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Abstract

Under fog-of-war conditions, skilled human operators of complex man-
machine cockpit weapon systems have repeatedly been unable to avoid
fratricide incidents and violations of the laws of land warfare. In spite
of these continuing catastrophic failures, autonomous weapons have been
proposed that entirely remove the man from the command loop. For-
mal analysis, via an extension of the Data Rate Theorem, shows that
fully autonomous weapons under constraints on incoming environmental
information will be subject to sudden, highly punctuated collapse to a
dysfunctional ground state in which ‘all possible targets are enemies’.
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1 Introduction

Autonomous real-time systems are widely proposed for both civilian and mil-
itary enterprises. Since ‘94% of fatal traffic accidents are driver-related’, the
mass media argument goes, ‘eliminating the driver from the loop will decrease
traffic deaths by more than nine tenths’. This is eerily reminiscent of the fa-
mous beuracratic old saw that ‘if a woman can produce a baby in nine months,
nine women should be able to do it in a month’. In similar fashion, a rush-to-
judgement argues that autonomous weapon systems can me made that adhere
to the laws of land warfare, in spite of the infamous Patriot missile fratricides
during the first Gulf war, and the manifold ongoing drone war catastrophies in
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which cognitive man-machine ‘cockpit’ systems were unable to operate success-
fully under fog-of-war conditions (Hawley 2006; Scharre 2016; Columbia 2012;
Stanford/NYU 2012).

Here, we will extend the Data Rate Theorem that links control and infor-
mation theories (Nair et al. 2007) to real time cognitive systems under fog-of-
war constraints, highlighting the inevitability of their highly punctuated catas-
trophic failure, rather than ‘graceful degradation under stress’.

2 The Data Rate Theorem

The Data Rate Theorem (Nair et al. 2007) establishes the minimum rate at
which externally-supplied control information must be provided for an inher-
ently unstable system to maintain stability. Assuming a linear expansion near
a nonequilibrium steady state, an n-dimensional vector of system parameters at
time ¢, x;, determines the state at time ¢ + 1 according to the model of figure
1, so that

Ti41 = Al’t + But + Wt (1)

where A, B are fixed n X n matrices, u; is the vector of control information, and
W; is an n-dimensional vector of white noise. The Data Rate Theorem (DRT)
under such conditions states that the minimum control information rate H is
determined by the relation

H > log[| det[A™]] (2)

where, for m < n, A™ is the subcomponent of A having eigenvalues > 1. The
right hand side of Eq.(2) is interpreted as the rate at which the system generates
‘topological information’. The proof of Eq.(2) is not particularly straightforward
(Nair et al. 2007), and, via expansion of a simple correspondence reduction, we
will use the Rate Distortion Theorem (RDT) to derive a more general version
of the DRT.

3 An RDT approach to the DRT

The RDT asks how much a signal can be compressed and have average distor-
tion, according to an appropriate measure, less than some predetermined limit
D. The result is an expression for the minimum necessary channel capacity, R,
as a function of D. See Cover and Thomas (2006) for details of the proof, and
the Mathematical Appendix for a statement of the theorem. Different chan-
nels have different expressions. For the Gaussian channel under the squared
distortion measure,
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R(D) = 5 log] 5
R(D)=0D > o? (3)
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Figure 1: A linear expansion near a nonequilibrium steady state of an inherently
unstable control system, for which x;y; = Axzy + Buy + Wi, A, B are square
matrices, x; the vector of system parameters at time ¢, u; the control vector
at time t, and W; a white noise vector. The Data Rate Theorem states that
the minimum rate at which control information must be provided for system
stability is H > log[| det[A™|], where A™ is the subcomponent of A having
eigenvalues > 1. For an autonomous cognitive system, the control signal u;
becomes the incoming ‘target’ data, in a large sense, which may be highly
interactive for driverless cars and weapons closing on evasive subjects.



where o2 is the variance of channel noise having zero mean.

Our concern is how a control signal u; is expressed in the system response
Z¢r1. We suppose it possible to deterministically retranslate an observed se-
quence of system outputs x1,xs, s, ... into a sequence of possible control sig-
nals g, 11, ... and to compare that sequence with the original control sequence
ug, U1, ..., with the difference between them having a particular value under the
chosen distortion measure, and hence an observed average distortion.

The correspondence expansion is as follows.

Feynman (2000), expanding on ideas of Bennett, identifies information as
a form of free energy. Thus R(D), the minimum channel capacity necessary
for average distortion D, is also a free energy measure, and we may define an
entropy S as

S = R(D)— DdR/dD (4)

For a Gaussian channel under the squared distortion measure,
S =1/2log[c*/D] +1/2 (5)

Other channels will have different expressions.
The simplest dynamics of such a system are given by a nonequilibrium On-
sager equation in the gradient of S, (de Groot and Mazur 1984) so that

1
dD/dt = —udS/dD = ——
Jdt = —pds/ap = 1 (6)
By inspection,

D(t) = Vil (7)

which is the classic outcome of the diffusion equation. For the ‘natural’ channel
having R(D) o« 1/D, D(t) x the cube root of ¢.

This correspondence reduction allows an expansion to more complicated
systems, in particular, to the control system of figure 1.

Let H be the rate at which control information is fed into an inherently un-
stable control system, in the presence of a further source of control system noise
B, in addition to the channel noise defined by o2. The simplest generalization
of Eq.(6), for a Gaussian channel, is the stochastic differential equation

dD; = [ — F(H)|dt + BD,dW, (8)
2D,
where dW; represents white noise and F(H) > 0 is a monotonically increasing
function.
This equation has the nonequilibrium steady state expectation
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measuring the average distortion between what the control system wants and
what it gets. In a sense, this is a kind of converse to the famous radar equation
which states that a returned signal will be proportional to the inverse fourth



power of the distance between the transmitter and the target. But there is an
even deeper result to be found.

Applying the Ito chain rule to Eq.(8) (Protter 1990; Khashminskii 2012), it is
possible to calculate the expected variance in the distortion as E(D?)—(E(Dy))?.
But application of the Ito rule to D? shows that no real number solution for its
expectation is possible unless the discriminant of the resulting quadratic equation
is > 0, so that a necessary condition for stability is

F(H) = Byu
H > F(Bvh) (10)

where the second expression follows from the monotonicity of F.

As a consequence of the correspondence reduction leading to Eq.(7), we
have generalized the DRT of Eq.(2). Different ‘control channels’, with different
forms of R(D), will give different detailed expressions for the rate of generation
of ‘topological information’ by an inherently unstable system.

4 A DRT for autonomous cognitive systems

A deeper approach to the dynamics of real-time autonomous systems is via
the ‘cognitive paradigm’ of Atlan and Cohen (1998), who recognized that the
immune response is not simply an automatic reflex, but involves active choice
of a particular response from a larger repertoire of those possible to it. Such
choice reduces uncertainty in a formal manner, and implies the existence of an
information source. See Wallace (2012, 2015) for details.

Given an information source associated with a rapid-fire autonomous system
— characterized as ‘dual’ to it — an equivalence class algebra can be constructed
by choosing different system origin states ag and defining the equivalence of
two subsequent states at times m,n > 0, written as a,,,a,, by the existence
of high-probability meaningful paths connecting them to the same origin point.
Disjoint partition by equivalence class, essentially similar to orbit equivalence
classes in dynamical systems, defines a symmetry groupoid associated with the
cognitive process. Groupoids represent generalizations of the group concept in
which there is not necessarily a product defined for each possible element pair
(Weinstein 1996). The simplest example would be a disjoint union of groups.

The equivalence classes define a set of cognitive dual information sources
available to the autonomous system, creating a large groupoid, with each orbit
corresponding to a transitive groupoid whose disjoint union is the full groupoid.
Each subgroupoid is associated with its own dual information source, and larger
groupoids will have richer dual information sources than smaller.

Let X¢, be autonomous system’s dual information source associated with
the groupoid element G;, and let H be the ‘control’ information rate associated
with incoming environmental signals, in a large sense. Wallace (2012, 2015)
shows how environmental regularities — road conditions, ‘target’ characteris-
tics or evasive behavior — imply the existence of an environmental information
source.



We can construct a Morse Function (Pettini 2007) as follows. Let H(Xg,) =
Hg, be the uncertainty of the dual information source of the cognitive au-
tonomous system. Define a Boltzmann-like pseudoprobability as

exp|—Hg, /KH]

P[HGZ] = Zj eXp[—HG]. /K,H}

(11)

where k is an appropriate constant depending on the particular system and
its linkages to incoming information from the embedding environment that acts
here as a ‘control’ signal for a DRT-like analysis, and the sum is over the different
possible cognitive modes of the full system.

A ‘free energy’ Morse Function F' can be defined as

exp|—F/kH] = Zexp[—HGj//i’H] (12)

J

Given the inherent groupoid structure, it is possible to apply an extension
of Landau’s picture of phase transition (Pettini 2007). In Landau’s formulation
of spontaneous symmetry breaking, phase transitions driven by temperature
changes occur as alteration of system symmetry, with higher energies at higher
temperatures being more symmetric. The shift between symmetries is highly
punctuated in the temperature index, here the minimum necessary ‘control’
information rate H taken from the embedding environment. Typically, such
arguments involve only a very limited number of possible phases.

Decline in H, or in the ability of that incoming information to influence the
system as characterized by k, can lead to punctuated decline in the complexity
of cognitive process possible to the autonomous system, driving it, in a highly
punctuated ‘symmetry-breaking’ manner, to a ground state collapse in which,
as with the Patriot missile fratricides and drone war massacres, ‘all possible
targets are enemies’. Indeed, these were ‘best case’ scenarios where skilled
human operators had ultimate control.

Fog-of-war conditions are not like playing a slow-paced game of Go.

5 Discussion and conclusions

The kernel of the argument is that combat is an inherently unstable dynamic
relation between competing cognitive entities. For autonomous weapons, infor-
mation from the embedding adversarial environment acts as a control signal, u;
in the sense of figure 1, permitting a sequence of mid-course corrections enabling
completion of the system’s assigned function. Experience finds that high-end
man-machine cockpit weapons systems repeatedly and persistently fail to avoid
fratricide or violations of the laws of land warfare. The formal analysis here
shows that autonomous weapons in a rapidly-changing environment — a fog-of-
war limiting the magnitude of H — will not gracefully degrade under stress, but
instead will display sudden punctuated collapse onto a dysfunctional, indeed
murderous, ground state unable to differentiate friend or the innocent from foe.



It has been said that ‘the language of business is the language of dreams’.
The assertion that autonomous weapons will avoid significant catastrophic mis-
targeting is a business-driven fantasy. A political leadership that embraces
dreams in the conduct of war might well find itself embroiled in persistent night-
mares of war crimes accusations and prosecutions.

Caveat Emptor

6 Mathematical Appendix: The RDT

Suppose a sequence of signals is generated by an information source Y having
output y™ = y1,¥2,.... This is ‘digitized’ in terms of the observed behavior of
the system with which it communicates, for example a sequence of ‘observed
behaviors’ b™ = by, ba, .... Assume each b" is then deterministically retranslated
back into a reproduction of the original signal, b — §"™ = 91, §2, -...

Define a distortion measure d(y, §) comparing the original to the retranslated
path. Many distortion measures are possible. For example, the Hamming dis-
tortion is defined simply as d(y,4) = 1,y # §,d(y,9) = 0,y = §. For continuous
variates, the squared error distortion measure is d(y, §) = (y — §)*.

The distortion between paths y™ and g" is

Ay, = 5 S0l ) (13)

The central characteristic of the Rate Distortion Theorem is that the basic
result is independent of the exact distortion measure chosen (Cover and Thomas
2006).

Suppose that with each path y™ and b"-path retranslation into the y-language,
denoted g", there are associated individual, joint, and conditional probability

distributions p(y"), p(4"), p(y", "), p(y"|9")-
The average distortion is defined as

D= py")dy",i") (14)

It is possible to define the information transmitted from the Y to the Y
process using the Shannon source uncertainty of the strings:

IV,Y)=H(Y)-HY|Y)=H(Y)+HY)—-H®Y,Y) (15)

where H(...,...) is the joint, and H(...|...) the conditional, Shannon uncertainties
(Cover and Thomas 2006).

If there is no uncertainty in Y given the retranslation Y, then no information
is lost, and the systems are perfectly synchronous.

This will almost never be true.



The rate distortion function R(D) for a source Y with a distortion measure
d(y,9) is defined as

R(D) = min I(Y,Y) (16)
P90, oy P)P(5)d(y,5) <D

Thus the minimization is over all conditional distributions p(y|g) for which
the joint distribution p(y,4) = p(y)p(y|§) satisfies the constraint of having av-
erage distortion < D.

The Rate Distortion Theorem states that R(D) is the minimum necessary
rate of information transmission which ensures the communication between the
interacting entities does not exceed average distortion D. Thus R(D) defines a
minimum necessary channel capacity. Cover and Thomas (2006) provide details.
The rate distortion function has been calculated for a number of systems, often
using Lagrange multiplier or Kuhn-Tucker optimization methods. Cover and
Thomas (2006, Lemma 13.4.1) show that R(D) is necessarily a decreasing convex
function of D for any reasonable definition of distortion. That is, R(D) is always
a reverse J-shaped curve. This is crucial: convexity is an exceedingly powerful
mathematical condition, and permits deep mathematical inference on system
dynamics.
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