An analog of Chang inversion formula for weighted Radon transforms in multidimensions
Fedor Goncharov, Roman Novikov

To cite this version:

HAL Id: hal-01304312
https://hal.science/hal-01304312v2
Submitted on 17 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An analog of Chang inversion formula for weighted Radon transforms in multidimensions*

Fedor O. Goncharov¹,², Roman G. Novikov³,⁴

¹ Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russian Federation;
² Institute for Information Transmission Problems (RAS), Bolshoy Karetny per. 19, bld.1, Moscow 127051, Russian Federation;
³ CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France;
⁴ Institute of Earthquake Prediction Theory and Mathematical Geophysics (RAS), 117997 Moscow, Russian Federation;
A. goncharov.0l@gmail.com, novikov@cmap.polytechnique.fr

Abstract. In this work we study weighted Radon transforms in multidimensions. We introduce an analog of Chang approximate inversion formula for such transforms and describe all weights for which this formula is exact. In addition, we indicate possible tomographical applications of inversion methods for weighted Radon transforms in 3D.

Keywords: weighted Radon transforms, inversion formulas

AMS Mathematics Subject Classification: 44A12, 65R32

1 Introduction

We consider the weighted Radon transforms R_W defined by the formula

$$R_W f(s, \theta) \overset{def}{=} \int_{x\theta=s} W(x, \theta) f(x) dx,$$

where $W = W(x, \theta)$ is the weight, $f = f(x)$ is a test function; see e.g. [1]. Such transforms arise in many domains of pure and applied mathematics; see e.g. [4], [5], [6], [8], [10], [12]. In the present work we assume that

- W is complex – valued,
- $W \in C(\mathbb{R}^n \times S^{n-1}) \cap L^\infty(\mathbb{R}^n \times S^{n-1})$,
- $w_0(x) \overset{def}{=} \frac{1}{|S^{n-1}|} \int_{S^{n-1}} W(x, \theta) d\theta \neq 0, x \in \mathbb{R}^n$.

* The main part of the work was fulfilled during the stage of the first author in the Centre de Mathématiques Appliquées of Ecole Polytechnique in March-May 2016.
where $d\theta$ is the element of standard measure on \mathbb{S}^{n-1}, $|\mathbb{S}^{n-1}|$ is the standard measure of \mathbb{S}^{n-1}.

If $W \equiv 1$, then $R = R_W$ is the classical Radon transform in \mathbb{R}^n; see for example [6], [9], [11], [15]. Explicit inversion formulas for R were given for the first time in [15].

In dimension $n = 2$, the transforms R_W are also known as weighted ray transforms on the plane; see e.g. [10], [12]. For several important cases of W satisfying (2) for $d = 2$, explicit (and exact) inversion formulas for R_W were obtained in [2], [7], [13], [14], [16].

On the other hand, it seems that no explicit inversion formulas for R_W were given yet in the literature under assumptions (2) for $n \geq 3$, if $W \neq w_0$.

In the present work we introduce an analog of Chang approximate (but explicit) inversion formula for R_W under assumptions (2), for $n \geq 3$, and describe all W for which this formula is exact. These results are presented in Section 2.

In addition, we indicate possible tomographical applications of inversion methods for R_W in dimension $n = 3$. These considerations are presented in Section 3.

2 Chang-type formulas in multidimensions

We consider the following approximate inversion formulas for R_W under assumptions (2) in dimension $n \geq 2$:

$$f_{\text{appr}}(x) \overset{\text{def}}{=} \frac{(-1)^{(n-2)/2}}{2(2\pi)^{n-1}w_0(x)} \int_{\mathbb{S}^{n-1}} \mathbb{H} [R_W f]^{(n-1)}(x \theta, \theta) d\theta,$$ \hspace{1cm} (3)

$x \in \mathbb{R}^n$, n is even,

$$f_{\text{appr}}(x) \overset{\text{def}}{=} \frac{(-1)^{(n-1)/2}}{2(2\pi)^{n-1}w_0(x)} \int_{\mathbb{S}^{n-1}} [R_W f]^{(n-1)}(x \theta, \theta) d\theta,$$ \hspace{1cm} (4)

$x \in \mathbb{R}^n$, n is odd,

$$[R_W f]^{(n-1)}(s, \theta) = \frac{d^{n-1}}{ds^{n-1}} R_W f(s, \theta), s \in \mathbb{R}, \theta \in \mathbb{S}^{n-1},$$ \hspace{1cm} (5)

$$\mathbb{H} \phi(s) \overset{\text{def}}{=} \frac{1}{\pi} \text{p.v.} \int_{\mathbb{R}} \frac{\phi(t)}{s - t} dt, s \in \mathbb{R}. $$ \hspace{1cm} (6)

For $W \equiv 1$ formulas (3), (4) are exact, i.e. $f_{\text{appr}} = f$, and are known as the classical Radon inversion formulas, going back to [15].

As a corollary of the classical Radon inversion formulas and definition (1), formulas (3), (4) for $W \equiv w_0$ are also exact.

Formula (3) for $n = 2$ is known as Chang approximate inversion formula for weighted Radon transforms on the plane. This explicit but approximate inversion
formula was suggested for the first time in [3] for the case when
\[W(x, \theta) = \exp \left(-D a(x, \theta^\perp) \right), \]
\[D a(x, \theta^\perp) = \int_0^{+\infty} a(x + t \theta^\perp) \, dt, \]
where \(a \) is a non-negative sufficiently regular function on \(\mathbb{R}^2 \) with compact support, and \(\theta = (\theta_1, \theta_2) \in \mathbb{S}^{n-1} \), \(\theta^\perp = (\theta_2, -\theta_1) \). We recall that \(R_W \) for \(W \) given by (7), (8) is known as attenuated Radon transform on the plane and arises, in particular, in the single photon emission tomography (SPECT). In this case an explicit and simultaneously exact inversion formula for \(R_W \) was obtained for the first time in [13].

We emphasize that formulas (3), (4) are approximate, in general. In addition, the following result holds:

Theorem 1. Let \(W \) satisfy (2). Let \(f_{\text{appr}} \) be defined by (3), (4) in terms of \(R_W f \) and \(w_0 \), \(n \geq 2 \). Then \(f_{\text{appr}} = f \) (in the sense of distributions) on \(\mathbb{R}^n \) for all \(f \in C_0(\mathbb{R}^n) \) if and only if
\[W(x, \theta) - w_0(x) \equiv w_0(x) - W(x, -\theta), \quad x \in \mathbb{R}^n, \theta \in \mathbb{S}^{n-1}. \]
Here \(C_0(\mathbb{R}^n) \) denotes the space of all continuous compactly supported functions on \(\mathbb{R}^n \).

The result of Theorem 1 for \(n = 2 \) was obtained for the first time in [14]. Theorem 1 in the general case is proved in Section 4.

If \(W \) satisfy (2), \(f \in C_0(\mathbb{R}^n) \), but the the symmetry condition (9) does not hold, i.e.
\[w_0(x) \neq \frac{1}{2} \left(W(x, \theta) + W(x, -\theta) \right), \quad \text{for some } x \in \mathbb{R}^n, \theta \in \mathbb{S}^{n-1}, \]
then (3), (4) can be considered as approximate formulas for finding \(f \) from \(R_W f \).

3 Weighted Radon transforms in 3D in tomographies

In several tomographies the measured data are modeled by weighted ray transforms \(P_w f \) defined by the formula
\[P_w f(x, \alpha) = \int_{\mathbb{R}} w(x + t \alpha) f(x + t \alpha) \, dt, \quad (x, \alpha) \in TS^2, \]
\[TS^2 = \{(x, \alpha) \in \mathbb{R}^3 \times S^2 : x \alpha = 0 \}, \]
where \(f \) is an object function defined on \(\mathbb{R}^3 \), \(w \) is the weight function defined on \(\mathbb{R}^3 \times S^2 \), and \(TS^2 \) can be considered as the set of all rays (oriented straight lines) in \(\mathbb{R}^3 \). In particular, in the case of the single-photon emission computed tomography (SPECT) the weight \(w \) is given by formulas (7), (8), where \(\theta^\perp = \alpha \in S^2, x \in \mathbb{R}^3 \).
In practical tomographical considerations $P_w f(x, \alpha)$ usually arises for rays (x, α) parallel to some fixed plane

$$\Sigma_\eta = \{ x \in \mathbb{R}^3 : x\eta = 0 \}, \eta \in \mathbb{S}^2,$$

i.e., for $\alpha\eta = 0$.

The point is that the following formulas hold:

$$R W f(s, \theta) = \int \limits_\mathbb{R} P_w f(s\theta + \tau[\theta, \alpha], \alpha) d\tau, \; s \in \mathbb{R}, \; \theta \in \mathbb{S}^2,$$

$$W(x, \theta) = w(x, \alpha) = \frac{[\eta, \theta]}{|[\eta, \theta]|} \neq 0, \; x \in \mathbb{R}^3,$$

where $[\cdot, \cdot]$ stands for the standard vector product in \mathbb{R}^3.

Due to formula (12) the measured tomographical data modeled by $P_w f$ can be reduced to averaged data modeled by $R W f$. In particular, this reduction drastically reduces the level of random noise in the initial data.

Therefore, formula (4) for $n = 3$ and other possible methods for finding f from $R W f$ in 3D may be important for tomographies, where measured data are modeled by $P_w f$ of (10).

Remark 1. The weight W arising in (12) is not continuous, in general. However, the result of Theorem 1 remains valid for this W, at least, under the assumptions that w is bounded and continuous on $\mathbb{R}^3 \times \mathbb{S}^2$, and $w_0(x) \neq 0, \; x \in \mathbb{R}^3$, where w_0 is defined in (2).

4 Proof of Theorem 1

For W satisfying (2) we also consider its symmetrization defined by

$$W_s(x, \theta) \stackrel{df}{=} \frac{1}{2} (W(x, \theta) + W(x, -\theta)), \; x \in \mathbb{R}^3, \; \theta \in \mathbb{S}^{n-1}.$$

Using definitions (1), (13) we obtain

$$R_{W_s} f(s, \theta) = \frac{1}{2} (R_W f(s, \theta) + R_W f(-s, -\theta)).$$

In addition, if W satisfies (9), then

$$W_s(x, \theta) = w_0(x), \; x \in \mathbb{R}^n, \; \theta \in \mathbb{S}^{n-1}.$$
4.1 Proof of sufficiency

The sufficiency of symmetry (9) follows from formulas (3), (4) for the exact case with \(W \equiv w_0 \), the identities

\[
 f_{\text{appr}}(x) = \frac{(-1)^{(n-2)/2}}{2(2\pi)^{n-1}w_0(x)} \int_{S^{n-1}} \mathbb{H} [R_W f]^{(n-1)}(x, \theta) d\theta,
\]

for even \(n \),

\[
 f_{\text{appr}}(x) = \frac{(-1)^{(n-1)/2}}{2(2\pi)^{n-1}w_0(x)} \int_{S^{n-1}} |R_W f|^{(n-1)}(x, \theta) d\theta,
\]

for odd \(n \),

and from the identities (14), (15).

In turn, (16) follows from the identities

\[
 \int_{S^{n-1}} \mathbb{H} [R_W f]^{(n-1)}(x, \theta) d\theta
 = \frac{1}{2} \int_{S^{n-1}} \left(\mathbb{H} [R_W f]^{(n-1)}(x, \theta) + \mathbb{H} [R_W f]^{(n-1)}(-x, \theta) \right) d\theta
 = \int_{S^{n-1}} \mathbb{H} [R_W f]^{(n-1)}(x, \theta) d\theta.
\]

In addition, the second of the identities of (18) follows from the identities:

\[
 \mathbb{H} [R_W f]^{(n-1)}(s, \theta) = \frac{1}{2\pi} p.v. \int_{R} \frac{1}{s - t} \times
 \left. \frac{d^{n-1}}{dt^{n-1}} \left[R_W f(t, \theta) + R_W f(-t, -\theta) \right] \right|_{t=0} dt
 = \frac{1}{2} \mathbb{H} [R_W f]^{(n-1)}(s, \theta) + \frac{(-1)^{n-1}}{2\pi} p.v. \int_{R} \frac{|R_W f|^{(n-1)}(-t, -\theta)}{s - t} dt;
\]

\[
 \pi \frac{(-1)^{n-1}}{p.v.} \int_{R} \frac{|R_W f|^{(n-1)}(-t, -\theta)}{s - t} dt = -\frac{(-1)^{n-1}}{\pi} p.v. \int_{R} \frac{|R_W f|^{(n-1)}(t, -\theta)}{-s - t} dt
 = (-1)^n \mathbb{H} [R_W f]^{(n-1)}(-s, -\theta) = \mathbb{H} [R_W f]^{(n-1)}(-s, -\theta).
\]
This concludes the proof of sufficiency for even \(n \).

Finally, (17) follows from the identities

\[
\int_{\mathbb{S}^{n-1}} [R_W f]^{(n-1)}(x\theta, \theta) d\theta
= \frac{1}{2} \int_{\mathbb{S}^{n-1}} \left([R_W f]^{(n-1)}(x\theta, \theta) + [R_W f]^{(n-1)}(-x\theta, -\theta) \right) d\theta, \tag{21}
\]

\[
[R_W, f]^{(n-1)}(t, \theta) = \frac{1}{2} \frac{d^{n-1}}{dt^{n-1}} \left[[R_W f](t, \theta) + [R_W f](-t, -\theta) \right]
= \frac{1}{2} \left[[R_W f]^{(n-1)}(t, \theta) + (-1)^{n-1} [R_W f]^{(n-1)}(-t, -\theta) \right]
= \frac{1}{2} \left[[R_W f]^{(n-1)}(t, \theta) + [R_W f]^{(n-1)}(-t, -\theta) \right]. \tag{22}
\]

This concludes the proof of sufficiency for odd \(n \).

4.2 Proof of necessity

Using that \(f_{\text{app}} = f \) for all \(f \in C_0(\mathbb{R}^n) \) and using formulas (3), (4) for the exact case \(W \equiv w_0 \), we obtain

\[
\int_{\mathbb{S}^{n-1}} \left(\mathbb{H} [R_W f]^{(n-1)}(x\theta, \theta) - \mathbb{H} [R_{w_0} f]^{(n-1)}(x\theta, \theta) \right) d\theta = 0 \tag{23}
\]
on \(\mathbb{R}^n \) for even \(n \),

\[
\int_{\mathbb{S}^{n-1}} [R_W f - R_{w_0} f]^{(n-1)}(x\theta, \theta) d\theta = 0 \tag{24}
\]
on \(\mathbb{R}^n \) for odd \(n \),

for all \(f \in C_0(\mathbb{R}^n) \). Identities (18), (21), (22), (23), (24) imply the identities

\[
\int_{\mathbb{S}^{n-1}} \left(\mathbb{H} [R_W f]^{(n-1)}(x\theta, \theta) - \mathbb{H} [R_{w_0} f]^{(n-1)}(x\theta, \theta) \right) d\theta = 0 \tag{25}
\]
on \(\mathbb{R}^n \) for even \(n \),

\[
\int_{\mathbb{S}^{n-1}} [R_W f - R_{w_0} f]^{(n-1)}(x\theta, \theta) d\theta = 0 \tag{26}
\]
on \(\mathbb{R}^n \) for odd \(n \),

for all \(f \in C_0(\mathbb{R}^n) \).

The necessity of symmetry (9) follows from the identities (25), (26) and the following lemmas:
Lemma 1. Let (25), (26) be valid for fixed $f \in C_0(\mathbb{R}^n)$ and W satisfying (2), $n \geq 2$. Then

$$R_W f = R_{w_0} f.$$ \hfill (27)

Lemma 2. Let (27) be valid for all $f \in C_0(\mathbb{R}^n)$ and fixed W satisfying (2), $n \geq 2$. Then

$$W_s = w_0.$$ \hfill (28)

Lemmas 1 and 2 are proved in Sections 5 and 6.

5 Proof of Lemma 1

We will use the following formulas

$$\int e^{i\xi x} \int_{\mathbb{S}^{n-1}} g(x\theta, \theta) d\theta dx = \frac{\sqrt{2\pi}}{|\xi|^{n-1}} \left(\hat{g}\left(|\xi|, \frac{\xi}{|\xi|}\right) + \hat{g}\left(-|\xi|, -\frac{\xi}{|\xi|}\right) \right),$$ \hfill (29)

$$\int e^{i\xi x} \int_{\mathbb{S}^{n-1}} g^{(n-1)}(x\theta, \theta) d\theta dx = \int e^{i\xi x} \int_{\mathbb{S}^{n-1}} (\theta \nabla_x)^{n-1} g(x\theta, \theta) d\theta dx$$

$$= (-i)^{n-1} \sqrt{2\pi} \left(\hat{g}\left(|\xi|, \frac{\xi}{|\xi|}\right) + (-1)^{n-1} \hat{g}\left(-|\xi|, -\frac{\xi}{|\xi|}\right) \right),$$ \hfill (30)

$$\hat{g}(\tau, \theta) = \frac{1}{\sqrt{2\pi}} \int e^{ix\tau} g(s, \theta) ds, \tau \in \mathbb{R}, \theta \in \mathbb{S}^{n-1},$$ \hfill (31)

where $g \in C(\mathbb{S}^{n-1}, L^2(\mathbb{R}))$, $\xi \in \mathbb{R}^n$. The validity of formulas (29), (30) (in the sense of distributions) follows from Theorem 1.4 of [12].

5.1 The case of odd n

Using identity (14) we get

$$g(s, \theta) = g(-s, -\theta), \text{ for all } s \in \mathbb{R}, \theta \in \mathbb{S}^{n-1},$$ \hfill (32)

where

$$g(s, \theta) = [R_{W_s} f(s, \theta) - R_{w_0} f(s, \theta)].$$ \hfill (33)
From (32), we obtain the same symmetry for the Fourier transform \(\hat{g}(\cdot, \theta) \) of \(g(\cdot, \theta) \):

\[
\hat{g}(t, \theta) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(s, \theta) e^{its} ds
\]

\[
= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(-s, -\theta) e^{i(-s)(-t)} ds
\]

\[
= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(s, -\theta) e^{-its} ds = \hat{g}(-t, -\theta), t \in \mathbb{R}, \theta \in S^{n-1}.
\]

For odd \(n \), from identities (26), (30) it follows that

\[
\hat{g} \left(\frac{|p|}{|p|}, -\frac{p}{|p|} \right) + \hat{g} \left(-\frac{|p|}{|p|}, \frac{p}{|p|} \right) = 0 \text{ in } L^2_{\text{loc}}(\mathbb{R}^n).
\]

Using (34), (35) we obtain

\[
\begin{cases}
\hat{g} \left(\frac{|p|}{|p|}, \frac{p}{|p|} \right) = 0, \\
\hat{g} \left(-|p|, -\frac{p}{|p|} \right) = 0
\end{cases}
\leftrightarrow g = 0.
\]

Formula (27) for odd \(n \) follows from (33), (36).

5.2 The case of even \(n \)

We consider

\[
g(s, \theta) = \mathbb{H} [R_{W, f} - R_{w_0 f}] (s, \theta), s \in \mathbb{R}, \theta \in S^{n-1},
\]

arising in (25). Using the identity

\[
\mathbb{H} [R_{W, f} - R_{w_0 f}] (-s, -\theta) = \frac{1}{\pi} \text{p.v.} \int_{\mathbb{R}} \frac{R_{W, f}(t, -\theta) - R_{w_0 f}(t, -\theta)}{-s - t} dt
\]

\[
= \frac{1}{\pi} \text{p.v.} \int_{\mathbb{R}} \frac{R_{W, f}(-t, -\theta) - R_{w_0 f}(-t, -\theta)}{-s + t} dt
\]

\[
= - \frac{1}{\pi} \text{p.v.} \int_{\mathbb{R}} \frac{R_{W, f}(t, \theta) - R_{w_0 f}(t, \theta)}{s - t} dt = -\mathbb{H} [R_{W, f} - R_{w_0 f}] (s, \theta),
\]

we obtain

\[
g(s, \theta) = -g(-s, -\theta), \text{ for all } s \in \mathbb{R}, \theta \in S^{n-1}.
\]

(39)

From (39), similarly with (34), we obtain the same symmetry for the Fourier transform \(\hat{g}(\cdot, \theta) \) of \(g(\cdot, \theta) \):

\[
\hat{g}(t, \theta) = -\hat{g}(-t, -\theta), t \in \mathbb{R}, \theta \in S^{n-1}.
\]
For \(n \) even, from the property of the Hilbert transform
\[
\mathcal{H} \left[\phi^{(k)} \right] = (\mathcal{H} [\phi])^{(k)}, \phi \in C^k_0(\mathbb{R}),
\]
where this identity holds in the sense of distributions if \(\phi \in C_0(\mathbb{R}) \), and identities (25), (30) it follows that
\[
\hat{\mathcal{g}} \left(|p|, \frac{p}{|p|} \right) - \hat{\mathcal{g}} \left(-|p|, -\frac{p}{|p|} \right) = 0 \text{ in } L^2_{\text{loc}}(\mathbb{R}^n).
\] (41)
Using (40), (41) we again obtain (36) but already for even \(n \). Due to (36), (37) we have
\[
\mathcal{H} [R_{W} f - R_{w_0} f] = 0.
\] (42)
Formula (27) for even \(n \) follows from (42), invertibility of the Hilbert transform on \(L^p, p > 1 \) and the fact that \(R_W f \in C_0(\mathbb{R} \times S^{n-1}) \).

Lemma 1 is proved.

6 Proof of Lemma 2

Suppose that
\[
W_s(y, \theta) - w_0(y) = z \neq 0
\] (43)
for some \(y \in \mathbb{R}^n, \theta \in S^{n-1}, z \in \mathbb{C} \). Since \(W \) satisfies (2), then for any \(\varepsilon > 0 \) there exists \(\delta(\varepsilon) > 0 \) such that
\[
\forall y': |y' - y| < \delta \rightarrow |W_s(y', \theta) - w_0(y') - z| < \varepsilon,
\] (44)
for fixed \(y, \theta \).

Let \(f \in C_0(\mathbb{R}^n) \), \(f \geq 0 \) and satisfies the conditions
\[
f(y') \equiv 1, y' \in B_{\delta/2}(y),
\] (45)
\[
\text{supp } f \subset B_{\delta}(y),
\] (46)
where \(B_{\delta}(y) \) is the open ball with radius \(\delta \), centered at \(y \), \(\delta = \delta(\varepsilon), 0 < \varepsilon < |z|. \)

It suffices to show that
\[
|R_{W_s} f(y', \theta) - R_{w_0} f(y', \theta)| > 0,
\] (47)
which contradicts the condition of the lemma.
The identity (47) follows from the formulas

$$|R_{W_*}(y\theta, \theta) - R_{w_0}(y\theta, \theta)| = \left| \int_{x\theta = y\theta} f(x)(W_*(x, \theta) - w_0(x))dx \right|$$

$$= \left| \int_{x\theta = y\theta} f(x)(W_*(x, \theta) - w_0(x) - z)dx + z \int_{x\theta = y\theta} f(x)dx \right|$$

$$\geq |z| \int_{x\theta = y\theta} f(x)dx - \int_{x\theta = y\theta} f(x) |W_*(x, \theta) - w_0(x) - z| dx$$

$$\geq (|z| - \varepsilon) \int_{x\theta = y\theta} f(x)dx > 0, \text{ for } 0 < \varepsilon < |z|. \quad (48)$$

Lemma 2 is proved.

References
