Claire Capdevielle

Colette Johnen

Petr Kuznetsov

Alessia Milani

Complexit é du consensus anonyme en l'absence de concurrence †

Keywords: complexité en temps, complexité en espace, borne inferieur, consensus, interval contention, solo-fast

Le consensus est l'une des abstractions fondamentales du distribué. En permettant à un ensemble de processus de se mettre d'accord sur l'une des valeurs qu'ils proposent, le consensus peut être utilisé pour implémenter, de manière cohérente et tolérante aux fautes, n'importe quel service distribué. Dans ce papier nous étudions la complexité du consensus anonyme en l'absence de concurrence : comptant le nombre d'emplacements mémoire et d'écritures lors d'une opération qui ne rencontre aucune concurrence. En supposant que les opérations privilégient les écritures et les lectures "simples" et ont recours à des primitives plus coûteuses, tel le CAS, seulement lorsque la concurrence est détectée, nous obtenons, pour ce type d'implémentation appelé "interval-solo-fast", une borne atteignable pour la complexité en espace.

Introduction

Consensus is one of the central distributed abstractions. Indeed, by enabling a collection of processes to agree on one of the values they propose, consensus can be used to implement any generic replicated service in a consistent and fault-tolerant way. However it is known that consensus cannot be solved in an asynchronous read-write shared memory system in a deterministic and fault-tolerant way [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF][START_REF] Loui | Memory requirements for agreement among unreliable asynchronous processes[END_REF]. The difficulty stems from handling contended executions. One way to circumvent this impossibility is to only guarantee progress (using reads and writes) in executions meeting certain conditions, e.g., in the absence of contention. Alternatively, a process is guaranteed to decide in the wait-free manner, but stronger (and more expensive) synchronization primitives, such as compare-and-swap, can be applied in the presence of contention. We are interested in consensus algorithms in which a propose operation is allowed to apply primitives other than reads and writes on the base objects only in the presence of interval contention, i.e., when another propose operation is concurrently active. These algorithms are called interval-solo-fast.

Ideally, interval-solo-fast algorithms should have an optimized behavior in uncontended executions. Therefore, it appears natural to explore the uncontended complexity of consensus algorithms : how many memory operations (reads and writes) need to be performed and how many distinct memory locations need to be accessed in the absence of interval contention ?

In general, interval-solo-fast consensus can be solved with constant uncontended complexity [START_REF] Luchangco | On the uncontended complexity of consensus[END_REF]. To make things interesting, we focus here on anonymous consensus algorithms, i.e., algorithms not using process identifiers and, thus, programming all processes identically. Besides stimulating intellectual curiosity, the study of anonymous shared-memory algorithms is motivated by practical reasons discussed in [START_REF] Guerraoui | Anonymous and fault-tolerant shared-memory computing[END_REF]. Our results. We consider a standard asynchronous shared-memory model in which n > 1 processes communicate by applying atomic (or linearizable [START_REF] Herlihy | Linearizability : A correctness condition for concurrent objects[END_REF]) primitive operations on shared variables, called base objects. We assume that every base object maintains a state and exports a subset of the Read, Write and Compare-And-Swap (CAS) primitives. The primitive Read(R) returns the state of R, and Write(R, v) sets the state of R to v. The primitive CAS(R, e, v) checks if the state of R is e and, if so, sets the state of R to v and returns † Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been carried out in the frame of the Investments for the future Programme IdEx Bordeaux-CPU (ANR-10-IDEX-03-02). The third author was supported by the ANR project DISCMAT, under grant agreement N ANR-14-CE35-0010-01.

Input-oblivious

Not input-oblivious

Ω(√ n) Ω(min(√ n, log m log log m)) O(√ n) if √ n ≤ log m log log m , O(√ n) if √ n ≥ log m log log m , O(log m log log m) [14, 1]
TABLE 1: Space and solo-write complexity for anonymous interval-solo-fast consensus, where n is the number of processes and m is the number of input values that can be proposed true ; otherwise, the state remains unchanged and false is returned. A register is a base object that exports only the Read and Write primitives.

On the lower-bound side, we show that any anonymous interval-solo-fast consensus algorithm exhibits non-trivial uncontended complexity that depends on n, the number of processes, and m, where m is the size of the set V of input values that can be proposed. More precisely some propose operation running solo, i.e., without any other process invoking propose, must write to Ω(min(√ n, log m/ log log m)) distinct memory locations. This metrics, which we call solo-write complexity, is upper-bounded by the step complexity of the algorithm, i.e., the worst-case number of all base-object primitives applied by an individual operation. In the special case of input-oblivious algorithms, where the sequence of memory locations written in a solo execution does not depend on the input value, we derive a stronger lower bound of Ω(√ n) on solo-write complexity. Formally, Theorem 1 Any n-process m-valued interval-solo-fast anonymous consensus algorithm must have space complexity Ω(min(√ n, log m/ log log m)) and solo-write complexity Ω(min(√ n, log m/ log log m)). Moreover, if the algorithm is input-oblivious, then the bounds become Ω(√ n).

Our proof only requires the algorithm to ensure that operations terminate in solo executions, so the lower bounds also hold for abortable [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF][START_REF] Hadzilacos | On deterministic abortable objects[END_REF] and obstruction-free [START_REF] Herlihy | Obstruction-free synchronization : Double-ended queues as an example[END_REF] consensus implementations.

On the positive side, we show that our lower bound is tight. Our matching consensus algorithms are based on our novel value-splitter abstraction, extending the classical splitter mechanism [START_REF] Lamport | A fast mutual exclusion algorithm[END_REF][START_REF] Moir | Wait-free algorithms for fast, long-lived renaming[END_REF][START_REF] Buhrman | Long-lived renaming made fast[END_REF], interesting in its own right. This new abstraction and our algorithms are explained in section 2.

Overall, our results, summarized in Table 1, imply the first nontrivial tight lower bound on the uncontended space complexity for consensus known so far, complementing a recent result on the space complexity of solo-terminating anonymous consensus [START_REF] Gelashvili | On the Optimal Space Complexity of Consensus for Anonymous Processes[END_REF]. ‡ Our results also show that there is an inherent gap between anonymous and non-anonymous consensus algorithms : recall that non-anonymous consensus has constant uncontended complexity [START_REF] Luchangco | On the uncontended complexity of consensus[END_REF]. Related work. The idea of optimizing concurrent algorithms for uncontended executions was suggested by Lamport in his "fast" mutual exclusion algorithm [START_REF] Lamport | A fast mutual exclusion algorithm[END_REF].

Attiya et al. [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF] showed that any step-solo-fast (where operations only apply reads and writes in the absence of interleaving steps) consensus either use O(√ n) space or incur O(√ n) memory stalls per operation. No step-solo-fast algorithm matching this lower bound is known so far : existing algorithms typically expose O(n) space complexity. Recently Gelashvili [START_REF] Gelashvili | On the Optimal Space Complexity of Consensus for Anonymous Processes[END_REF](for the anonymous case), and Zhu [START_REF] Zhu | A tight space bound for consensus[END_REF] (for the non-anonymous case) have shown that any solo-terminating (and, as a result, obstruction-free) read-write consensus protocol must use Ω(n) registers. These bounds are tight [START_REF] Guerraoui | Anonymous and fault-tolerant shared-memory computing[END_REF]. These lower bounds focus on step contention and do not extend to uncontended executions, where no interval contention is encountered.

Aspnes and Ellen [START_REF] Aspnes | Tight bounds for adopt-commit objects[END_REF] showed that any anonymous consensus protocol has to execute Ω(min(n, log m/ log log m)) steps in solo executions. Our consensus algorithms have also asympotically optimal step complexity.

Our value-splitter abstraction is inspired by the splitter mechanism in [START_REF] Moir | Wait-free algorithms for fast, long-lived renaming[END_REF][START_REF] Buhrman | Long-lived renaming made fast[END_REF], originally suggested by Lamport [START_REF] Lamport | A fast mutual exclusion algorithm[END_REF]. The novel input-oblivious value-splitter implementation we present is inspired by the obstructionfree leader election algorithm proposed by Giakkoupis et al. [START_REF] Giakkoupis | An o(sqrt n) space bound for obstruction-free leader election[END_REF].

Optimal interval-solo-fast consensus

Our interval-solo-fast consensus algorithm is similar to the splitter-based consensus algorithm in [START_REF] Luchangco | On the uncontended complexity of consensus[END_REF], except that we replace the splitter object with the value-splitter object. ‡. Informally, a solo-terminating algorithm ensures that every process running solo from any configuration eventually terminates.

Definition 2 A value-splitter supports a single operation, split() taking a parameter in V and returning a boolean response, and ensures that, for all v, v ∈ V , and in every execution :

1. VS-Agreement. If invocations split(v) and split(v) return true, then v = v .

2. VS-Solo execution. If a split(v) operation completes before any other split(v) operation is invoked, then it returns true.

In the following we first describe our consensus algorithm (the pseudocode can be found in [START_REF] Capdevielle | On the Uncontended Complexity of Anonymous Consensus[END_REF]), then we illustrate two anonymous interval-solo-fast implementations of a value-splitter, which provide a matching upper bound to our lower bound. Due to space limitation refer to [START_REF] Capdevielle | On the Uncontended Complexity of Anonymous Consensus[END_REF] for the proofs.

Consensus using value-splitter. The value decided by the consensus is written in a variable D, initially ⊥ / ∈ V . The first steps by a process p are to check if D stores a non-⊥ value and if yes, return this value. Otherwise, the process accesses the value-splitter object V S. If it obtains true from its invocation of V S.split(v), p writes its input value v in a register F. Then, it reads a register Z to check if some other process has detected contention and if the value of Z is false (no contention) p decides its own value. Before returning the decided value, process p writes it in D. The write primitives on F and D, with a read of Z in between are intended to ensure that either process p detects that some other process is around and resorts to applying a CAS primitive on D, or the contending process adopts the input value of p.

If p obtains false from the value-splitter, it sets Z to true (contention is detected). Recall that this may happen if more than one process accessed the value-splitter, regardless of their input values. Then, p reads register F and, if F stores a non-⊥ value, adopts the value as its current proposal. Finally, it applies the CAS primitive on D with its proposal and decides the value read in D.

Our consensus algorithm incurs only a constant overhead with respect to the implementation of the valuesplitter it uses and is interval-solo-fast assuming that the underlying value-splitter is interval-solo-fast. Non-input-oblivious value-splitter. A trivial adaptation of the weak conflict-detector proposed in [START_REF] Aspnes | Tight bounds for adopt-commit objects[END_REF] implements an interval-solo-fast value-splitter that exhibits O(log m/ log log m) complexity (Algorithm 2). The algorithm uses an array R of k registers, where k! = m. Each input value v of a split operation determines a unique permutation π v of the registers in R that is used as the order in which the processes access the registers. In its i-th access, a process executing split(v) first reads register R[π v (i)] ; if ⊥ is read, the process Procedure: split(v)

R éf érences