
Complexité du consensus anonyme en
l’absence de concurrence. †

Claire Capdevielle1, Colette Johnen1, Petr Kuznetsov2 et Alessia Milani1

1Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
2Télécom ParisTech, Paris, France

Le consensus est l’une des abstractions fondamentales du distribué. En permettant à un ensemble de processus de se
mettre d’accord sur l’une des valeurs qu’ils proposent, le consensus peut être utilisé pour implémenter, de manière
cohérente et tolérante aux fautes, n’importe quel service distribué. Dans ce papier nous étudions la complexité du
consensus anonyme en l’absence de concurrence : comptant le nombre d’emplacements mémoire et d’écritures lors
d’une opération qui ne rencontre aucune concurrence. En supposant que les opérations privilégient les écritures et les
lectures “simples” et ont recours à des primitives plus coûteuses, tel le CAS, seulement lorsque la concurrence est
détectée, nous obtenons, pour ce type d’implémentation appelé “interval-solo-fast”, une borne atteignable pour la com-
plexité en espace.

Mots-clefs : complexité en temps, complexité en espace, borne inferieur, consensus, interval contention, solo-fast

1 Introduction
Consensus is one of the central distributed abstractions. Indeed, by enabling a collection of processes

to agree on one of the values they propose, consensus can be used to implement any generic replicated
service in a consistent and fault-tolerant way. However it is known that consensus cannot be solved in
an asynchronous read-write shared memory system in a deterministic and fault-tolerant way [5, 13]. The
difficulty stems from handling contended executions. One way to circumvent this impossibility is to only
guarantee progress (using reads and writes) in executions meeting certain conditions, e.g., in the absence
of contention. Alternatively, a process is guaranteed to decide in the wait-free manner, but stronger (and
more expensive) synchronization primitives, such as compare-and-swap, can be applied in the presence of
contention. We are interested in consensus algorithms in which a propose operation is allowed to apply
primitives other than reads and writes on the base objects only in the presence of interval contention, i.e.,
when another propose operation is concurrently active. These algorithms are called interval-solo-fast.

Ideally, interval-solo-fast algorithms should have an optimized behavior in uncontended executions. The-
refore, it appears natural to explore the uncontended complexity of consensus algorithms : how many me-
mory operations (reads and writes) need to be performed and how many distinct memory locations need to
be accessed in the absence of interval contention ?

In general, interval-solo-fast consensus can be solved with constant uncontended complexity [14]. To
make things interesting, we focus here on anonymous consensus algorithms, i.e., algorithms not using pro-
cess identifiers and, thus, programming all processes identically. Besides stimulating intellectual curiosity,
the study of anonymous shared-memory algorithms is motivated by practical reasons discussed in [8].
Our results. We consider a standard asynchronous shared-memory model in which n > 1 processes commu-
nicate by applying atomic (or linearizable [11]) primitive operations on shared variables, called base objects.
We assume that every base object maintains a state and exports a subset of the Read, Write and Compare-
And-Swap (CAS) primitives. The primitive Read(R) returns the state of R, and Write(R,v) sets the state of
R to v. The primitive CAS(R,e,v) checks if the state of R is e and, if so, sets the state of R to v and returns

†Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been carried out in the frame of
the Investments for the future Programme IdEx Bordeaux-CPU (ANR-10-IDEX-03-02). The third author was supported by the ANR
project DISCMAT, under grant agreement N ANR-14-CE35-0010-01.

Claire Capdevielle, Colette Johnen, Petr Kuznetsov et Alessia Milani

Input-oblivious Not input-oblivious

Ω(
√

n) Ω(min(
√

n, logm
log logm))

O(
√

n) if
√

n≤ logm
log logm , O(

√
n) if

√
n≥ logm

log logm , O(logm
log logm) [14, 1]

TABLE 1: Space and solo-write complexity for anonymous interval-solo-fast consensus, where n is the number of
processes and m is the number of input values that can be proposed

true ; otherwise, the state remains unchanged and false is returned. A register is a base object that exports
only the Read and Write primitives.

On the lower-bound side, we show that any anonymous interval-solo-fast consensus algorithm exhibits
non-trivial uncontended complexity that depends on n, the number of processes, and m, where m is the size
of the set V of input values that can be proposed. More precisely some propose operation running solo, i.e.,
without any other process invoking propose, must write to Ω(min(

√
n, logm/ log logm)) distinct memory

locations. This metrics, which we call solo-write complexity, is upper-bounded by the step complexity of
the algorithm, i.e., the worst-case number of all base-object primitives applied by an individual operation.
In the special case of input-oblivious algorithms, where the sequence of memory locations written in a solo
execution does not depend on the input value, we derive a stronger lower bound of Ω(

√
n) on solo-write

complexity. Formally,

Theorem 1 Any n-process m-valued interval-solo-fast anonymous consensus algorithm must have space
complexity Ω(min(

√
n, logm/ log logm)) and solo-write complexity Ω(min(

√
n, logm/ log logm)). Moreo-

ver, if the algorithm is input-oblivious, then the bounds become Ω(
√

n).

Our proof only requires the algorithm to ensure that operations terminate in solo executions, so the lower
bounds also hold for abortable [2, 9] and obstruction-free [10] consensus implementations.

On the positive side, we show that our lower bound is tight. Our matching consensus algorithms are based
on our novel value-splitter abstraction, extending the classical splitter mechanism [12, 15, 3], interesting in
its own right. This new abstraction and our algorithms are explained in section 2.

Overall, our results, summarized in Table 1, imply the first nontrivial tight lower bound on the uncontended
space complexity for consensus known so far, complementing a recent result on the space complexity of
solo-terminating anonymous consensus [6]. ‡ Our results also show that there is an inherent gap between
anonymous and non-anonymous consensus algorithms : recall that non-anonymous consensus has constant
uncontended complexity [14].
Related work. The idea of optimizing concurrent algorithms for uncontended executions was suggested by
Lamport in his ”fast” mutual exclusion algorithm [12].

Attiya et al. [2] showed that any step-solo-fast (where operations only apply reads and writes in the
absence of interleaving steps) consensus either use O(

√
n) space or incur O(

√
n) memory stalls per opera-

tion. No step-solo-fast algorithm matching this lower bound is known so far : existing algorithms typically
expose O(n) space complexity. Recently Gelashvili [6](for the anonymous case), and Zhu [16] (for the
non-anonymous case) have shown that any solo-terminating (and, as a result, obstruction-free) read-write
consensus protocol must use Ω(n) registers. These bounds are tight [8]. These lower bounds focus on step
contention and do not extend to uncontended executions, where no interval contention is encountered.

Aspnes and Ellen [1] showed that any anonymous consensus protocol has to execute Ω(min(n, logm/ log logm))
steps in solo executions. Our consensus algorithms have also asympotically optimal step complexity.

Our value-splitter abstraction is inspired by the splitter mechanism in [15, 3], originally suggested by
Lamport [12]. The novel input-oblivious value-splitter implementation we present is inspired by the obstruction-
free leader election algorithm proposed by Giakkoupis et al. [7].

2 Optimal interval-solo-fast consensus
Our interval-solo-fast consensus algorithm is similar to the splitter-based consensus algorithm in [14],

except that we replace the splitter object with the value-splitter object.

‡. Informally, a solo-terminating algorithm ensures that every process running solo from any configuration eventually terminates.

Definition 2 A value-splitter supports a single operation, split() taking a parameter in V and returning a
boolean response, and ensures that, for all v,v′ ∈V , and in every execution :

1. VS-Agreement. If invocations split(v) and split(v′) return true, then v = v′.

2. VS-Solo execution. If a split(v) operation completes before any other split(v′) operation is invoked,
then it returns true.

In the following we first describe our consensus algorithm (the pseudocode can be found in [4]), then we
illustrate two anonymous interval-solo-fast implementations of a value-splitter, which provide a matching
upper bound to our lower bound. Due to space limitation refer to [4] for the proofs.

Consensus using value-splitter. The value decided by the consensus is written in a variable D, initially
⊥ /∈ V . The first steps by a process p are to check if D stores a non-⊥ value and if yes, return this va-
lue. Otherwise, the process accesses the value-splitter object V S. If it obtains true from its invocation of
V S.split(v), p writes its input value v in a register F . Then, it reads a register Z to check if some other pro-
cess has detected contention and if the value of Z is false (no contention) p decides its own value. Before
returning the decided value, process p writes it in D. The write primitives on F and D, with a read of Z in
between are intended to ensure that either process p detects that some other process is around and resorts to
applying a CAS primitive on D, or the contending process adopts the input value of p.

If p obtains false from the value-splitter, it sets Z to true (contention is detected). Recall that this may
happen if more than one process accessed the value-splitter, regardless of their input values. Then, p reads
register F and, if F stores a non-⊥ value, adopts the value as its current proposal. Finally, it applies the CAS
primitive on D with its proposal and decides the value read in D.

Our consensus algorithm incurs only a constant overhead with respect to the implementation of the value-
splitter it uses and is interval-solo-fast assuming that the underlying value-splitter is interval-solo-fast.

Input-oblivious value-splitter. Algorithm 1 describes our anonymous and input-oblivious implementa-
tion of a value-splitter. The algorithm only uses an array R of k registers where k2− 3k + 6 > 2n and is,
trivially, interval-solo-fast. A process p performing operation split(v) tries to write its input value to regis-
ters R[0], . . . ,R[k−1]. Each time, before writing to R[i], p reads i+1 registers to verify that R[0], . . . ,R[i−1]
store v and R[i] stores the initial value ⊥. If this is not the case, contention is detected and the operation
returns false. After the last write to R[k−1], the operation returns true.

Procedure: split(v)
1 Lastwritten :=−1 ;
2 while (Lastwritten≤ k−1) do
3 for i := 0 ; i≤ Lastwritten ; i++ do
4 if Read(R[i]) 6= v then return f alse
5 end
6 if Read(R[Lastwritten+1]) 6=⊥ then return f alse;
7 Lastwritten++;
8 Write(R[Lastwritten],v) ;
9 end

10 return true;

Shared variables:
Array of registers R[0 . . .k−1] with k2−3k+6 > 2n.
Initially ⊥

Algorithm 1: Anonymous and input-oblivious value-splitter

Theorem 3 Algorithm 1 is an interval-solo-fast anonymous input-oblivious implementation of a value-
splitter with solo-write and space complexities in O(

√
n).

Non-input-oblivious value-splitter. A trivial adaptation of the weak conflict-detector propo-
sed in [1] implements an interval-solo-fast value-splitter that exhibits O(logm/ log logm) complexity (Algo-
rithm 2).

The algorithm uses an array R of k registers, where k! = m. Each input value v of a split operation deter-
mines a unique permutation πv of the registers in R that is used as the order in which the processes access the
registers. In its i-th access, a process executing split(v) first reads register R[πv(i)] ; if ⊥ is read, the process

Claire Capdevielle, Colette Johnen, Petr Kuznetsov et Alessia Milani

Procedure: split(v)
1 for i := 1..k do
2 t := Read(R[πv(i)]);
3 if t =⊥ then Write(R[πv(i)],v);
4 if t 6= v then return f alse;
5 end
6 return true;

Shared variables:
Registers R[1..k], initially ⊥

Algorithm 2: Non-input-oblivious value-splitter

writes v to it ; If a value v′ 6= v is read, it returns false (contention is detected). If the process succeeds in
writing v in all registers prescribed by πv, it returns true.

Theorem 4 Algorithm 2 implements anonymous interval-solo-fast m-valued value-splitter with solo-write
and space complexity in O(logm/ log logm).

Références
[1] J. Aspnes and F. Ellen. Tight bounds for adopt-commit objects. Theory of Computing Systems, 55(3) :451–474,

2014.

[2] H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-free implementations. J.
ACM, 56(4), 2009.

[3] H. Buhrman, J. A. Garay, J.-H. Hoepman, and M. Moir. Long-lived renaming made fast. In Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’95, pages 194–203, 1995.

[4] C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani. On the Uncontended Complexity of Anonymous Consen-
sus. In OPODIS 2015, Rennes, France, Dec. 2015.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.
J. ACM, 32(2) :374–382, Apr. 1985.

[6] R. Gelashvili. On the Optimal Space Complexity of Consensus for Anonymous Processes. In DISC, Oct. 2015.

[7] G. Giakkoupis, M. Helmi, L. Higham, and P. Woelfel. An o(sqrt n) space bound for obstruction-free leader election.
In Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013.
Proceedings, pages 46–60, 2013.

[8] R. Guerraoui and E. Ruppert. Anonymous and fault-tolerant shared-memory computing. Distributed Computing,
20(3) :165–177, 2007.

[9] V. Hadzilacos and S. Toueg. On deterministic abortable objects. In Proceedings of the 2013 ACM Symposium on
Principles of Distributed Computing, PODC ’13, pages 4–12, New York, NY, USA, 2013. ACM.

[10] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization : Double-ended queues as an example.
In ICDCS, pages 522–529, 2003.

[11] M. Herlihy and J. M. Wing. Linearizability : A correctness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3) :463–492, 1990.

[12] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1) :1–11, Jan. 1987.

[13] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous processes.
Advances in Computing Research, 4 :163–183, 1987.

[14] V. Luchangco, M. Moir, and N. Shavit. On the uncontended complexity of consensus. In F. Fich, editor, Distributed
Computing, volume 2848 of Lecture Notes in Computer Science, pages 45–59. Springer Berlin Heidelberg, 2003.

[15] M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci. Comput. Program., 25(1) :1–
39, Oct. 1995.

[16] L. Zhu. A tight space bound for consensus. 2016. http://www.cs.toronto.edu/˜lezhu/.

