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In this work we study weighted Radon transforms in multidimensions. We introduce an analog of Chang approximate inversion formula for such transforms and describe all weights for which this formula is exact. In addition, we indicate possible tomographical applications of inversion methods for weighted Radon transforms in 3D.

Introduction

We consider the weighted Radon transforms R W defined by the formula

R W f (s, θ) def = xθ=s W (x, θ)f (x)dx, (1) 
(s, θ) ∈ R × S n-1 , x ∈ R n , n ≥ 2,
where W = W (x, θ) is the weight, f = f (x) is a test function; see e.g. [START_REF] Boman | Support theorems for real-analytic Radon transforms[END_REF]. Such transforms arise in many domains of pure and applied mathematics; see e.g. [START_REF] Deans | The Radon Transform and some of Its Applications[END_REF], [START_REF] Durrani | The Radon transform and its properties[END_REF], [START_REF] Gel'fand | Integral Geometry and Representation Theory[END_REF], [START_REF] Grangeat | Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform[END_REF], [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF], [12]. In the present work we assume that where dθ is the element of standard measure on S n-1 , |S n-1 | is the standard measure of S n-1 . If W ≡ 1, then R = R W is the classical Radon transform in R n ; see for example [START_REF] Gel'fand | Integral Geometry and Representation Theory[END_REF], [START_REF] Helgason | The Radon Transform on R n[END_REF], [START_REF] Ludwig | The Radon transform on Euclidean space[END_REF], [START_REF] Radon | Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten [On the determination of functions by their integral values along certain manifolds[END_REF]. Explicit inversion formulas for R were given for the first time in [START_REF] Radon | Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten [On the determination of functions by their integral values along certain manifolds[END_REF].

W is complex -valued, W ∈ C(R n × S n-1 ) ∩ L ∞ (R n × S n-1 ), (2) 
w 0 (x) def = 1 |S n-1 | S n-1 W (x, θ)dθ = 0, x ∈ R n ,
In dimension n = 2, the transforms R W are also known as weighted ray transforms on the plane; see e.g. [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF], [12]. For several important cases of W satisfying (2) for d = 2, explicit (and exact) inversion formulas for R W were obtained in [START_REF] Boman | Novikov's inversion formula for the attenuated Radon transform -a new approach[END_REF], [START_REF] Gindikin | A remark on the weighted Radon transform on the plane[END_REF], [START_REF] Novikov | An inversion formula for the attenuated X-ray transformation[END_REF], [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF], [START_REF] Tretiak | The exponential Radon transform[END_REF].

On the other hand, it seems that no explicit inversion formulas for R W were given yet in the literature under assumptions [START_REF] Boman | Novikov's inversion formula for the attenuated Radon transform -a new approach[END_REF] 

for n ≥ 3, if W = w 0 .
In the present work we introduce an analog of Chang approximate (but explicit) inversion formula for R W under assumptions (2), for n ≥ 3, and describe all W for which this formula is exact. These results are presented in Section 2.

In addition, we indicate possible tomographical applications of inversion methods for R W in dimension n = 3. These considerations are presented in Section 3.

Chang-type formulas in multidimensions

We consider the following approximate inversion formulas for R W under assumptions (2) in dimension n ≥ 2:

f appr (x) def = (-1) (n-2)/2 2(2π) n-1 w 0 (x) S n-1 H [R W f ] (n-1) (xθ, θ)dθ, (3) 
x ∈ R n , n is even,

f appr (x) def = (-1) (n-1)/2 2(2π) n-1 w 0 (x) S n-1 [R W f ] (n-1) (xθ, θ)dθ, (4) 
x ∈ R n , n is odd, [R W f ] (n-1) (s, θ) = d n-1 ds n-1 R W f (s, θ), s ∈ R, θ ∈ S n-1 , (5) 
Hφ(s) def = 1 π p.v. R φ(t) s -t dt, s ∈ R. (6) 
For W ≡ 1 formulas (3), (4) are exact, i.e. f appr = f , and are known as the classical Radon inversion formulas, going back to [START_REF] Radon | Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten [On the determination of functions by their integral values along certain manifolds[END_REF].

As a corollary of the classical Radon inversion formulas and definition (1), formulas (3), (4) for W ≡ w 0 are also exact. Formula (3) for n = 2 is known as Chang approximate inversion formula for weighted Radon transforms on the plane. This explicit but approximate inversion formula was suggested for the first time in [START_REF] Chang | A method for attenuation correction in radionuclide computed tomography[END_REF] for the case when

W (x, θ) = exp -Da(x, θ ⊥ ) , (7) 
Da(x, θ ⊥ ) = +∞ 0 a(x + tθ ⊥ )dt, ( 8 
)
where a is a non-negative sufficiently regular function on R 2 with compact support, and θ = (θ 1 , θ 2 ) ∈ S n-1 , θ ⊥ = (θ 2 , -θ 1 ). We recall that R W for W given by ( 7), ( 8) is known as attenuated Radon transform on the plane and arises, in particular, in the single photon emission tomography (SPECT). In this case an explicit and simultaneously exact inversion formula for R W was obtained for the first time in [START_REF] Novikov | An inversion formula for the attenuated X-ray transformation[END_REF].

We emphasize that formulas (3), ( 4) are approximate, in general. In addition, the following result holds:

Theorem 1. Let W satisfy (2). Let f appr be defined by (3), (4) in terms of R W f and w 0 , n ≥ 2. Then f appr = f (in the sense of distributions) on R n for all f ∈ C 0 (R n ) if and only if W (x, θ) -w 0 (x) ≡ w 0 (x) -W (x, -θ), x ∈ R n , θ ∈ S n-1 . (9) 
Here C 0 (R n ) denotes the space of all continous compactly supported functions on R n . The result of Theorem 1 for n = 2 was obtained for the first time in [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF]. Theorem 1 in the general case is proved in Section 4.

If W satisfy (2), f ∈ C 0 (R n ), but the the symmetry condition (9) does not hold, i.e.

w 0 (x) = 1 2 (W (x, θ) + W (x, -θ)) , for some x ∈ R n , θ ∈ S n-1 , then (3) 
, (4) can be considered as approximate formulas for finding f from R W f .

Weighted Radon transforms in 3D in tomographies

In several tomographies the measured data are modeled by weighted ray transforms P w f defined by the formula

P w f (x, α) = R w(x + αt, α)f (x + αt) dt, (x, α) ∈ T S 2 , ( 10 
)
T S 2 = {(x, α) ∈ R 3 × S 2 : xα = 0},
where f is an object function defined on R 3 , w is the weight function defined on R 3 ×S 2 , and T S 2 can be considered as the set of all rays (oriented straight lines) in R 3 . In particular, in the case of the single-photon emission computed tomography (SPECT) the weight w is given by formulas ( 7), [START_REF] Grangeat | Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform[END_REF], where

θ ⊥ = α ∈ S 2 , x ∈ R 3 .
In practical tomographical considerations P w f (x, α) usually arises for rays (x, α) parallel to some fixed plane

Σ η = {x ∈ R 3 : xη = 0}, η ∈ S 2 , (11) 
i.e., for αη = 0. The point is that the following formulas hold:

R W f (s, θ) = R P w f (sθ + τ [θ, α], α)dτ, s ∈ R, θ ∈ S 2 , (12) 
W (x, θ) = w(x, α), α = α(η, θ) = [η, θ] |[η, θ]| , [η, θ] = 0, x ∈ R 3 ,
where [•, •] stands for the standart vector product in R 3 . Due to formula (12) the measured tomographical data modeled by P w f can be reduced to averaged data modeled by R W f . In particular, this reduction drastically reduces the level of random noise in the initial data.

Therefore, formula (4) for n = 3 and other possible methods for finding f from R W f in 3D may be important for tomographies, where measured data are modeled by P w f of (10).

Remark 1. The weight W arising in (12) is not continuous, in general. However, the result of Theorem 1 remains valid for this W , at least, under the assumptions that w is bounded and continuous on R 3 × S 2 , and w 0 (x) = 0, x ∈ R 3 , where w 0 is defined in (2).

Proof of Theorem 1

For W satisfying (2) we also consider its symmetrization defined by

W s (x, θ) def = 1 2 (W (x, θ) + W (x, -θ)) , x ∈ R n , θ ∈ S n-1 . (13) 
Using definitions (1), ( 13) we obtain

R Ws f (s, θ) = 1 2 (R W f (s, θ) + R W f (-s, -θ)) . (14) 
In addition, if W satisfies (9), then

W s (x, θ) = w 0 (x), x ∈ R n , θ ∈ S n-1 . (15) 

Proof of sufficiency

The sufficiency of symmetry ( 9) follows from formulas (3), ( 4) for the exact case with W ≡ w 0 , the identities

f appr (x) = (-1) (n-2)/2 2(2π) n-1 w 0 (x) S n-1 H [R Ws f ] (n-1) (xθ, θ)dθ, (16) 
for even n,

f appr (x) = (-1) (n-1)/2 2(2π) n-1 w 0 (x) S n-1 [R Ws f ] (n-1) (xθ, θ)dθ, (17) 
for odd n, and from the identities ( 14), [START_REF] Radon | Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten [On the determination of functions by their integral values along certain manifolds[END_REF].

In turn, ( 16) follows from the identities

S n-1 H [R W f ] (n-1) (xθ, θ)dθ = 1 2 S n-1 H [R W f ] (n-1) (xθ, θ) + H [R W f ] (n-1) (-xθ, -θ) dθ (18) = S n-1 H [R Ws f ] (n-1) (xθ, θ)dθ.
In addition, the second of the identities of (18) follows from the identities:

H [R Ws f ] (n-1) (s, θ) = 1 2π p.v. R 1 s -t × × d n-1 dt n-1 R W f (t, θ) + R W f (-t, -θ) dt = 1 2 H R W f (n-1) (s, θ) + (-1) n-1 2π p.v. R [R W f ] (n-1) (-t, -θ) s -t dt; (19) (-1) n-1 π p.v. R [R W f ] (n-1) (-t, -θ) s -t dt = - (-1) n-1 π p.v. R [R W f ] (n-1) (t, -θ) -s -t dt = (-1) n H [R W f ] (n-1) (-s, -θ) = H [R W f ] (n-1) (-s, -θ). ( 20 
)
This concludes the proof of sufficiency for n even. Finally, (17) follows from the identities

S n-1 [R W f ] (n-1) (xθ, θ)dθ = 1 2 S n-1 [R W f ] (n-1) (xθ, θ) + [R W f ] (n-1) (-xθ, -θ) dθ, ( 21 
) [R Ws f ] (n-1) (t, θ) = 1 2 d n-1 dt n-1 [R W f ] (t, θ) + [R W f ] (-t, -θ) = 1 2 [R W f ] (n-1) (t, θ) + (-1) n-1 [R W f ] (n-1) (-t, -θ) = 1 2 [R W f ] (n-1) (t, θ) + [R W f ] (n-1) (-t, -θ) . ( 22 
)
This concludes the proof of sufficiency for odd n.

Proof of necessity

Using that f appr = f for all f ∈ C 0 (R n ) and using formulas (3), ( 4) for the exact case W ≡ w 0 , we obtain

S n-1 H [R W f ] (n-1) (xθ, θ) -H [R w0 f ] (n-1) (xθ, θ) dθ = 0 (23) on R n for even n, S n-1 [R W f -R w0 f ] (n-1) (xθ, θ)dθ = 0 (24) on R n for odd n, for all f ∈ C 0 (R n ).
Identities (18), ( 21), ( 22), ( 23), (24) imply the identities

S n-1 H [R Ws f ] (n-1) (xθ, θ) -H [R w0 f ] (n-1) (xθ, θ) dθ = 0 (25) on R n for even n, S n-1 [R Ws f -R w0 f ] (n-1) (xθ, θ)dθ = 0 (26) on R n for odd n, for all f ∈ C 0 (R n ).
The necessity of symmetry (9) follows from the identities (25), (26) and the following lemmas:

Lemma 1. Let (25), (26) be valid for fixed f ∈ C 0 (R n ) and W satisfying (2), n ≥ 2. Then R Ws f = R w0 f. (27) 
Lemma 2. Let (27) be valid for all f ∈ C 0 (R n ) and fixed W satisfying (2), n ≥ 2. Then

W s = w 0 . (28) 
Lemmas 1 and 2 are proved in Sections 5 and 6.

Proof of Lemma 1

We will use the following formulas

R n e iξx S n-1 g(xθ, θ) dθ dx = √ 2π |ξ| n-1 ĝ |ξ|, ξ |ξ| + ĝ -|ξ|, - ξ |ξ| , (29) 
R n e iξx S n-1 g (n-1) (xθ, θ) dθ dx = R n e iξx S n-1 (θ∇ x ) n-1 g(xθ, θ) dθ dx = (-i) n-1 √ 2π ĝ |ξ|, ξ |ξ| + (-1) n-1 ĝ -|ξ|, - ξ |ξ| , (30) ĝ 
(τ, θ) = 1 √ 2π R e iτ s g(s, θ)ds, τ ∈ R, θ ∈ S n-1 , (31) 
where g ∈ C(S n-1 , L 2 (R)), ξ ∈ R n . The validity of formulas (29), (30) (in the sense of distributions) follows from Theorem 1.4 of [12].

The case of odd n

Using identity [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF] we get

g(s, θ) = g(-s, -θ), for all s ∈ R, θ ∈ S n-1 , (32) 
where

g(s, θ) = [R Ws f (s, θ) -R w0 f (s, θ)] . (33) 
From (32), we obtain the same symmetry for the Fourier transform ĝ(•, θ) of g(•, θ):

ĝ(t, θ) = 1 √ 2π R g(s, θ)e its ds = 1 √ 2π R g(-s, -θ)e i(-s)(-t) ds (34) = 1 √ 2π R g(s, -θ)e -its ds = ĝ(-t, -θ), t ∈ R, θ ∈ S n-1 .
For odd n, from identities (26), (30) it follows that ĝ |p|,

p |p| + ĝ -|p|, - p |p| = 0 in L 2 loc (R n ). (35) 
Using ( 34), ( 35) we obtain

       ĝ |p|, p |p| = 0, ĝ -|p|, - p |p| = 0 ⇔ ĝ = 0 ⇔ g = 0. ( 36 
)
Formula ( 27) for odd n follows from (33), (36).

The case of even n

We consider

g(s, θ) = H [R Ws f -R w0 f ] (s, θ), s ∈ R, θ ∈ S n-1 , (37) 
arising in (25). Using the identity

H [R Ws f -R w0 f ] (-s, -θ) = 1 π p.v. R R Ws f (t, -θ) -R w0 f (t, -θ) -s -t dt (38) = 1 π p.v. R R Ws f (-t, -θ) -R w0 f (-t, -θ) -s + t dt = - 1 π p.v. R R Ws f (t, θ) -R w0 f (t, θ) s -t dt = -H [R Ws f -R w0 ] (s, θ), we obtain g(s, θ) = -g(-s, -θ), for all s ∈ R, θ ∈ S n-1 . (39) 
From (39), similarly with (34), we obtain the same symmetry for the Fourier transform ĝ(•, θ) of g(•, θ):

ĝ(t, θ) = -ĝ(-t, -θ), t ∈ R, θ ∈ S n-1 . (40) 
For n even, from the property of the Hilbert transform

H φ (k) = (H [φ]) (k) , φ ∈ C k 0 (R),
where this identity holds in the sense of distributions if φ ∈ C 0 (R), and identities (25), (30) it follows that

ĝ |p|, p |p| -ĝ -|p|, - p |p| = 0 in L 2 loc (R n ). (41) 
Using ( 40), (41) we again obtain (36) but already for even n. Due to (36), (37) we have

H [R Ws f -R w0 f ] = 0. (42) 
Formula ( 27) for even n follows from (42), invertibility of the Hilbert transform on L p , p > 1 and the fact that R W f ∈ C 0 (R × S n-1 ). Lemma 1 is proved.

6 Proof of Lemma 2 

) 48 
Lemma 2 is proved.

⋆

  The main part of the work was fulfilled during the stage of the first author in the Centre de Mathématiques Appliquées of Ecole Polytechnique in March-May 2016.

  Suppose thatW s (y, θ)w 0 (y) = z = 0 (43)for some y ∈ R n , θ ∈ S n-1 , z ∈ C. Since W satisfies (2), then for any ε > 0 there exists δ(ε) > 0 such that∀ y ′ : |y ′ -y| < δ → |W s (y ′ , θ)w 0 (y ′ ) -z| < ε,(44)for fixed y, θ.Let f ∈ C 0 (R n ), f ≥ 0 and satisfies the conditions f (y ′ ) ≡ 1, y ′ ∈ B δ/2 (y), (45)supp f ⊂ B δ (y),(46)where B δ (y) is the open ball with radius δ, centered at y, δ = δ(ε), 0 < ε < |z|.It suffices to show that|R Ws f (yθ, θ) -R w0 f (yθ, θ)| > 0, (47)which contradicts the condition of the lemma.The identity (47) follows from the formulas|R Ws (yθ, θ) -R w0 (yθ, θ)| = xθ=yθ f (x)(W s (x, θ)w 0 (x))dx = xθ=yθ f (x)(W s (x, θ)w 0 (x)z)dx + z xθ=yθ f (x)dx ≥ |z| xθ=yθ f (x)dx -xθ=yθ f(x) |W s (x, θ)w 0 (x) -z| dx ≥ (|z|ε) xθ=yθ f (x)dx > 0, for 0 < ε < |z|. (