, θ) =

∫

R

Pwf(sθ + τ [θ, α], α)dτ, s ∈ R, θ ∈ S
2, (12)

W (x, θ) = w(x, α), α = α(η, θ) =
[η, θ]

|[η, θ]| , [η, θ] 6= 0, x ∈ R
3,

where [·, ·] stands for the standart vector product in R3.

Due to formula (12) the measured tomographical data modeled by Pwf can
be reduced to averaged data modeled by RW f . In particular, this reduction
drastically reduces the level of random noise in the initial data.

Therefore, formula (4) for n = 3 and other possible methods for finding f

from RW f in 3D may be important for tomographies, where measured data are
modeled by Pwf of (10).

Remark 1. The weight W arising in (12) is not continuous, in general. However,
the result of Theorem 1 remains valid for this W , at least, under the assumptions
that w is bounded and continuous on R3×S2, and w0(x) 6= 0, x ∈ R3, where w0

is defined in (2).

4 Proof of Theorem 1

For W satisfying (2) we also consider its symmetrization defined by

Ws(x, θ)
def
=

1

2
(W (x, θ) +W (x,−θ)) , x ∈ R

n, θ ∈ S
n−1. (13)

Using definitions (1), (13) we obtain

RWs
f(s, θ) =

1

2
(RW f(s, θ) +RW f(−s,−θ)) . (14)

In addition, if W satisfies (9), then

Ws(x, θ) = w0(x), x ∈ R
n, θ ∈ S

n−1. (15)



4.1 Proof of sufficiency

The sufficiency of symmetry (9) follows from formulas (3), (4) for the exact case
with W ≡ w0, the identities

fappr(x) =
(−1)(n−2)/2

2(2π)n−1w0(x)

∫

Sn−1

H [RWs
f ]

(n−1)
(xθ, θ)dθ, (16)

for even n,

fappr(x) =
(−1)(n−1)/2

2(2π)n−1w0(x)

∫

Sn−1

[RWs
f ]

(n−1)
(xθ, θ)dθ, (17)

for odd n,

and from the identities (14), (15).

In turn, (16) follows from the identities

∫

Sn−1

H [RW f ]
(n−1)

(xθ, θ)dθ

=
1

2

∫

Sn−1

(

H [RW f ]
(n−1)

(xθ, θ) +H [RW f ]
(n−1)

(−xθ,−θ)
)

dθ (18)

=

∫

Sn−1

H [RWs
f ]

(n−1)
(xθ, θ)dθ.

In addition, the second of the identities of (18) follows from the identities:

H [RWs
f ]

(n−1)
(s, θ) =

1

2π
p.v.

∫

R

1

s− t
×

× dn−1

dtn−1

[

RW f(t, θ) +RW f(−t,−θ)
]

dt

=
1

2
H

[

RW f
](n−1)

(s, θ) +
(−1)n−1

2π
p.v.

∫

R

[RW f ]
(n−1)

(−t,−θ)

s− t
dt; (19)

(−1)n−1

π
p.v.

∫

R

[RW f ]
(n−1)

(−t,−θ)

s− t
dt = − (−1)n−1

π
p.v.

∫

R

[RW f ]
(n−1)

(t,−θ)

−s− t
dt

= (−1)nH [RW f ](n−1) (−s,−θ) = H [RW f ](n−1) (−s,−θ). (20)



This concludes the proof of sufficiency for n even.
Finally, (17) follows from the identities

∫

Sn−1

[RW f ](n−1)(xθ, θ)dθ

=
1

2

∫

Sn−1

(

[RW f ](n−1) (xθ, θ) + [RW f ](n−1) (−xθ,−θ)
)

dθ, (21)

[RWs
f ]

(n−1)
(t, θ) =

1

2

dn−1

dtn−1

[

[RW f ] (t, θ) + [RW f ] (−t,−θ)
]

=
1

2

[

[RW f ]
(n−1)

(t, θ) + (−1)n−1 [RW f ]
(n−1)

(−t,−θ)
]

=
1

2

[

[RW f ]
(n−1)

(t, θ) + [RW f ]
(n−1)

(−t,−θ)
]

. (22)

This concludes the proof of sufficiency for odd n.

4.2 Proof of necessity

Using that fappr = f for all f ∈ C0(R
n) and using formulas (3), (4) for the exact

case W ≡ w0, we obtain

∫

Sn−1

(

H [RW f ]
(n−1)

(xθ, θ) −H [Rw0
f ]

(n−1)
(xθ, θ)

)

dθ = 0 (23)

on R
n for even n,

∫

Sn−1

[RW f −Rw0
f ]

(n−1)
(xθ, θ)dθ = 0 (24)

on R
n for odd n,

for all f ∈ C0(R
n).

Identities (18), (21), (22), (23), (24) imply the identities

∫

Sn−1

(

H [RWs
f ](n−1) (xθ, θ) −H [Rw0

f ](n−1) (xθ, θ)
)

dθ = 0 (25)

on R
n for even n,

∫

Sn−1

[RWs
f −Rw0

f ](n−1) (xθ, θ)dθ = 0 (26)

on R
n for odd n,

for all f ∈ C0(R
n).

The necessity of symmetry (9) follows from the identities (25), (26) and the
following lemmas:



Lemma 1. Let (25), (26) be valid for fixed f ∈ C0(R
n) and W satisfying (2),

n ≥ 2. Then

RWs
f = Rw0

f. (27)

Lemma 2. Let (27) be valid for all f ∈ C0(R
n) and fixed W satisfying (2),

n ≥ 2. Then

Ws = w0. (28)

Lemmas 1 and 2 are proved in Sections 5 and 6.

5 Proof of Lemma 1

We will use the following formulas

∫

Rn

eiξx
∫

Sn−1

g(xθ, θ) dθ dx

=

√
2π

|ξ|n−1

(

ĝ

(

|ξ|, ξ

|ξ|

)

+ ĝ

(

−|ξ|,− ξ

|ξ|

))

, (29)

∫

Rn

eiξx
∫

Sn−1

g(n−1)(xθ, θ) dθ dx =

∫

Rn

eiξx
∫

Sn−1

(θ∇x)
n−1g(xθ, θ) dθ dx

= (−i)n−1
√
2π

(

ĝ

(

|ξ|, ξ

|ξ|

)

+ (−1)n−1ĝ

(

−|ξ|,− ξ

|ξ|

))

, (30)

ĝ(τ, θ) =
1√
2π

∫

R

eiτsg(s, θ)ds, τ ∈ R, θ ∈ S
n−1, (31)

where g ∈ C(Sn−1, L2(R)), ξ ∈ R
n. The validity of formulas (29), (30) (in the

sense of distributions) follows from Theorem 1.4 of [12].

5.1 The case of odd n

Using identity (14) we get

g(s, θ) = g(−s,−θ), for all s ∈ R, θ ∈ S
n−1, (32)

where

g(s, θ) = [RWs
f(s, θ)−Rw0

f(s, θ)] . (33)



From (32), we obtain the same symmetry for the Fourier transform ĝ(·, θ) of
g(·, θ):

ĝ(t, θ) =
1√
2π

∫

R

g(s, θ)eitsds

=
1√
2π

∫

R

g(−s,−θ)ei(−s)(−t)ds (34)

=
1√
2π

∫

R

g(s,−θ)e−itsds = ĝ(−t,−θ), t ∈ R, θ ∈ S
n−1.

For odd n, from identities (26), (30) it follows that

ĝ

(

|p|, p

|p|

)

+ ĝ

(

−|p|,− p

|p|

)

= 0 in L2
loc(R

n). (35)

Using (34), (35) we obtain














ĝ

(

|p|, p

|p|

)

= 0,

ĝ

(

−|p|,− p

|p|

)

= 0
⇔ ĝ = 0 ⇔ g = 0. (36)

Formula (27) for odd n follows from (33), (36).

5.2 The case of even n

We consider

g(s, θ) = H [RWs
f −Rw0

f ] (s, θ), s ∈ R, θ ∈ S
n−1, (37)

arising in (25). Using the identity

H [RWs
f −Rw0

f ] (−s,−θ) =
1

π
p.v.

∫

R

RWs
f(t,−θ)−Rw0

f(t,−θ)

−s− t
dt (38)

=
1

π
p.v.

∫

R

RWs
f(−t,−θ)−Rw0

f(−t,−θ)

−s+ t
dt

= − 1

π
p.v.

∫

R

RWs
f(t, θ)−Rw0

f(t, θ)

s− t
dt = −H [RWs

f −Rw0
] (s, θ),

we obtain
g(s, θ) = −g(−s,−θ), for all s ∈ R, θ ∈ S

n−1. (39)

From (39), similarly with (34), we obtain the same symmetry for the Fourier
transform ĝ(·, θ) of g(·, θ):

ĝ(t, θ) = −ĝ(−t,−θ), t ∈ R, θ ∈ S
n−1. (40)



For n even, from the property of the Hilbert transform

H

[

φ(k)
]

= (H [φ])
(k)

, φ ∈ Ck
0 (R),

where this identity holds in the sense of distributions if φ ∈ C0(R), and identities
(25), (30) it follows that

ĝ

(

|p|, p

|p|

)

− ĝ

(

−|p|,− p

|p|

)

= 0 in L2
loc(R

n). (41)

Using (40), (41) we again obtain (36) but already for even n. Due to (36), (37)
we have

H [RWs
f −Rw0

f ] = 0. (42)

Formula (27) for even n follows from (42), invertibility of the Hilbert transform
on Lp, p > 1 and the fact that RW f ∈ C0(R× Sn−1).

Lemma 1 is proved.

6 Proof of Lemma 2

Suppose that

Ws(y, θ)− w0(y) = z 6= 0 (43)

for some y ∈ Rn, θ ∈ Sn−1, z ∈ C. Since W satisfies (2), then for any ε > 0
there exists δ(ε) > 0 such that

∀ y′ : |y′ − y| < δ → |Ws(y
′, θ)− w0(y

′)− z| < ε, (44)

for fixed y, θ.
Let f ∈ C0(R

n), f ≥ 0 and satisfies the conditions

f(y′) ≡ 1, y′ ∈ Bδ/2(y), (45)

supp f ⊂ Bδ(y), (46)

where Bδ(y) is the open ball with radius δ, centered at y, δ = δ(ε), 0 < ε < |z|.
It suffices to show that

|RWs
f(yθ, θ)−Rw0

f(yθ, θ)| > 0, (47)

which contradicts the condition of the lemma.
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The identity (47) follows from the formulas

|RWs
(yθ, θ) −Rw0

(yθ, θ)| =
∣

∣

∣

∫

xθ=yθ

f(x)(Ws(x, θ) − w0(x))dx
∣

∣

∣

=
∣

∣

∣

∫

xθ=yθ

f(x)(Ws(x, θ) − w0(x) − z)dx+ z

∫

xθ=yθ

f(x)dx
∣

∣

∣

≥ |z|
∫

xθ=yθ

f(x)dx−
∫

xθ=yθ

f(x) |Ws(x, θ) − w0(x) − z| dx

≥ (|z| − ε)

∫

xθ=yθ

f(x)dx > 0, for 0 < ε < |z|. (48)

Lemma 2 is proved.
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