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RAMIFICATION IN IWASAWA THEORY AND SPLITTING

CONJECTURES

CHANDRASHEKHAR KHARE AND JEAN-PIERRE WINTENBERGER

ABSTRACT. We make a reciprocity conjecture that extends Iwasawa’s anal-
ogy of direct limits of class groups along the cyclotomic tower of a totally real
number field F to torsion points of Jacobians of curves over finite fields. The
extension is to generalised class groups and generalised Jacobians. We state
some “splitting conjectures” which are equivalent to Leopoldt’s conjecture.1

1. Introduction

For a number field F , with ring of integers OF , we may define the class
group of F to be Pic(OF ), i.e., the isomorphism classes of invertible sheaves
on Spec(OF ). Iwasawa deepened this formal analogy between class groups
of number fields and Jacobians. He considered X−∞, the inverse limit under
norm maps of the minus parts under complex conjugation of the Sylow p-
sugroups of the class groups of F (µpn), where F is a totally real number field,
p a fixed (odd) prime, and n varying. Iwasawa viewed X−∞ ⊗Qp as a p-adic
vector space, which he proved to be finite dimensional, equipped with the
action of γ, a generator for the p-part of Gal(F (µp∞)/F ). He conjectured
that the characteristic polynomial for this action should be the same as a
certain p-adic L-function, at least when F = Q. This was later called the
main conjecture of Iwasawa theory which was proved by Mazur-Wiles (for
F = Q) and Wiles (for general totally real F ). Iwasawa’s conjecture can be
viewed as an analog of the theorem of Weil which relates zeta-functions of
curves over finite fields of characteristic p, to the characteristic polynomial
for the action of Frobenius on the `-adic Tate module of its Jacobian, for
` 6= p.

In this paper we ask for an Iwasawa theoretic analog of a standard fact in
the theory of generalised Jacobians, that holds over arbitrary base fields and
is easier than Weil’s result mentioned above. Namely, let X be a smooth
projective curve over a field K with Jacobian J . We have the isomorphism
Ext1(J,Gm) = Pic0(J) = J . Let P,Q ∈ X(K) be an ordered pair of dis-
tinct points, and consider the generalised Jacobian JP,Q, the Jacobian of the
singular curve X ′ obtained from X by identifying P with Q. Thus X ′ is a
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2 CHANDRASHEKHAR KHARE AND J-P. WINTENBERGER

curve over K with nodal singularity. We have an exact sequence

0→ Gm → JP,Q → J → 0.

The standard fact alluded to earlier is that the class of JP,Q in Ext1(J,Gm)
is given by the class of the degree 0 divisor (P )−(Q). We make a reciprocity
conjecture, see Conjecture ??, that asks for an analogous formula in Iwasawa
theory. To formulate this conjecture, we consider ramification at auxiliary
primes in Iwasawa modules (see §??), define analogs of degree 0 divisors
supported on Frobenius elements in certain Galois groups (see §??), and use
a well-known pairing of Iwasawa (see §??). We prove an implication of the
reciprocity conjecture (see Theorem ?? and Corollary ??). The proof of the
reciprocity conjecture has eluded us.

If the field K above is a finite field, then the extension class (P )− (Q) is
of finite order. Inspired by Iwasawa’s analogy, we conjecture in our situation
too that the extension classes in the reciprocity conjecture are of finite order.
This leads to a splitting conjecture, see Conjecture ??, that we show in
Corollary ?? to be equivalent to the following standard conjecture:

Conjecture 1.1. (Leopoldt) The cyclotomic Zp-extension F∞/F is the unique
Zp-extension of a totally real number field F .

We denote by δF,p, the integer such that the Zp-rank of the maximal
abelian p-extension of F unramified outside p is 1 + δF,p. The conjecture
asserts that it is 0; δF,p is also called the Leopoldt defect (for F and p).

Our original motivation for this work was to search for a criterion for
Leopoldt’s conjecture that could be approached using Wiles’ proof of the
main conjecture [?] which draws on Hida’s theory of Λ-adic Hilbert modular
forms. This search led to Conjecture ??. As Conjecture ?? is about odd
extensions of F∞, it might offer some access to methods that use Hilbert
modular forms.

1.1. Notation. We fix a prime number p throughout. Except in paragraph
??, we make the assumption that p is odd. We let F be a totally real
number field. We operate within a fixed algebraic closure F of F . We have
the cyclotomic Γ(= Zp)-extension of F that we denote by F∞. We denote
by γ a chosen topological generator of Γ, and by χ the p-adic cyclotomic
character. The field F∞ is contained in F∞ = F (µp∞), whose real subfield
we denote by F∞; F∞ is contained in F∞. The degree [F∞ : F∞] divides
p− 1 and [F∞ : F∞] = 2. We denote by Fn and Fn the extension F (µpn+t)
and its real subfield respectively. Here t is the largest integer so that F (µp)
contains the µpt roots of unity. Hence [Fn : F (µp)] = [Fn : F ] = pn.
For convenience we will assume throughout the paper that F∞ = F∞, i.e.,
[F (µp) : F ] = 2. For a finite place q of a number field F we denote by N(q)
its norm, the order of the residue field at q. For a finite set of finite places
Q of F , by the Q-units of F , denoted by EQ, we mean elements of F ∗ which
are units at all finite places outside Q.
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For an abelian groupM , we denote by M̂ its prop-p completion lim←−nM/Mpn .

We say that an abelian extension L of F∞ is odd (or its Galois group is
odd) if L is Galois over F and the complex conjugation of Gal(F∞/F ) acts
on Gal(L/F∞) by inversion.

By the Zp-rank of an Zp-module M , called the essential rank by Iwasawa,
we mean the dimension of M ⊗ Qp as a vector space over Qp. For a Λ =
Zp[[T ]] = Zp[[Γ]]-module M , and an integer n, we denote by M(n) the
Λ-module with same underlying module M , and the Λ-action specified by
γ.m = χ(γ)nγm. We say that (possibly infinite) Galois extensions L,L′ of a
field K are almost linearly disjoint if the degree [L∩L′ : K] is finite. Given
a Galois extension L/K of algebraic (possibly infinite) extensions of Q, we
may talk about places of K and conjugacy class of decomposition groups,
inertia groups at these places. If L/K has abelian Galois group we say that
L/K is almost totally ramified at a set of places of K if the inertia groups
at these places generate a subgroup of finite index of Gal(L/K).

1.2. Acknowledgements. We would like to thank Gebhard Böckle, John Coates,
Najmuddin Fakhruddin, David Gieseker, Ralph Greenberg, Benedict Gross,
Haruzo Hida, Tony Scholl, Chris Skinner, Kevin Ventullo for helpful con-
versations. The first author thanks the Département de Mathematiques of
the Université de Strasbourg for its support during a visit in the summer of
2009 when some of the work reported on in this paper was done.

Part of the writing of this work was done during the authors’ stay at
the Institut Henri Poincare - Centre Emile Borel and IAS, Princeton. The
authors thank these institutions for hospitality and support.

2. Some Kummer theory

In this section, we state some results on Kummer theory and Zp-extensions.
They are basic to the work of this paper. See also lemma 2.2. of [?].

Let p be any prime number for this section, allowing p = 2.

2.1. General fields. Let F be any field of characteristic different from p.
Recall that F∞ is the cyclotomic extension F (µp∞). Let L be an extension
of F∞. We say that L is a Kummer Zp-extension of F∞ if L/F is Galois and
it is such that Gal(L/F∞) ' Zp is isomorphic to Zp(1) as a Gal(F∞/F )-

module. We let F̂ ∗ be the p-adic completion of the multiplicative groupe
of F i.e. the projective limit lim←−nF

∗/(F ∗)p
n
, the transition maps being

induced by the identity.
We have the Kummer isomorphisms KF,n : F ∗/(F ∗)p

n → H1(GF , µpn).

Taking the projective limits for n, we get an isomorphism KF : F̂ ∗ →
H1(GF ,Zp(1)), where the H1 are continuous H1, the topology of Zp(1)
being the p-adic one ([?]).

If x̄ = (x̄n)n∈N is an element of F̂ ∗, we note Fx̄ the extension of F∞ which

is the union of the Kummer extensions F (µpn , x
1/pn

n ), where xn ∈ F ∗ maps
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to x̄n in F ∗/(F ∗)p
n
. It is also the extension of F∞ corresponding to the fixed

field of the kernel of the homomorphism arising from the image of KF (x̄)
under the map H1(GF ,Zp(1)) → Hom(GF∞ ,Zp)(1)0, where the Hom are
continuous homomorphisms and 0 means fixed by Gal(F∞/F ).

For a subgroup T of F̂ ∗, by F (µp∞ , T
1

p∞ ) we mean the compositum of all
extensions of F obtained by adjoining, for all n ∈ N, all pn th roots of (lifts

to F ∗ of) the image of T in F ∗/(F ∗)p
n

: it is the union of the fields Fx̄ for

x ∈ T . If T is a subgroup of F ∗ we still denote F (µp∞ , T
1

p∞ ) the extension

defined by the image of T in F̂ ∗.

Proposition 2.1. The Kummer Zp-extensions of F∞ are exactly the fields

Fx̄, for x̄ ∈ F̂ ∗ non-torsion. The torsion of F̂ ∗ is the group µp∞(F ) of roots
of unity of order a power of p if this group is finite, and is trivial if F = F∞.

Proof. Let x̄ ∈ F̂ ∗ be such that x̄p
a

= 1. Write x̄ = (x̄n)n with xn ∈ F ∗. For

every n, there exists yn ∈ F ∗ such that xp
a

n = yp
n

n . For n ≥ a, it follows that

εn−a := xny
−pn−a

n is a pa root of unity. We have (x̄n) = (ε̄n). If µp∞(F ) is
finite, it follows that there exists an ε ∈ µp∞(F ) such that the ε̄n for n ∈ N
are the image of ε. If µp∞(F ) is infinite, it is p-divisible, and it follows

that the torsion of F̂ ∗ is trivial. This proves the part of the proposition

concerning the torsion of F̂ ∗.
If µp∞(F ) is infinite, the proposition follows from the fact that the Kum-

mer map KF is bijective. Let us suppose that µp∞(F ) is finite.

Lemma 2.2. The cohomology groups H1(Gal(F∞/F ), µpn(F )) and H2(Gal(F∞/F ), µpn(F ))
are killed by a power pa of p independent of n.

Let us prove the proposition granted the lemma. As the projective system
Zp(1) = lim←−nµpn(F ) satisfies the Mittag-Leffler property, and the functor

projective limit is left exact, Hochschild-Serre exact sequences for coefficients
µpn(F ) give the following exact sequence:

(0)→ H1(Gal(F∞/F ),Zp(1))→ H1(GF ,Zp(1))→ H1(GF∞ ,Zp(1)),

and the H1 with coefficients in Zp(1) are the projective limit of the H1

with coefficients in µpn(F ) (use cor. 2.7.6. of chap. 2 paragraph 7 of
[?]). The lemma implies that H1(Gal(F∞/F ),Zp(1)) is torsion. It then
follows from the above exact sequence, the fact that H1(GF∞ ,Zp(1)) =
Hom(GF∞ ,Zp(1)) has no torsion, and the bijectivity of the Kummer map

KF , that the kernel of the map F̂ ∗ → Hom(GF∞ ,Zp(1)) is the torsion sub-

group of F̂ ∗. It follows that if x̄ is not torsion, the extension Fx̄ is a Zp
Kummer extension of F∞.

Conversely, let L be a Kummer Zp-extension of F∞. Let f be a continuous
non zero morphism GF∞ → Zp(1) whose kernel corresponds to L. Let fn be

the morphisms GF∞ → µpn(F ) defined by f . As H2(Gal(F∞/F ), µpn(F ))
is killed by pa, pafn is the image of an element x̄n of F ∗/(F ∗)p

n
. As
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H1(Gal(F∞/F ), µpn(F )) is killed by pa, the x̄p
a

n define an element x̄′ in

the projective limit lim←−nF
∗/(F ∗)p

n
, hence of F̂ ∗. One has KF (x̄′) = p2af ,

hence L = Fx̄′ . This proves the proposition, granted the lemma.
Let us prove the lemma. Let F ′ be F (µp(F )) if p 6= 2 and F (µ4(F ))

if p = 2. By Hochschild-Serre spectral sequence , we reduce to the case
F = F ′. Note that if µp∞(F ) is infinite, the lemma is obvious as F∞ =
F . So we may suppose that Gal(F∞/F ) is isomorphic to Zp. Let γ a
generator of Gal(F∞/F ) and χp(γ) its image by the cyclotomic charac-
ter. The calculation of the cohomology of the procyclic group Zp gives

that H1(Gal(F∞/F ), µpn(F )) is isomorphic to (Z/pnZ)/(χp(σ) − 1) and

H2(Gal(F∞/F ), µpn(F )) is trivial (prop. 1.7.7 of chap. 1 paragraph 7 of
[?]). The lemma follows as χp(γ) 6= 1. �

Remarks. It follows from the proof of the proposition that F̂ ∗ injects in
H1(GF∞ ,Zp(1)). It implies the following. Let x̄i, i = 1, 2, be two non-

torsion elments of F̂ ∗. Then Fx̄1 = Fx̄2 if and only if there exist a1 and a2

in Zp, non-zero, such that x̄a11 = x̄a22 .
The proof of the proposition implies that if T is a finitely generated sub-

group of F ∗, the Galois group of FT = F (µp∞ , T
1

p∞ ) over F∞ = F (µp∞) is
a finitely generated Zp-module of the same Zp-rank as the closure of T in

F̂ ∗.

2.2. Number fields. We suppose now that F is a finite extension of Q. If
q is a prime of F , we denote by Fq the completion of F at q. We denote by
vq the valuation of Fq normalized by vq(F

∗
q ) = Z. We still denote by vq the

map F̂ ∗q → Zp induced by vq. We denote by locq the morphism F̂ ∗ → F̂ ∗q
induced by the inclusion of F in Fq.

Proposition 2.3. Let x̄ ∈ F̂ ∗ be non-torsion. Then, the Kummer extension
Fx̄/F∞ is unramified at primes above q if and only if locq(x̄) is torsion.

Proof. Let us note E = Fq and Eur the maximal unramified extension of E.
The proposition follows from proposition ?? and the fact that the kernel of

Ê∗ → Ê∗ur is torsion. For this fact, let ω be a uniformizer of E. If q is not

above p, we have Ê∗ ' ωZpµp∞(E) and Êur∗ ' ωZp . If q is above p, we have

Ê∗ ' ωZpU+
E and Ê∗ur ' ωZpU+

Êur
, where U+ are units that ≡ 1 mod.ω and

Êur is the completion of Eur. The map U+
F → U+

Êur
, is injective as U+

Eur
is

separated for the p-adic topology. �

Remark. The proof of the proposition shows that if Fx̄/F is unramified
at q, vq(x̄) = 0, the converse being true if q is not above p.

We now let Q be a finite set of primes of F . We denote by EQ the
Q-units i.e. the elements x ∈ F ∗ such that vq(x) = 0 for q /∈ Q. The

group EQ is finitely generated. We write ÊQ its p-adic completion. As
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if a power of x ∈ F ∗ is a Q-unit, then x is a Q-unit, the natural maps

EQ/E
pn

Q → F ∗/(F ∗)p
n

are injective, hence also the map ÊQ → F̂ ∗. We

identify ÊQ to a subgroup of F̂ ∗.

Proposition 2.4. a) An element x̄ ∈ F̂ ∗ belongs to ÊQ if and only if
vq(x̄) = 0 for q /∈ Q.

b) If x̄ is non-torsion, the Kummer Zp-extension Fx̄/F∞ is unramified

outside Q only if x̄ ∈ ÊQ. If the primes of F above p are in Q, the converse
is true.

Proof. The second part of the proposition follows from the first one, the
preceding proposition and the remark after the proposition ??.

Let us prove the first part. The “only if” part is clear so let us prove the
“if” part.

Let pa be a power of p that kills the p-primary part of the class group of
the ring OQ of Q integers (elements x ∈ F such that vq(x) ≥ 0 for q /∈ Q).

Let x = (x̄n) be in F̂ ∗ such that vq(x) = 0 if q /∈ Q. Let xn ∈ F ∗ be a lift
x̄n. Let I(xn) be the rank one projective OQ-module generated by xn. As
vq(xn) is divisibleby pn for q /∈ Q, there is rank one projective OQ-module

In such that I(xn) = Ip
n

n . The rank one module Ip
a

n is free. Let yn ∈ OQ
be a generator. We have I(xn) = I(yn)p

n−a
, hence there is εn a unit in OQ

such that xn = yp
n−a

n εn. We see that xn and εn have the same image in

F ∗/(F ∗)p
n−a

. It follows that the εn define an element ε of ÊQ with image x

in F̂ ∗. The proposition is proved. �

We will need the following lemma:

Lemma 2.5. Let T a finitely generated subgroup of F ∗, and let Q be a finite

set of finite places of F . Let FT = F (µp∞ , T
1

p∞ ) be the compositum of the
extensions Ft for t ∈ T . Then the Zp-rank of Gal(FT /F∞) equals the rank of
T . Furthermore, the Zp-rank of the subgroup generated by the inertia groups
above Q in Gal(FT /F∞) is the same as the Zp-rank of the closure of (the

diagonal image of) T in Πv∈QF̂ ∗v .

Proof. The first part of the lemma follows from the remark at the end of
the last paragraph. It follows from Dirichlet’s theorem on finiteness of the

rank of units that the rank of the closure of T in F̂ ∗ equals the rank of T .
Let us prove the second part. For v ∈ Q, let v′ be a prime of F∞ above

v and let Iv′ be the inertia subgroup of Gal(FT /F∞) at v′. As the action of
Gal(F∞/F ) on Gal(FT /F∞) is by the cyclotomic character χp, one easily
sees that the subgroup Iv′ does not depend of v′ and we call it Iv. We have
the following commutative diagram:

T → Hom(Gal(FT /F∞),Zp(1))
↓ ↓∏

v∈Q F̂
∗
v →

∏
v∈Q Hom(Iv,Zp(1)).
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The lemma follows from the fact that the horizontal arrows have torsion
kernels by propositions ?? and ??.

�

3. Elements of Iwasawa theory

Let L∞ be the maximal abelian p-extension of F∞ that is unramified
everywhere. We set X∞ = Gal(L∞/F∞). It decomposes as X∞ = X+

∞⊕X−∞
under the action of complex conjugation which corresponds to L∞ being
the compositum of two linearly disjoint extensions L+

∞ and L−∞. The Galois
group X∞ (respectively X+

∞,X−∞) is the inverse limit of the p-parts of the
class groups, denoted by An, of Fn (resp., + and − parts, A+

n and A−n )
(n ≥ 0) under the norm maps. It is conjectured by Greenberg that X+

∞ is a
finite group. We have the theorem of Iwasawa that under the natural Galois
action of Λ = Zp[[T ]], X∞ is a finitely generated torsion Λ-module.

Let M∞ be the maximal abelian p-extension of F∞ that is unramified
outside p. We set Y∞ = Gal(M∞/F∞). Again by a theorem of Iwasawa, Y∞
is a finitely generated torsion Λ-module. (It is a consequence of the “weak
Leopoldt conjecture” that he proved.) We denote by Y ′∞ = Gal(M∞/F ),
which sits inside an exact sequence

(1) 0→ Y∞ → Y ′∞ → Zp → 0.

We call the last map the degree map. Thus Y∞ is the Zp-submodule of Y ′∞
of elements of degree 0.

Recall a couple of facts:

• Y∞,X−∞ have no non-zero finite Λ-submodules (cf. Propositions
15.36 and 13.28 of [?]). This may also be deduced from 11.4.4 of
[?] which states that X−∞ is the adjoint of a finitely generated torsion
Λ-module, and th. 11.4.8 of [?].
• Y∞⊗Qp and X−∞⊗Qp are finite dimensional Qp-vector spaces. The
µ-invariant of F∞ is not known to be zero, and thus we do not know
if Y∞ is a finitely generated Zp-module.

3.1. Iwasawa involution and adjoints. For a Λ-module X we denote by X0

the module whose underlying module is the same but where the Λ action,
denoted by . is defined by f(T ).x = f((1 + T )−1 − 1)x with the action
on the right the original action. (This corresponds to defining the new Γ-
action to be γ.x = γ−1x). It gives an involution on the category of Iwasawa
modules. For a discrete Λ-module M , we endow HomZp(M,Qp/Zp) with

the Λ-action defined by γf(m) = f(γ−1m). More generally for Γ-modules,
either discrete or compact, M,N , we endow HomZp(M,N) the group of
continuous Zp-linear homomorphisms with the Λ-module structure given by
γf(m) = γf(γ−1m).

Lemma 3.1. For a Λ-module M , such that M ⊗Qp is a finite dimensional
vector space, we have a non-canonical Λ⊗Qp-isomorphism HomZp(M,Qp) =

M0 ⊗Qp.
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Proof. This follows from the elementary fact that over a field K, a matrix
∈Mn(K) and its transpose are conjugate under the action of GLn(K). �

We denote by α(X) the adjoint of X see §1 of article 52 of [?], or §15.5
of [?] and α̃(X) = α(X)0.

Lemma 3.2. (Iwasawa) We have that X and α(X) are pseudo-isomorphic.

3.2. Iwasawa pairing. The following basic theorem of Iwasawa and Coates
is important for us.

Theorem 3.3. (i) We have a perfect, Γ-equivariant, Zp-linear pairing

Y∞ ×A−∞ → Qp/Zp(1),

which we call the Iwasawa pairing, equivalently

Y∞ = HomZp(A−∞,Qp/Zp(1)),

which we call the Iwasawa isomorphism.
(ii) We have that α̃(X−∞) is pseudo-isomorphic to Hom(A−∞,Qp/Zp).
(iii) We have a natural Γ-equivariant, Qp-linear perfect pairing

(Y∞ ⊗Qp)× (X−∞ ⊗Qp)→ Qp(1),

or equivalently

Y∞ ⊗Qp = HomQp(X−∞ ⊗Qp,Qp(1)).

Proof. (i) This is in [?] and [?] (see also Proposition 13.32 of [?] or Theorem
11.4.3 of [?]).

(ii) Proposition 15.34 of [?] and its proof, or Theorem 11.1.8 of [?].
(iii) Theorem 11.1.8 of [?] gives an isomorphism of Y∞ = HomZp(A−∞,Qp/Zp(1))

to α(X ′∞)(1) where X ′∞ is a sub Λ-module of X∞ of finite index. The nat-
ural map α(X∞)(1) → α(X ′∞)(1) is an isomorphism after ⊗Qp. It is the
same for the natural map α(X∞/{p∞ − torsion})(1) → α(X∞)(1). As for
X finitely generated torsion Λ-module without p-torsion, α(X) is isomor-
phic to HomZp(X,Zp) (corollary 1.5.7. of [?]), we get an isomorphism of
α(X∞/p∗ − tors)(1) to HomZp(X∞,Zp(1)).

�

4. Degree 0 divisors on Frobenius elements

We observe that (γ − 1)Y∞ is the closed commutator subgroup of Y ′∞.
Thus as Y ′∞ = Gal(M∞/F ) and M∞ is ramified only at the places above
p, for each finite place q of F away from p we can consider the Frobenius
element Frobq of Y ′∞/(γ − 1)Y∞. As no prime q of F is fully decomposed in
the cyclotomic extension F∞/F , we see that deg(Frobq) 6= 0 for every q.

We have an exact sequence of Zp-modules deduced from (??) that will
also be of importance to us:

(2) 0→ Y∞/(γ − 1)Y∞ → Y ′∞/(γ − 1)Y∞ → Zp → 0.
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We consider a finite set of finite places Q = {q} of F away from p, and thus
unramified in M∞/F .

Definition 4.1. Let M ′Q be the Zp-submodule of Y ′∞/(γ − 1)Y∞ generated

by the Frobq’s for q ∈ Q, and MQ the Zp-submodule of M ′Q that is mapped

to 0 under the map Y ′∞/(γ − 1)Y∞ → Zp of (??). We call MQ the (degree
0) Frobenius module (attached to Q).

Lemma 4.2. MQ is the Zp-span of the degree 0, Zp-submodules Mq,q′ gen-
erated by Frobq,Frobq′ for q, q′ ∈ Q, where in fact we may hold a q′ ∈ Q
fixed as long as the subgroup generated by the image of Frobq′ in Γ contains
that generated by Frobq for all q ∈ Q .

Proof. Note that the image of Frobq in Γ of (at least) one element q ∈ Q
generates the subgroup of Γ generated by the Frobq’s for q ∈ Q. We choose
one such and call it q′. Thus if we have an element α =

∑
q∈Q aqFrobq ∈

MQ, aq ∈ Zp, of degree 0, we can rewrite α as
∑

q∈Q\{q′}(aqFrobq−aq,q′Frobq′)

for some aq,q′ ∈ Zp such that the degree of aqFrobq − aq,q′Frobq′ is 0. �

We will need to consider in the applications more particular choices of
the set Q.

Proposition 4.3. There is a finite set of primes Q = {q} of F away from p
such that Frobq’s for q ∈ Q topologically generate Y ′∞/(γ − 1)Y∞. For such
Q, MQ equals Y∞/(γ− 1)Y∞. We may further impose that the image of the
Frobq in Γ is a generator for all q ∈ Q.

Proof. It is enough to choose a finite set of q’s so that the Frobq’s generate
the (finite extension given by the) maximal abelian (p, · · · , p) extension of
F that is unramified outside p, and such that q is inert in F∞/F . By
Burnside’s theorem such Frobq’s generate Y ′∞/(γ − 1)Y∞. The Zp-module
MQ of degree 0 is by our choice all of Y∞/(γ−1)Y∞, the degree 0 submodule
of Y ′∞/(γ − 1)Y∞. �

In the next lemma, we consider compact groups M with a continuous
action of Γ that comes from a structure of Λ-module of finite type on M ,
and the topology on M is the mΛ-topology, where mΛ is the maximal ideal
of Λ. Equivalently, M is the projective limit of a projective system of finite
p-groups Mn with compatible actions of Γ/pnΓ and M/mΛM is finite.

Definition 4.4. For such a continuous Γ-module M , we define H1(Γ,M)
by M/(γ − 1)M for γ any topological generator of Γ. It is independent of
choice of the generator γ.

Remark. H1(Γ,M) is also the continuous H1.
The following lemma follows from snake lemma :

Lemma 4.5. From an exact sequence of Γ-modules

0→M1 →M →M2 → 0
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we get an exact sequence of abelian groups

0→MΓ
1 →MΓ →MΓ

2 → H1(Γ,M1).

For M as above, we denote by H1(Γ,M⊗Qp) the continuous cohomology
where M⊗Qp carries the group topology that induces on M/{p∞−torsion}
its topology. By compactness of Λ and flatness of Qp over Zp, it is isomorphic
to H1(Γ,M)⊗Qp.

The following proposition is well known :

Proposition 4.6. Leopoldt’s conjecture is equivalent to the finiteness of
H1(Γ, Y∞) = Y∞/(γ − 1)Y∞. Leopoldt’s conjecture is also equivalent to the
vanishing of H1(Γ, Y∞ ⊗Qp).

Proof. Observe that Y ′∞/(γ − 1)Y∞ is the Galois group of the maximal
abelian p extension of F unramified outside p. �

Thus, via Proposition ??, Leopoldt’s conjecture is equivalent to the finite-
ness of MQ’s of the proposition.

For later use we note:

Corollary 4.7. The MQ’s for Q = {q1, q2}’s that are inert in F∞/F span
the finitely generated Zp-module Y∞/(γ − 1)Y∞.

5. Reciprocity and splitting conjectures

We now consider a finite set of primes Q of F away from p and such that
the image of Frobq for q ∈ Q generates Γ. We let m be the cardinality of Q.
For each n consider the Sylow p-subgroup of the minus part of the ray class
group of conductor Qn, the ideal generated by the product of the primes
above {q} of Fn. We denote this by A−n,Q.

Definition 5.1. Let K−n,Q denote the subgroup of the Sylow p-subgroup of

(OFn/Qn)∗ on which complex conjugation ∈ Gal(Fn/F ) acts by −1, modulo
the image of the p-power roots of unity µpn+t of Fn.

Lemma 5.2. The group K−n,Q is isomorphic as a Gal(Fn/F )-module to

(µpn+t)m modulo the diagonally embedded µpn+t.

Proof. If qn is a prime of Fn above q, the p-Sylow of the multiplicative group
(kqn)∗ of the residue field of qn is isomorphic by the reduction map modulo
qn to µpn+t . This follows from the fact that the primes in Q are inert in
F∞/F and that µpn+t is the Sylow p-subgroup of the torsion subgroup of
F∗n. To conclude, note that these isomorphisms are compatible with the
action of Gal(Fn/F ) if q is inert in F , and with the action of Gal(Fn/F) if
q split in F . �

Lemma 5.3. We have the exact sequence for each n ≥ 0:

(3) 0→ K−n,Q → A
−
n,Q → A

−
n → 0
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We have the following commutative diagram where the vertical maps are
induced by the inclusion maps Fn ↪→ Fn+1:

0 // K−n,Q

��

// A−n,Q

��

// A−n

��

// 0

0 // K−n+1,Q
// A−n+1,Q

// A−n+1
// 0

We also have the following commutative diagram where the vertical maps
are induced by the norm maps Fn+1 → Fn:

0 // K−n+1,Q

��

// A−n+1,Q

��

// A−n+1

��

// 0

0 // K−n,Q // A−n,Q // A−n // 0

All the vertical maps in the first diagram are injective, and the first vertical
map of the second commutative diagram is surjective.

Proof. The horizontal exact sequences follow from:
–If ClFn and ClFn,Qn denote the ray class group of conductor 1 and Qn

of Fn respectively then we have an exact sequence

0→ (OFn/Qn)∗/ĒFn → ClFn,Qn → ClFn → 0

with ĒFn the image of the global units O∗Fn
.

– For ε ∈ O∗Fn
, ε/ε̄ is a root of unity of Fn.

– p > 2.
The commutativity of the diagrams is obvious.
Proposition 13.26 of [?] proves the injectivity of A−n → A−n+1. The injec-

tivity of the map K−n,Q → K
−
n+1,Q follows by inspection. This in turn yields

the injectivity of A−n,Q → A
−
n+1,Q.

Note that the norm map K−n+1,Q → K−n,Q is surjective as norm maps
induce surjective maps between multiplicative groups of finite extensions of
finite fields.

�

Corollary 5.4. Consider the exact sequence (??).

(1) Taking direct limits of the exact sequence (??) as n varies, we get
an exact sequence of discrete Λ-modules:

(4) 0→ Qp/Zp(1)m−1 → A−∞,Q → A
−
∞ → 0.

Note further that as the first non-zero term of the sequence (??)
is divisible, we have a Zp-linear section f : A−∞ → A−∞,Q.

(2) Taking inverse limits of terms of the exact sequence (??) with respect
to norm maps we get the exact sequence of compact Γ-modules:

(5) 0→ lim←K−n,Q ' Zp(1)m−1 → lim←A−n,Q → lim←A−n → 0.



12 CHANDRASHEKHAR KHARE AND J-P. WINTENBERGER

which by class field theory is isomorphic to the exact sequence

0→ IQ → Gal(L−∞,Q/F∞)→ Gal(L−∞/F∞)→ 0,

with L−∞,Q the maximal abelian odd p-extension of F∞ that is unram-

ified outside the places above Q, and IQ the subgroup of Gal(L−∞,Q/F∞)
generated by the inertia groups at the primes above Q of F∞. We
set X−∞,Q = Gal(L−∞,Q/F∞) thus obtaining the exact sequence of Λ-
modules

(6) 0→ Zp(1)m−1 → X−∞,Q → X
−
∞ → 0.

Proof. The exactness in part (2) follows using Mittag-Leffler criterion Prop.
2.7.3 of [?]. �

5.1. Cohomology classes: We consider m = 2 (recall that m is the number of
elements of Q). The exact sequence (??), gives rise to a cyclic Zp-submodule
of H1(Γ,Hom(A−∞,Qp/Zp(1))) = H1(Γ, Y∞) the latter isomorphism by Iwa-
sawa duality. We define a cocycle corresponding to the above extension
cγ ∈ Hom(A−∞,Qp/Zp(1)) by cγ = γf − f where f is a Zp-linear section
A−∞ → A−∞,Q which we know exists by Cor. ??. The class of the cocycle

[cγ ] does not depend on the choice of the section f . We can also obtain [cγ ]
as follows. From the exact sequence (??), taking HomZp(A−∞,−), using the
divisibility of Qp/Zp(1) we deduce the exact sequence

0→ Hom(A−∞,Qp/Zp(1))→ Hom(A−∞,A−∞,Q)→ Hom(A−∞,A−∞)→ 0,

and then taking Γ-invariants, Lemma ?? gives

0→ Hom(A−∞,Qp/Zp(1))Γ → Hom(A−∞,A−∞,Q)Γ → Hom(A−∞,A−∞)Γ →δ

H1(Γ,Hom(A−∞,Qp/Zp(1))).

The cohomology class [cγ ] is δ(id). We see that (??) splits as a sequence of
Λ-modules if and only if [cγ ] = 0.

The Zp-module generated by [cγ ] in the cohomology group, we call NQ ⊂
H1(Γ,HomZp(A−∞,Qp/Zp(1))) = H1(Γ, Y∞), the latter being induced by the
Iwasawa isomorphism.

5.2. The reciprocity conjecture.

Conjecture 5.5. (Reciprocity conjecture) Under the Iwasawa isomorphism,
NQ is mapped isomorphically to MQ (both of them are pro-p cyclic groups
as m = 2).

We view this as a reciprocity conjecture as we have the isomorphism
(induced by the Iwasawa isomorphism)

H1(Γ, Y∞) = H1(Γ,Hom(A−∞,Qp/Zp(1))),
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natural Zp-lines MQ and NQ on both sides associated to pairs of primes
(q1, q2) such that the image of their Frobenius generates Γ. The conjecture
predicts that these lines are exchanged under the Iwasawa isomorphism.
Remark: We may make a Qp version of this conjecture. Namely we con-
jecture that the Qp-span of the class in H1(Γ, Y∞ ⊗ Qp) arising from the
extension (??) made using the pairing Y∞ × X−∞ → Qp(1), is the same as
MQ ⊗ Qp. (If we assume the Leopoldt conjecture this is simply asserting
that 0 = 0!)

5.3. Heuristic justification for the conjecture vis a vis generalised Jacobians.
We develop an analogy mentioned in the introduction a little further by
considering a direct analog of Conjecture ?? for function fields. Assume that
X is a smooth projective defined over a finite field k, P,Q ∈ X(k), P 6= Q,
with J, JP,Q as before. Let ` be a prime different from the characteristic of

k. Consider the exact sequences of Γ = Ẑ = Gal(k/k) modules

0→ Z`(1)→ Ta`(JP,Q)→ Ta`(J)→ 0,

which splits as abelian groups. It is easily seen that it splits up to isogeny
as Γ-modules using the Weil bounds on eigenvalues of Frobenius. The cor-
responding fact for number fields is unknown, and in analogy with function
fields we conjecture it below.

Using the Weil pairing we get isomorphisms

H1(Γ,HomZ`
(J(k)[`∞],Q`(1)/Z`(1))) ' H1(Γ,HomZ`

(Ta`(J),Z`(1)))

' H1(Γ,Ta`(J)) = J(k)[`∞].

Then just as we did in a similar situation earlier we can form a cyclic sub-
group of H1(Γ,Ta`(J)) = J(k)[`∞] which arises from the extension classes
arising from the exact sequence above. As N. Fakhruddin explained to us,
in this case one can indentify this extension class with the projection of
(P )− (Q) to the `-part of J(k), in perfect analogy with our Conjecture ??.
One may allow K to be any field in the above considerations, by using the

Kummer map Ĵ(K)→ H1(GK ,Ta`(J)) where Ĵ(K) is the pro-` completion
of J(K), instead of the isomorphism H1(Γ,Ta`(J)) = J(k)[`∞] when K is
a finite field.

5.4. Splitting conjectures.

5.4.1. Splitting of ramification away from p. We make the following splitting
conjecture motivated by analogy with generalised Jacobians over finite fields.

Conjecture 5.6. The exact sequence (??) ⊗Qp, i.e.,

0→ Qp(1)m−1 → X−∞,Q ⊗Qp → X−∞ ⊗Qp → 0,

of Γ-modules splits.
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5.4.2. Splitting of ramification at p. We make an analogous conjecture for
splitting of a certain (cyclotomic) part of the ramification at p. We recall
the following results of Iwasawa.

Lemma 5.7. (Iwasawa) Let ℘′1, · · · , ℘′s′ be the places above p of F∞, and
℘1, · · · , ℘s the places of F above p. Denote by F∞,i = ∪Fn,i the corre-
sponding extension of the completion of F for i = 1, · · · , s′. Let G℘j be
decomposition subgroups of G = Gal(F∞/F ) at the places ℘j of F .

Let Ui := lim←U
1
Fn,i

, where U1
Fn,i

are the principal units in the completion

Fn,i and the inverse limit is with respect to the norm maps. Let U = Πs′
i=1Ui,

which is a Zp[[G]]-module. Then we have an isomorphism of Zp[[G]]-modules

U ' (
⊕s

j=1 IndGG℘j
Zp(1))

⊕
Zp[[G]][F :Q].

Proof. This follows easily from Theorem 11.2.4 of [?].
�

Corollary 5.8. Recall that s is the number of places above p of F . Let N∞
be the maximal odd abelian p-extension N∞ of F∞ such that Γ acts by the
p-adic cyclotomic character χ on the inertia subgroups above p, and let N ′∞
be the maximal odd abelian p-extension N ′∞ of F∞ that is unramified outside
p, and such that Γ acts by the p-adic cyclotomic character χ on the inertia
subgroups above p.

– 1. The Zp-rank of the group Ip generated by inertia groups at the places
above p of F∞ in the Galois group Gal(N∞/F∞) is [F : Q] + s.

– 2. The Zp-rank of the group I ′p generated by the inertia groups at the
places above p of F∞, in the Galois group Gal(N ′∞/F∞) is [F : Q] + s− 1.

Proof. By class field theory, for every n, the image of inertia above p in the
Galois group of the maximal abelian odd p-extension of Fn is isomorphic to
U1
Fn

. The first part of the corollary then follows from the last lemma and
the fact that the image of inertia above p in Gal(N∞/F∞) is isomorphic
theory to U/(γ′ − χ(γ′)) where γ′ is a generator of Gal(F∞/F ). Similarly
the image of inertia above p in Gal(N ′∞/F∞) is isomorphic by class field

theory to U/(γ
′−χ(γ′))
Zp(1) . �

We call X−∞,p = Gal(N ′∞/F∞). We have an exact sequence of Λ-modules
:

(7) 0→ I ′p ⊗Qp → X−∞,p ⊗Qp → X−∞ ⊗Qp → 0,

We know by Cor. ?? that I ′p ⊗ Qp is isomorphic to Qp(1)[F :Q]+s−1 as Λ-
module.

We make in the situation another splitting conjecture.

Conjecture 5.9. The exact sequence (??) of Λ-modules splits.
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6. Relation to Leopoldt’s conjecure

We show that the splitting conjectures are equivalent to Leopoldt’s con-
jecture.

We begin with some generalities. We denote by F ∗p the group Πv|pF
∗
v , UF

the group Πv|pUFv with UFv the units of Fv. We denote by U1
F the group

Πv|pU
1
Fv

of 1-units.

Definition 6.1. – We say that a Λ map M → N of compact finitely gener-
ated torsion Λ-modules is an isogeny if the kernel and cokernel are torsion
abelian groups (necessarily of bounded exponent and finitely generated as
Λ-modules).

– If

0→ K →M → N → 0

is a sequence of compact finitely generated torsion Λ-modules, we say that it
splits up to isogeny if the sequence of Λ-modules

0→ K ⊗Qp →M ⊗Qp → N ⊗Qp → 0

splits.

We have a lemma that is a direct consequence of the definition.

Lemma 6.2. Consider an exact sequence

0→ K →M → N → 0

of compact finitely generated torsion Λ-modules. It splits up to isogeny if
and only if M has a Λ-submodule N ′ with the natural map N ′ → N an
isogeny.

The following lemma is easily proved.

Lemma 6.3. Conjecture ??, in the case Q = {q1, q2} with qi inert in F∞/F ,
is true if and only if there is a Zp-extension LQ of F∞ that is Galois over
F , ramified at q1, q2 and unramified everywhere else, and on which complex
conjugation acts by −1.

Note that Γ acts on Gal(LQ/F∞) by the p-adic cyclotomic character as
the qi are inert in F∞/F , and thus LQ is a Zp-Kummer extension of F∞,
with LQ/F∞ unramified outside the primes above Q, and ramified at all
the primes in Q. Leopoldt’s conjecture predicts that there is a unique such
extension.

Proof. Only the “only if” direction needs proof. Assume that the conjecture
is true. Then by the previous lemma we get X ⊂ X−∞,Q a Λ-submodule with

X → X−∞ having kernel and cokernel killed by a power of p. We define LQ as

the subfield of L−∞,Q which under the Galois correspondence is such that it

is Galois over F∞, and its Galois group over F∞ is the quotient of X−∞,Q/X
by its p-power torsion. �
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Theorem 6.4. Consider Q = {q1, q2} a tuple of primes of F , inert in
F∞/F . Then the exact sequence in Conjecture ?? splits if and only if the
degree 0 Frobenius submodule MQ of Y∞/(γ − 1)Y∞ is a finite group.

Proof. Consider the 1-units U1
F of Πv|pF

∗
v , and the subgroup E1

F the closure

of the global units E1
F that are 1 mod v for all v|p. We note the standard

exact sequence from class field theory:

(8) 0→ U1
F /E

1
F → Y ′∞/(γ − 1)Y∞ → C → 0,

where Y ′∞/(γ−1)Y∞ is the Galois group of the maximal abelian p-extension
of F unramified outside p, where C is the Sylow p-subgroup of the ideal
class group of F (cf. Chapter 13 of [?]).

By Lemma ?? we have to show that the existence of an LQ as in its

statement is equivalent to MQ being finite. Recall that F̂ ∗p is the product∏
v|p F̂

∗
v for v the primes of F above p and we have a natural localisation

map locp : F̂ ∗ → F̂ ∗p . By the results of §??, the existence of a Zp-Kummer
extension LQ of F , such that LQ/F∞ is ramified precisely at all the primes

above Q, is equivalent to the existence of an element α of ÊQ ⊂ F̂ ∗ such
that vt(α) 6= 0 for t = q1, q2, and locp(α) is torsion. By replacing α by a
power of α, we can suppose that locp(α) is trivial.

Suppose that the exact sequence of Conjecture 5.9. splits. Then we get

an α as above. Its image by the map ÊQ → U1
F /E

1
F → Y ′∞/(γ − 1)Y∞ is

Froba1q1 Froba2q2 for ai ∈ Zp. It is trivial as locp(α) is trivial. As vt(α) 6= 0
for t = q1, q2, we get that ai 6= 0 and this produces a non-trivial Zp-linear
relation between Frobq1 and Frobq2 , hence MQ is finite.

Conversely suppose that MQ is finite. Let, for i = 1, 2, αi be elements of
F ∗ which generates a power of the ideal qi. As MQ is finite, the images of α1

and α2 in U1
F /E

1
F are Zp-linearly independent. It follows that there exists

a1 and a2 non zero elements of Zp and α3 ∈ E1
F such that αa11 α

a2
2 α3 = 1 in

U1
F . Lifting α3 to ε ∈ Ê1

F , we get an element α := αa11 α
a2
2 ε ∈ F̂ ∗. It satisfies

the required properties : vqi(α) 6= 0 and locp(α) = 1. The theorem follows.
�

Corollary 6.5. Conjecture ?? is true for all tuples of primes Q = {q1, q2}
which are inert in F∞/F if and only if Leopoldt’s conjecture is true.

Proof. We need only prove that the truth of Conjecture ?? for tuples Q =
{q1, q2} inert in F∞/F implies Leopoldt’s conjecture. For this we note (cf.
Cor. ??) that the MQ’s span the finitely generated Zp-module Y∞/(γ−1)Y∞
for such Q. By the theorem, Conjecture ?? implies that MQ is of finite
order. �

Remark. The fact that Leopoldt’s conjecture implies the splitting of the
exact sequence of conjecture ?? also follows as then the Λ-modules Qp(1)m−1

and X−∞⊗Qp have characteristic polynomials which are prime to each other.
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Proposition 6.6. Conjecture ?? is equivalent to Leopoldt’s conjecture.

Proof. Consider E′F the group of p-units of F . By the unit theorem it has

Z-rank [F : Q] + s − 1. Let L = F∞(E′F
1/p∞) : it is the maximal abelian

p-extension of F∞ which is ramified only at primes above p and such that
the action of Γ on Gal(L/F∞) is via the p-adic cyclotomic character. By
the first part of lemma ??, the Zp-rank of Gal(L/F∞) equals the Z-rank of
E′F , i.e. [F : Q] + s− 1. By the second part of the lemma, the subgroup of
Gal(L/F∞) generated the inertia subgroups above p has Zp-rank (Zp-rank

of the submodule E1
F of U1

F )+s. One version of Leopoldt’s conjecture is that

(Zp-rank of the submodule E1
F of U1

F )= [F,Q]− 1. We see that Leopoldt’s
conjecture is equivalent to the assertion that L is almost totally ramified
over F∞.

If Leopoldt’s conjecture is true, the morphism Qp ⊗Zp I
′
p → Qp ⊗Zp

Gal(L/F∞) is surjective, hence bijective as the source and the target have
the same dimension. We see that X−∞,p → Gal(L/F∞) defines an up tho
isogeny splitting of (7).

Suppose that (7) splits up to isogeny. Let L′ be the extension of F∞
defined by this splitting. Then L′ is unramified outside p and acted via the
p-adic cyclotomic character by Γ as it is on I ′p. It follows that L′ ⊂ L. As
L′ is almost totally ramified and Gal(L′/F∞) has Zp rank [F : Q] + s− 1, it
follows that the rank of the subgroup of Gal(L/F∞) generated by the inertia
subgroups above p is [F : Q] + s− 1. One deduces that L is almost totally
ramified over F∞, hence Leopoldt’s conjecture is true.

�

7. Some evidence for the reciprocity conjecture

Using the Kummer theory of §??, when (??) splits after tensoring with
Qp as Λ-modules, we measure precisely its failure to split over Zp. This then
lends support to our reciprocity conjecture.

We define G to be the group Y ′∞/(γ − 1)Y∞. Hence the exact sequence
(??) becomes :

(9) 0→ U1
F /E

1
F → G→ C → 0,

We define the quotient G′ of G by the image in U1
F /E

1
F of the roots of unity,

denoted by µ, of p-power order of the product F ∗p of the multiplicative groups
of completions of F at primes above p. We consider as before Q = {q1, q2}
with q1 and q2 distinct primes not above p and inert in F∞/F . Recall that
≤∞ is the maximal abelian p-extension which is unramified everywhere.

Theorem 7.1. Assume that the order of the degree 0 Frobenius module MQ

is finite. It is equivalent to assuming that a Kummer Zp-extension LQ/F∞
exists with LQ/F∞ unramified at a place if and only if it does not lie above
a prime in Q (cf. Lemma ?? and Theorem ??). Then for any such LQ, the
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degree [LQ ∩ L−∞ : F∞] is divisible by the order mQ of the image of MQ in
G′. Furthermore there exists such an LQ with [LQ ∩ L−∞ : F∞] = mQ.

Note that if Leopoldt’s conjecture is true for F and p, then such an LQ
exists and is unique.

Proof. In the first part of the proof, let us fix LQ as in the statement of the
theorem and let us prove that [LQ ∩ L−∞ : F∞] is divisible by mQ.

By the Kummer theory in §??, one gets an α ∈ F̂ ∗, in fact even in the

p-adic completion ÊQ of the Q-units of F ∗, such that LQ = F (µp∞ , α
1

p∞ ).

We may assume that α /∈ (F̂ ∗)
p

equivalently not in (ÊQ)p.

Lemma 7.2. For each n, F (µp∞ , α
1
pn ) is cyclic of order pn over F∞. The

valuations vq1(α) and vq2(α) are non zero and generate the same ideal ideal
in Zp. If (pa) is this ideal, we have pa = [LQ ∩ L−∞ : F∞]

Proof. The first part of the lemma follows from H1(Gal(F∞/F ), µp) = 0.
This is a consequence of µp(F ) = 1.

Consider the map F̂ ∗ → Q̂∗ → Q̂∗p, where the first arrow is induced by
the norm and the second one by the localisation map locp. It sends α to

N(q1)vp1 (α)N(q2)vp2 (α). Its image in U1
Zp

is trivial as locp(α) is torsion. As

q1 and q2 are inert in F∞, the norms N(q1) and N(q2) have images in U1
Zp

such that that N(q1)−1 and N(q2)−1 topologically generate the same ideal
in Zp. The second part of the lemma follows.

The third part follows from the fact that Fn(α1/pa) is unramified at qi for
n+ t ≥ a if and only if pa divides vqi(α) and the first part of the lemma.

�

By the Kummer theory in §?? we deduce that α ∈ ÊQ of the first para-
graph of the proof has the properties:

– locp(α) is torsion, and hence the natural norm map ÊQ → Q̂∗p evaluates
α to 1.

– vt(α) = 0 for t /∈ Q
– vqi(α) 6= 0 and generate the same ideal say (m) in Zp.
– α /∈ (F̂ ∗)p

We note that the Zp-submodule MQ of G is generated by any element of
the form Froba1q1 Froba2q2 with ai ∈ Z∗p, such that its image in Gal(F∞/F ) is
trivial. An explicit generator is gotten by taking a1 = −log〈N(q1)〉〈N(q2)〉), a2 =

1 where by 〈N(qi)〉 we mean the projection of N(qi) to Γ in the decomposi-
tion Z∗p = Z/(p− 1)Z× Γ.

Consider the image of such an α in the Galois group G′ by the map

ÊQ → U1
F → G→ G′. On the one hand it is trivial as locp(α) is torsion. But

on the other hand, as locp(N(α)) = 1, it is also of the form (Froba1q1 Froba2q2 )m

with Frobqidenoting the Frobenius at qi in the abelian Galois group G′, and
with ai ∈ Z∗p. From this we deduce that mQ divides m. By Lemma ?? we
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deduce that the degree [LQ ∩ L−∞ : F∞] is divisible by the order mQ of the
image of MQ in G′. This finishes the first part of the proof.

The following lemma finishes the proof of the theorem.

Lemma 7.3. There is an element α ∈ F̂ ∗ such that
– locp(α) is torsion
– vt(α) = 0 for t /∈ Q
– (vq1(α)) = (vq2(α)) = (mQ) as ideals in Zp.
We note for later use that if MQ is trivial we get an element α ∈ F̂ ∗ such

that
– locp(α) = 1
– vt(α) = 0 for t /∈ Q
– (vq1(α)) = (vq2(α)) = Zp.

Consider Lα = F∞(α
1

p∞ ) with α as in the first part of the lemma. By
§?? we get that Lα is a Zp-Kummer extension such that Lα/F∞ is ramified
exactly at the primes above q1, q2. Furthermore by Lemma ??, [Lα ∩ L−∞ :
F∞] = mQ.

Thus we only need to prove the lemma. We recall the exact sequence (??)
from earlier:

0→ Y∞/(γ − 1)Y∞ → Y ′∞/(γ − 1)Y∞ → Zp → 0.

Recall that MQ is a submodule of Y∞/(γ − 1)Y∞. Consider a generator
FQ of MQ which we may write as Froba1q1 Froba2q2 with ai ∈ Zp. We note again
that ai ∈ Z∗p by the assumption that the primes in Q are inert in F∞/F .
Let n be the order of the prime to p part of the class group of F . Then we

may regard (qa11 qa22 )nmQ as a well-defined element α′ of ÊQ/ÊF as follows.

Choose m large enough so that qp
m

i has image in the class group ClF of F
of order prime to p. Choose bi ∈ Z so that ai is congruent to bi modulo pm:
write ai = bi+pmci with ci ∈ Zp. Note that (qb11 q

b2
2 )nmQ has trivial image in

the class group ClF , as (Froba1q1 Froba2q2 )mQ is trivial in G′, and thus gives rise

to a well-defined element β of EQ/EF whose image in ÊQ/ÊF we denote by
the same symbol. Here we are using the exact sequence (??). Furthermore

(qnp
mc1

1 qnp
mc2

2 )mQ gives rise to a well-defined element β′ of ÊQ/ÊF . Thus
taking product ββ′ we see that altogether (qa11 qa22 )nmQ gives rise to a well-

defined element α′ of ÊQ/ÊF independent of choice of m. Furthermore, the

natural map ÊQ/ÊF → U1
F /E

1
Fµ sends α′ to 1.

Choose α′′ ∈ ÊQ which projects to α′, and by choice maps to an element

of E1
Fµ under the natural map ÊQ → U1

F . Thus the image of α′′ in F ∗p /µ is

the image of an e′ for e′ ∈ E1
F . Let e be any inverse image of e′ under the

natural map ÊF → E1
F . We set α = α′′.e−1, and see that locp(α) is torsion,

α ∈ ÊQ, and (vqi(α)) = (mQ). The second part of the lemma follows by a
similar argument.

�
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We may verify one consequence of our reciprocity conjecture as (ii) of the
following corollary:

Corollary 7.4. (i) The exact sequence (??) of Λ-modules splits if and only
if mQ = 1.

(ii) For a tuple of primes Q = {q1, q2} inert in F∞/F , MQ trivial implies
that the exact sequence (??) of Λ-modules splits.

Proof. (i) The sequence (??) splits if and only if there is a Kummer Zp-
extension LQ as in the theorem with the property that LQ ∩ L−∞ is trivial.
This is equivalent by the theorem to mQ = 1.

(ii) By the lemma ?? in the proof above, under the assumption that MQ

is trivial we get an element α of ÊQ such that locp(α) = 1, and vqi(α) is a

unit for qi in Q. Then for any n, the extension of Fn given by Fn(α
1

pn+t )
is cyclic of degree pn+t, unramified outside the primes above Q, and has no
non-trivial unramified subextension. By class field theory this provides a
compatible sequence of splittings of the exact sequences (??), and thus a
splitting of (??).

�

Remark: We may also verify the converse of part (ii) of the corollary in
some situations, for instance when F∞/F has a unique prime above p and
is totally ramified at this prime.

8. Even extensions of Iwasawa modules

We state the theorem of Iwasawa proved in U4 of [?].

Theorem 8.1. (Iwasawa) Leopoldt’s conjecture is equivalent to the following
statement: For any set of finite places Q disjoint from Sp the map

H1(Sp ∪Q,Qp/Zp)→
∏
v∈Q

H1(Iv,Qp/Zp)Dv

is surjective.

Remark: Iwasawa stated his criterion as: Leopoldt’s conjecture, cf. Conjec-
ture ??, is true if and only for every prime q prime to p of F , the image
of inertia at the prime q in Gal(Fp,q/F ), with Fp,q the maximal abelian p-
extension of F unramified outside p, q, has order e(q), the p-part of the order
of the multiplicative group of the residue field at q, denoted by k∗q .

Now we transcribe the result of Iwasawa into an Iwasawa theoretic setting,
i.e., a statement over F∞. It stands in counterpoint to the situation in the
odd case.

Consider a finite set of primesQ away from p of F such that their norm is 1
modulo p. (if v ∈ Q is such that p does not divide N(q)−1, H1(Iv,Qp/Zp)Dv

is trivial). We consider the maximal abelian p-extension M∞(Q) of F∞ that
is unramified outside p and Q with Galois group Y∞,Q. We assume for
simplicity that Q contains only one place q
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Then we have an exact sequence of Γ or Λ-modules:

(10) 0→ KQ → Y∞,Q → Y∞ → 0

where the Iwasawa module KQ is simply given by Λ/((1 +T )p
b −upb) where

γ(ζpn) = ζupn and up
b−1 is divisible by the same power of p as N(q)−1. One

sees this as in [?] using Kummer theory, which also shows that the exact
sequence (??) splits up to isogeny.

Lemma 8.2. Leopoldt’s conjecture is true for F, p if and only if the exact
sequence (??) remains exact on going modulo T for each choice of q.

Proof. Note that the sequence (??) remains exact on going modulo T if and
only if the image of an inertia group above q in Gal(Fp,q/F ) is of order the
p-part of N(q) − 1, namely e(q). Then we are done by the equivalence of
Theorem ??. �

It is interesting to note that in the odd case the sequence (??) remains
exact on going modulo T , while its splitting up to isogeny (for all Q) is
equivalent to Leopoldt’s conjecture. In the even case, the exact sequence
(??) does split up to isogeny, as shown by Greeenberg in loc. cit. using
Kummer theory, but its remaining exact on going modulo T is equivalent
to Leopoldt’s conjecture. Iwasawa’s criterion, and the one in this paper, are
dual in a sense that gains precision using considerations in the next section.

9. Appendix

P. Colmez showed us a nice argument using L-functions which, assuming
F/Q is a totally real finite Galois extension of Q, proves that if Leopoldt’s
conjecture is false then ζF,p(s) has to vanish at s = 1 where ζF,p(s) is the
Deligne-Ribet p-adic L-function of F . We note that by [?] and [?], the
Leopoldt conjecture is true if and only if ζF,p(s) has a pole at s = 1.

We give Colmez’s argument. The p-adic zeta function ζF,p(s) has a fac-
torisation into certain p-adic Artin L-functions (cf. [?])

ζF,p(s) = ΠχLQ,p(s, χ)χ(1),

with χ running through the irreducible p-adic representations of Gal(F/Q).
Note that for χ a non-trivial representation, LF,p(s, χ) is entire by the p-adic
form of the Artin conjecture which is proved in [?] to follow from the main
conjecture. The factor for χ the trivial representation has a simple pole
at s = 1, and for other non-trivial abelian characters χ, the corresponding
factor does not vanish at s = 1, by the known case of the Leopoldt conjecture
for abelian extensions of Q (cf. [?]). Thus if the Leopoldt conjecture is false
for F, p, for a representation χ of dimension at least 2, LQ,p(1, χ) vanishes
and this by the factorisation formula forces ζF,p(1) to vanish.

We now give a simple algebraic argument, to deduce from the known cases
of the Leopoldt conjecture for abelian extensions of Q, that the Leopoldt
defect δF,p can never be 1 for F/Q a totally real finite Galois extension. It is
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an apparent strengthening of Colmez’s result as it could conceivably happen
that δF,p = 1 while ζF,p(1) = 0 (“non-semisimplicty of Leopoldt zeros”). It
will be nice to remove the assumption that F/Q is Galois; this seems to
require other methods.

Proposition 9.1. For F/Q a totally real finite Galois extension and a prime
p, the Leopoldt defect δF,p is never 1.

Proof. Suppose that δF,p = 1. Let us call N the compositum of the Zp-
extensions of F. Let L = Gal(N/F ) : L is a free Zp-module of rank 2. The
inclusion F∞ ⊂ N gives a surjective morphism L→ Γ. Let H1 be the Galois
group of F/Q. We see that the action of H1 on Qp ⊗ L factors though
the character η giving the action of H1 on Qp ⊗ (L/Γ). Hence the action
of H1 on L factors through η. Let H be the kernel of η and Fη the field
corresponding to H. The next lemma implies the existence of an extension
N ′ of Fη of Galois group a free Zp-module of rank 2 such that N = N ′F .
This is impossible as Fη is abelian over Q and we know Leopoldt conjecture
for Fη and p.

Lemma 9.2. Let 1 → L → G → H → 1 be an exact sequence of profinite
groups with L a free Zp-module of finite rank d. We suppose that H is finite
and acts trivially on L. Then, there exists a free Zp-module L′ of rank d
and a surjective morphism G→ L′.

Let o ∈ H2(H,L) be the cohomology class defined by the extension. Let
us prove first that the conclusion of the lemma is equivalent to that there
exists an inclusion L ↪→ L′ of Zp-modules of rank d such that the image o′

of o in H2(H,L′) is trivial.
Indeed, if there exists L ↪→ L′ such that o′ is trivial, the pushout exact

sequence 1→ L′ → G′ → H → 1 has a trivialisation G′ → L′. If we compose
it with the morphism G→ G′ we get a morphism G→ L′ that coincide on
L with the inclusion L ↪→ L′.

Conversely, if we have a surjection G→ L′, its restriction to L has a finite
index image as H is finite. This implies that this restriction is injective.
The morphism G → L′ extends to the pushout G′ as a trivialisation of the
pushout exact sequence.

Let us prove the lemma when H is a p-group. Let us prove it in this
case by induction on the cardinality of H. If H is trivial, there is nothing
to prove. Otherwise, let H ′ ⊂ H be a central subgroup of order p. Let G′′

be the inverse image of H ′ in G. As the action of H on L is trivial and H ′

is cyclic, the group G′′ is abelian. If G′′ has no torsion, we can apply the
induction hypothesis to the exact sequence 1 → G′′ → G → H/H ′ → 1 to
get a surjective morphism of G in (Zp)d. If G′′ has torsion T , T is cyclic
of order p and G → H induces an isomorphism of T to H ′. We apply the
induction hypothesis to the exact sequence 1 → L → G/T → H/H ′ → 1.
We get a surjective morphism of G/T to (Zp)d hence a surjective morphism

of G to (Zp)d.
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Let us prove the lemma in the general case. Let Hp a p-Sylow of H.
Let L ↪→ L′ be such that the image of the restriction of o′ to Hp vanishes.
The morphism H2(H,L′) → H2(Hp, L

′) is injective. This follows from the
injectivity of the maps H2(H,L′/pnL′) → H2(Hp, L

′/pnL′) and Mittag-
Leffler. We see that o′ is trivial and this proves the lemma.

�
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Universitaire de France, 7, rue René Descartes, 67084, Strasbourg Cedex,
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