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Coverage Gains from the Static Cooperation of
Mutually Nearest Neighbours

Luis David Álvarez-Corrales?, Anastasios Giovanidis? and Philippe Martins?

Abstract—Cooperation in cellular networks has been recently
suggested as a promising scheme to improve system performance.
In this work, clusters are formed based on the Mutually Nearest
Neighbour relation, which defines which stations cooperate in
pair and which do not. When node positions follow a Poisson
Point Process (PPP) the performance of the original clustering
model can be approximated by another one, formed by the
superposition of two PPPs (one for the singles and one for the
pairs) equipped with adequate marks. This allows to derive exact
expressions for the network coverage probability under two user-
cluster association rules. Numerical evaluation shows coverage
gains from different signal cooperation schemes that can reach
up to 15% compared to the standard non-cooperative network
coverage. The analysis is general and can be applied to any type of
cooperation or coordination between pairs of transmitting nodes.

Index Terms—Cellular Network; Cooperation; CoMP; Cov-
erage; Poisson Point Process; Thinning; Nearest Neighbour;
Superposition

I. INTRODUCTION

This work investigates the potential performance gains that
can be obtained in a cellular network, by coordination or
cooperative transmission between base stations (BSs). Cooper-
ation is particularly relevant for users located at the cell-edge,
where significant SINR gains can be achieved in the downlink.
In the wireless literature there is a considerable amount of
research on the topic, which relates to the concept of CoMP,
Network MIMO [1], [2] (see also references therein), or C-
RAN. The various strategies proposed differ in the number of
cooperating nodes, the type of signal cooperation, the amount
of information exchange, and the way groups (clusters) are
formed either dynamically or in a static way a-priori chosen.

It is possible to analyse such cooperative networks by
use of stochastic geometry. Application of point processes to
model the positions of wireless nodes gives the possibility to
include the impact of irregularity of BS locations on the users’
performance (e.g. SINR, throughput, delay). Furthermore, the
gains from cooperation can be quantified in a systematic
way, so that one need not test each different instance of
network topology by simulations. Closed formulas are very
important for an operator that wants to plan and deploy an
infrastructure with cooperation functionality, because these can
provide intuition on the relative influence of various design
parameters.
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There are considerable results available in this area. In
[3], Baccelli and Giovanidis analyse the case where BSs are
modelled by a Poisson Point Process (PPP) and each user-
terminal triggers the cooperation of its two closest BSs for
its service. The authors show coverage improvements and an
increase of the coverage cell. The work is extended in [4]
by Nigam et al for larger size of clusters, showing that BS
cooperation is more beneficial for the worst-case user. The
SINR experienced by a typical user when served by the K
strongest BSs is also investigated by Blaszczyszyn and Keeler
in [5], and the authors derive tractable integral expressions of
the coverage probability for general fading by use of factorial
moment measures. An analysis of a similar problem with use
of Laplace transforms (LT) is provided by Tanbourgi et al in
[6].

All the above works assume that a user-terminal dynami-
cally selects the set of stations that cooperate for its service.
Such an assumption is difficult to be applied in practice be-
cause the cluster formation should change with every different
configuration of users. For this reason we propose here to
group BSs in a static way, so that clusters are a-priori defined
and do not change over time. The appropriate static clustering
should result in considerable performance benefits for the
users, with a cost-effective infrastructure. In favour of the static
grouping approach are other authors as well, like Akoum and
Heath [7] who randomly group BSs around virtual centres,
and Guo et al who analyse in [8] the coverage benefits of
cooperation pairs modelled by a Gauss-Poisson point process.

The existing static clustering models are not sufficient.
They either group BSs in a random way [7], or they ran-
domly generate additional cluster nodes around a cluster
center [8, 9], which is translated in the physical world into
installing randomly new nodes in the existing infrastructure.
A more appropriate analysis should have a map of existing
BS locations as the starting point, and from this define in a
systematic way cooperation groups. The criterion for grouping
should not be random, but rather node proximity, in order
to limit the negative influence of first-order interference. For
these reasons the authors propose in [10] a grouping method
based on a variation of the Nearest Neighbour model [11].
The analysis was restricted to the case where only singles and
pairs are allowed. Having a PPP as a basis for the BS locations,
pairs are selected as the nodes that satisfy the mutually nearest
neighbour relation, whereas the process of singles is formed
by the remaining nodes. The analysis provided structural
characteristics and expressions for the expectation and LT of
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the interference generated by each one of the two resulting
processes.

The processes of singles and pairs were shown not to be
PPPs, so the derivation of numerically tractable formulas for
SINR related metrics, as done in [12], is not evident. To
find such formulas for the Nearest Neighbour cooperation
we introduce, in Section II, an approximative model: the
superposition of two independent PPPs, equipped with struc-
tural characteristics of the original single and pair processes.
Potential signals emitted by the cooperative nodes, and their
generalisation, are proposed in Section III. Section IV analyses
the interference in the superposition model. Analysis of the
coverage probability for two scenarios of user-to-BS associ-
ation is provided in Section V. The analytical formulas are
validated through simulations and the gains of static nearest
neighbour grouping are quantified. The final conclusions are
drawn in Section VI. Proofs and supplementary material can
be found in the arXiv version of the work, with the same title.

Note that our approach is general. It can be applied to
many cooperation variations, ranging from simple coordination
of the BSs in group, to fully cooperative transmission using
knowledge of the channel states.

II. MODEL UNDER STUDY

On R2 we model the BS locations by a stationary PPP Φ
with density λ > 0. We assume that a user-terminal is located
at the Cartesian origin (0, 0) and we examine the network
performance at its position. This is the typical user approach.
We denote by ‖ · ‖ the Euclidean distance in R2.

A. Previous results on the topic

In [10], starting from some given point process (e.g. PPP)
the authors propose a grouping method of BSs based on the
Nearest Neighbour model [11]. Two BSs belong to the same
cooperating pair if each one of them is the nearest neighbour
of the other [10, Def. 1]. If a BS does not form a mutually
Nearest Neighbour pair with any other BS from the process,
it remains single [10, Def. 2]. This is explained graphically in
Figure 1. In this way, Φ splits into a process of single points
and another one of the pairs. Figure 1 also displays an example
of a Poisson realisation, showing the singles and the pairs that
can be formed. Let γ := 2

3−
√

3
2π and δ := 1

2−γ ≈ 0.6215. It has
been proven that, in accordance with the number δ, in average
62.15% of BSs are in pair and 37.85% of BSs are singles
[10, Cor. 1]. As a result, the processes of singles and pairs
are not Poisson. The authors also have shown that the distance
between cooperating BSs follows a Rayleigh distribution, with
scale parameter α := (2λπ(2−γ))−1/2 [10, Th. 2]. From now
on, we refer to the previous model as the Nearest Neighbour
(NN) model.

As a consequence of the non-Poissonian behaviour, it is
difficult to make a complete performance analysis for SINR
related metrics. Instead, we use in this work the following
model to approximate these metrics.
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Fig. 1. Upper image: since the x and y atoms are mutually nearest
neighbours, they work in pair. x is the closest atom of w, but w is not the
closest atom to x, thus, w is a single. Lower image: a Poisson realisation.
The blue dots are the single BSs, the red dots are the cooperating pairs.

B. Poisson superposition model

To imitate the process of singles, we consider a PPP Φ̂(1),
with parameter (1 − δ)λ. In this way, the new process for
singles has the same expected value with the one from the
NN model [10, Cor. 1].

To imitate the process of pairs, we also consider a PPP Φ̂(2),
independent of Φ̂(1), with intensity δ

2λ. We call the atoms of
this process the parents. The process Φ̂(2) is independently
marked. Each mark of a parent represents its pairing BS,
the daughter. The idea is that each couple (parent, daughter)
imitates a cooperating pair of the NN model. Let us consider
(Zr)r>0 a family of independent random variables, indepen-
dent also of Φ̂(1) and of Φ̂(2), where each Zr follows a Rice
distribution, with parameter (r, α). If Y is a random point
representing a parent, then we define its mark by Z‖Y ‖.

To understand the choice for the marks, suppose that a BS
is placed at the polar coordinates (r, θ), with r > 0 and θ ∈
[0, 2π) fixed (see Figure 2). Assume also that this BS belongs
to a cooperating pair from the NN model, and let us denote by
W the distance between the stations in pair, which is Rayleigh
distributed [10, Th. 2], with scale parameter α. If Z denotes the
distance from the typical user to the second BS, the isotropy
of the PPP implies that the distribution of Z is independent
of θ. Moreover, we have the following result.

Proposition 1. The random variable Z is Rice distributed,
with parameters (r, α). The probability density function (PDF)
of Z is given by

f(z|r) =
z

α2
e−

z2+r2

2α2 I0

( zr
α2

)
, (1)



Fig. 2. Two cooperating BSs, where r and Zr are their distances from the
origin, and W is the distance between them.

where I0(x) is the modified Bessel function, of the first kind,
with order zero.

The angular coordinate of a PPP atom is uniformly dis-
tributed in [0, 2π). Moreover, the Cartesian coordinates of
a point around a center, with Rayleigh radial distance and
uniform angle, are distributed as an independent Gaussian
vector [13, pp. 276, Ex. 7b]. Given this, Proposition 1 follows
from [9].

Other models where the angle plays a role can be treated,
as well, by adding further marks in the Φ̂(2) process.

C. The distribution of the closest distances

Let R1 and R2 denote the random variables of the distances
from the closest element of Φ̂(1) and Φ̂(2) to the origin,
respectively. Denote also by Z2 the mark of the parent at
R2. It is known that the random variables R1 and R2 are
Rayleigh distributed [12], with scale parameters ξ and ζ, where
ξ := ((1−δ)2λπ)−1/2 and ζ := (δλπ)−1/2. By definition, R2

and Z2 are not mutually independent, but we can derive their
joint PDF.

Lemma 1. The joint PDF of the random variable (R2, Z2) is
given by

f(r, z) =
rz

(αζ)2
e
− r22

(
1
α2 + 1

ζ2

)
− z2

2α2 I0

( rz
α2

)
. (2)

Furthermore, the random variable Z2 is Rayleigh distributed,
with scale parameter (α2 + ζ2)1/2.

In section V we make use of the distribution of the random
vector (R1, R2, Z2). Because R1 is independent of (R2, Z2),
the joint PDF is the product of the PDF of R1 with the joint
PDF of (R2, Z2).

III. RECEIVED SIGNALS

In this work we restrict ourselves to omnidirectional BSs.
This allows for a class of signals which is large enough.
The directional case can also be included, but it requires
extra integration with respect to angles, which unnecessarily
complicates the analysis without substantial difference [3,
Section V].

We consider an independent, identically distributed family
(hr)r>0 of positive exponential variables, with parameter 1,
also independent of the other random elements introduced in
Section II. With fixed p > 0, the couple (hr, p) represents the

random propagation effects and the power signal emitted to
the typical user from a BS at distance r > 0 from the origin.
Let us also choose the path-loss function as l(r) := 1

rβ
, with

path loss exponent β > 2.

A. Single atoms

Consider a generic random field f : [0,∞) −→ R+, inde-
pendent of other random objects. The quantity f(r) represents
the received signal at the typical user, when transmitted by a
single BS, whose distance to the origin is r > 0. For a single
BS, whose distance to the origin is r > 0, it is natural to
consider

f(r) = p
hr
rβ
, (3)

which follows an exponential distribution, with parameter rβ

p .

B. Pair cooperation

To keep cooperation general, consider a generic random
field g : [0,∞)×[0,∞) −→ R+, independent of other random
objects, where the quantity g(r, z) represents the received sig-
nal at the typical user, when transmitted by a pair of BSs whose
distances to the origin are r > 0 and z > 0, respectively. The
received signal can take the following example expressions,
which refer to different types of cooperation or coordination,

g(r, z) =



phr
rβ

+ phz
zβ

, [NSC]
1onrp

hr
rβ

+ (1− 1onr )p
hz
zβ

, [OFF]
max

{
phr
rβ
, phz

zβ

}
, [MAX]∣∣∣∣√phrrβ eiθr +

√
phz
zβ
eiθz

∣∣∣∣2 [PH]

. (4)

In the above, (1onr )r>0 and (θr)r>0 are two different families
of indexed identically distributed random variables, inde-
pendent of other random objects. They follow a Bernoulli
distribution, with parameter q ∈ (0, 1) (q := 1 − q), and a
general distribution over [0, 2π), respectively. [NSC] refers to
non-coherent joint transmission, as in [4–6, 8], where each of
the two BSs transmit an orthogonal signal, and the two are
added at the receiver side. [OFF] refers to the case where one
of the two BSs is active and the other inactive, according to
an independent Bernoulli experiment, independent of the BSs
positions. [MAX] refers to the case where the BS with the
strongest signal is actively serving a user, while the other is
off. The [OFF] and [MAX] cases are relevant to energy saving
operation. In the [PH] case, two complex signals are combined
in phase (see [3, 4]), in particular, when cos(θr − θz) = 1,
the two signals are in the same direction, and they add up
coherently at the receiver (user side), giving the maximum
cooperating signal.

The above expressions in (4) are merely examples for the
cooperation signals. A more general family can be proposed
with specific properties. Consider ci : [0,∞)× [0,∞) −→ R,
and di : [0,∞) × [0,∞) −→ R+, for 1 ≤ i ≤ n, some
deterministic functions, and suppose that

P(g(r, z) > T ) =

n∑
i=1

ci(r, z)e
−di(r,z)T . (5)



TABLE I
EXPRESSIONS FOR THE CCDF AND THE LT

P(g(r, z) > T ) E[e−sg(r,z)]

[NSC] rβzβ

p(rβ−zβ)

(
e
− zβ

p
T − e−

rβ

p
T
)

rβ

sp+rβ
zβ

sp+zβ

[OFF] qe
− rβ

p
T
+ qe

− zβ

p
T

q rβ

sp+rβ
+ q zβ

sp+zβ

[MAX] e
− rβ

p
T

+ e
− zβ

p
T −

e
−
(
rβ

p
+ zβ

p

)
T

rβ

sp+rβ
+ zβ

sp+zβ
−

rβ+zβ

sp+rβ+zβ

When analysing performance related to coverage probability,
the tail probability distribution functions (CCDF) for the
signals, that can be written as (5) lead easier to numerically
tractable formulas. However, the function defined in (5) is
not necessarily a CCDF. For this to hold, some conditions
on the functions c1(r, z), . . . , cn(r, z), d1(r, z), . . . , dn(r, z)
should be imposed. Interestingly, the CCDF of g(r, z) in the
[NSC], [OFF], and [MAX] cases fulfils equation (5) (see
Table I). Furthermore, there exist important families of random
variables whose CCDF actually has the form described in
equation (5): the hypo-exponential distribution, the hyper-
exponential distribution, the maximum over a finite number
of exponential random variables, etc.

IV. INTERFERENCE FIELD

For some r > 0, let us denote by

Lf (s; r) = E
[
e−sf(r)

]
, (6a)

Lg(s; r, ρ) = E
[
e−sg(r,Zr)1{Zr>ρ}

]
, (6b)

the LT of the signal generated by a single BS and the LT of the
signal generated by a cooperation pair, given that the radius
of the daughter is larger than ρ ≥ 0. When ρ = 0, Lg(s; r, 0)
will be denoted just by Lg(s; r). For example, if we take f(r)
as in equation (3), we get

Lf (s; r) =
rβ

sp+ rβ
. (7)

Recall that phr
rβ

and phz
zβ

are independent, exponential random
variables, with parameter rβ

p and zβ

p . In Table I we find
expressions for E[e−sg(r,z)] in the [NSC], [OFF], and [MAX]
cases. By remarking that

Lg(s; r) = E
[
E
[
e−sg(r,Zr)1{Zr>ρ}

∣∣∣Zr]] ,
we get analytical expressions for Lg(s; r) in the [NSC],
[OFF], and [MAX]. For example, in the [NSC] we have that

Lg(s; r, ρ) =
rβ

sp+ rβ

∫ ∞
ρ

zβ

sp+ zβ
f(z|r)dr,

where f(z|r) is the density function of the Rice random
variable Zr (see equation (1)). For the more general
distribution descrived by equation (5), it is also possible to
give analytical formulas similar to the previous equation.
In the [PH] case the expression for Lg(s; r, ρ) is more

complicated (see [3] for cos(θr − θz) = 1).

We consider the interference fields generated by all the
elements of Φ̂(1) and Φ̂(2) outside the radius ρ

Î(1)(ρ) =
∑

x∈Φ̂(1),‖x‖>ρ

f(‖x‖), (8a)

Î(2)(ρ) =
∑
y∈Φ̂(2)

‖y‖>ρ,Z‖y‖>ρ

g(‖y‖, Z‖y‖). (8b)

When ρ = 0, they are just denoted by Î(1) and Î(2). The total
interference generated outside possibly different radii for the
two processes, i.e. ρ1 > 0 and ρ2 > 0 is

Î(ρ1, ρ2) := Î(1)(ρ1) + Î(2)(ρ2). (9)

When ρ1 = ρ1 = 0, we write only Î.
The next Lemma is a well known result giving analytical

representations to the LT of the PPP Interference fields [14].

Lemma 2. The LTs of Î(1)(ρ) and Î(2)(ρ), denoted by
LÎ(1)(s; ρ) and LÎ(2)(s; ρ), are given by

LÎ(1)(s; ρ) = e−λ2π(1−δ)
∫∞
ρ

(1−Lf (s;r))rdr, (10a)

LÎ(2)(s; ρ) = e−πλδ
∫∞
ρ

(1−Lg(s;r,ρ))rdr. (10b)

The Lemma uses the Poisson properties of Φ̂(1) and Φ̂(2).
The expressions given in equations (10) are the tools which
allow us to make an entire analysis of the coverage probability.

As an example, if we replace equation (7) in equation (10a),
for ρ = 0 we get the analytical representation [12]

LÎ(1)(s) = e−
λ(1−δ)2π2(sp)2/β

β csc( 2π
β ), (11)

where csc(z) is the cosecant function. In the same fashion, it is
possible to obtain expressions for LÎ(1)(s; ρ) and LÎ(2)(s; ρ).

V. COVERAGE PROBABILITY

We can now make use of the PPP superposition model for
the node positions to evaluate the performance of the different
cooperation (or coordination) types proposed above. From now
on, we use the notation f̃(r) and g̃(r, z) for the beneficial
signal from a single BS and a pair, to differentiate from the
interference signals f(r) and g(r, z).

A. Fixed single transmitter

Let us suppose that there is one BS serving the typical
user, whose distance to the origin is fixed and known r0 > 0.
Moreover, it serves the typical user independently of the atoms
from Φ̂(1) and Φ̂(2). Then the signal emitted to the typical
user is f̃(r0), and the Signal-to-Interference-plus-Noise-Ratio
(SINR) at the typical user is defined by

SINR :=
f̃(r0)

σ2 + Î
, (12)

where σ2 is the additive Gaussian noise power at the receiver
and Î is the total interference power (see equation (9)).



Proposition 2. Suppose f̃ as in (3). Then, the success prob-
ability is given by the expression

P (SINR > T ) = e−
Tσ2r

β
0

p LÎ(1)

(
Trβ0
p

)
LÎ(2)

(
Trβ0
p

)
.

(13)

The last proposition allows us to evaluate the SINR directly
with the help of equations (10a) and (10b) for ρ = 0.

B. Closest transmitter from Φ̂(1) or Φ̂(2) (and his daughter)

We consider that the typical user is connected to the BS
at R1 (see subsection II-C), or to the cooperating cluster
(parent,daughter) at (R2, Z2). The previous association de-
pends on which one of them is closer to the typical user. If
R1 < min{R2, Z2}, the single BS at R1 serves the typical
user, and it emitts the signal f̃(R1). In the opposite case, if
R2 ≤ R1 or if Z2 ≤ R1, the cooperating pair at (R2, Z2)
serves the user, and it emitts the signal g̃(R2, Z2). All the
BSs not serving the typical user generate interference. Thus,

SINR :=


f̃(R1)

σ2+Î(R1,R1)
; R1 < min{R2, Z2},

g̃(R2,Z2)

σ2+Î(R2,R2)
; R2 < min{R1, Z2},

g̃(R2,Z2)

σ2+Î(Z2,R2)
; Z2 < min{R1, R2}.

(14)

After conditioning with respect to R1, R2 and Z2, as a result
of f̃(R1), Î(R1, R1) being independent of (R2, Z2), and
g̃(R2, Z2), Î(R2, R2), Î(Z2, R2) being independent of R1,
we get

P(SINR > T )

= E
[
P
(

f̃(R1)

σ2+Î(R1,R1)
> T

∣∣∣R1

)
1{R1 < min{R2, Z2}}

]
+ E

[
P
(

g̃(R2,Z2)

σ2+Î(R2,R2)
> T

∣∣∣ R2, Z2

)
1{ R2 < min{R1, Z2}

]
+ E

[
P
(

g̃(R2,Z2)

σ2+Î(Z2,R2)
> T

∣∣∣ R2, Z2

)
1{ Z2 < min{R1, R2}}

]
.

(15)

To evaluate the preceding equation, we need the distribution of
the random vector (R1, R2, Z2), which was given in Section
II. Thus, it is only left to find expressions for the conditional
probabilities of equation (15). For a given r > 0, because of
the independence of R1 from Î(R1, R1),

P
(

f̃(R1)

σ2+Î(R1,R1)
> T

∣∣∣R1 = r

)
= P

(
f̃ (r) > T

(
σ2 + Î(r, r)

))
.

Consider f̃(r) as in (3), then it follows an exponential dis-
tribution with parameter rβ

p . Since Î(r, r) is independent of
f̃(r),

P
(
f̃(r) > T

(
σ2 + Î(r, r)

))
= E

[
P
(
f̃(r) > T

(
σ2 + Î(r, r)

) ∣∣∣Î(r, r)
)]

= e
−T (r)β

p σ2

LÎ(1)

(
T
rβ

p
; r

)
LÎ(2)

(
T
rβ

p
; r

)
, (16)

where the deterministic functions LÎ(1)(s; ρ) and LÎ(2)(s; ρ)
are given by (10). In the same fashion, for r > 0 and z > 0,

P
(

g̃(R2,Z2)

σ2+Î(R2,R2)
> T

∣∣∣R2 = r, Z2 = z

)
(17)

= P
(
g̃ (r, z) > T

(
σ2 + Î(r, r)

))
.

For the cooperation signal g̃(r, z), we use the general expres-
sion in (5). Then,

P
(
g̃(r, z) > T

(
σ2 + Î(r, r)

))
=

n∑
i=1

ci
(
r, z
)
e−Tdi(r,z)σ

2

LÎ(1)

(
Tdi(r, z); r

)
LÎ(2)

(
Tdi(r, z); r

)
.

(18)

Similarly for P
(

g(R2,Z2)

σ2+Î(Z2,R2)
> T

∣∣∣R2, Z2

)
.

VI. NUMERICAL EVALUATION

We evaluate only the noiseless scenario P(SIR > T )
(with σ2 = 0). We compare the SIR coverage performance
from the NN and the superposition model with the model
without cooperation [12]. The density of the BSs is λ = 0.25
[km2], which corresponds to an average closest distance of
(2
√
λ)−1 = 1 [km] between stations. The power is p = 1

[Watt]. We consider both cases (a) with fixed transmitter,
and (b) where the association is done with the (almost) closest
cluster, as in (14). In this second case, for the NN model,
the user-cluster association is done differently than in the
superposition model, as follows. The typical user is served
by the closest BS of the original point process Φ, and by
its mutually nearest neighbour, if one exists. The cooperative
signals are those proposed in (4).

A. Closeness of the approximation by the PPP superposition

We first compare in Fig. 3 the coverage probabilities, over
the threshold T , for the NN model and the superposition
model, in both association cases. As we can see, the curves
are very close in both cases. For the ”closest” transmission
cluster the difference is more evident, because on the one
hand the superposition model does not take into account the
repulsion between clusters (singles or pairs), and on the other
hand the association of a cluster to the user as done in (14) for
the superposition model, sometimes misses the actual closest
daughter to the origin (which is not necessarily the one at Z2).
This never happens the way we choose the closest cluster in the
NN model. Hence, the approximative model underestimates
the coverage benefits in the closest cluster association.

B. Cooperation gains

The possible coverage gains, compared to the non-
cooperative network, in the case of association with a fixed
transmitter, are shown in Fig. 4(a). As a first remark, for the
fixed association, the [NSC] case for the NN model and the
non-cooperative model are practically the same. The coverage
probability in the [MAX] case is close to the coverage proba-
bility in the [NSC] case. This suggests that the strongest signal
in each cooperating pair influences interference the most. For
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Fig. 3. Closeness of the approximation between the superposition and the NN model, β = 3. (a) Left: Fixed, (b) Right: Closest transmitter.
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Fig. 4. Coverage gains from NN cooperation compared to no cooperation, β = 3. (a) Left: Fixed, (b) Right: Closest transmitter.

the [OFF] case there is a 10% benefit compared to the non-
cooperative case, in the largest part of the domain in T .

The gains are also evaluated in the case of association with
the closest cluster. For the SINR, let us call [MAX/OFF] the
case where the closest cluster emits a signal to the typical
user according to [MAX], i.e. only the max signal is sent,
while the pairs generate interference according to [OFF]. The
idea is that when all network pairs choose [MAX] cooperation
for their own users, this choice of one-station-out-of-two is
random for the typical user point of view. This [MAX/OFF]
case shows a 15% absolute gain from the non cooperative case,
which is around 9% for the [NSC] (see Fig. 4(b)). This gain
is almost equal with the dynamic clustering in [3].

VII. CONCLUSIONS

We have proposed a general methodology to evaluate cov-
erage from clusters of mutually nearest neighbours, which
involves only 62% of the BSs. Such cooperation between
BSs gives considerable coverage benefits, even for clusters
of size at most two. Further analysis on higher order (> 2)
cooperation clusters, as well as different cooperation schemes
(e.g. MIMO), could reveal even greater potentials.
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APPENDIX

Let R be a Rayleigh random variable, with scale parameter
a > 0. If we denote by FR and fR its CDF and PDF functions,
respectively, then, for every r > 0,

FR(r) = 1− e−
r2

2a2 , fR(r) =
r

a2
e−

r2

2a2 . (19)

Denote by A and B the Cartesian coordinates of the nearest
parent to the typical user and his daughter, respectively, and
also denote by (R2,Θ) and (Z2,Ψ) their respective polar co-
ordinates. Define C := A−B and denote its polar coordinates
by (W,Ω) (see Figure 5).

As stated in Section II, the random variables R2 and W
are Rayleigh distributed, with scale parameters ζ and α,
respectively. Moreover, the random angles Θ, Ψ and Ω are
considered uniformly distributed over [0, 2π), to preserve the
isotropy in the PPP case. Also, the random variables R2, Θ,
W , and Ω are independent between them, as in the PPP case.

Our first goal is to find the joint distribution of the
random vector (R2, Z2) and, as a consequence, find also
the distribution of Z2. To do so, let us remark that the
cartesian coordinates of a point around a center, wich has
rayleigh radial distance from the origin and uniform angle,
are distibuted as an independent Gaussian vector [13, pp.
276, Ex. 7b]. Hence, there exist independent random variables
Ax, Ay, Cx, Cy , where Ax, Ay are Normal distributed, with

parameter (0, ζ2), and Cx, Cy are also Normal distributed,
with parameters (0, α2), and such that

(Ax, Ay) = (R2cosΘ, R2sinΘ),

(Cx, Cy) = (WcosΩ,WsinΩ).

(a)

Fig. 5.

A. Proof of Lemma 1.

By definition,

Ax = R2cosΘ, Cx = R2cosΘ− Z2cosΨ,

Ay = R2sinΘ, Cy = R2sinΘ− Z2sinΨ.

The absolute value of the Jacobian of the above transforma-
tion is R2Z2. Let us denote by fAx,Ay,Cx,Cy the joint PDF
of (Ax, Ay, Cx, Cy), if fR,Θ,Z,Ψ denotes the joint PDF of
(R2,Θ, Z2,Ψ), then, by the change of variable Theorem [13,
pp. 274],

fR,Θ,Z,Ψ(r, θ, z, ψ)

= fAx,Ay,Cx,Cy (rcosθ, rsinθ, rcosθ − zcosψ, rsinθ − zsinψ)rz

(a)
=

rz

(2παζ)2
e
−
(
r2cos2θ

2ζ2
+ r2sin2θ

2ζ2
+

(rcosθ−zcosψ)2

2α2 +
(rsinθ−zsinψ)2

2α2

)

(b)
=

rz

(2παζ)2
e
−
(
r2

2

(
1
α2 + 1

ζ2

)
+ z2

2α2−
rzcos(θ−ψ)

α2

)
,

where (a) comes from the formula of the distribution of
independent Gaussian random variables, and (b) follows from
the trigonometric identities cos2θ+sin2θ = 1 and cosθcosψ+
sinθsinψ = cos(θ−ψ). To obtain the joint PDF of (R2, Z2),
denoted by fR2,Z2

, we integrate the previous expression over
[0, 2π)× [0, 2π), with respect to the variables θ and ψ,

fR2,Z2
(r, z)

(c)
=

rz

(αζ)2
e
−
(
r2

2

(
1
α2 + 1

ζ2

)
+ z2

2α2

)
1

2π

∫ 2π

0

e
rzcosw
α2 dw

(d)
=

rz

(αζ)2
e
−
(
r2

2

(
1
α2 + 1

ζ2

)
+ z2

2α2

)
I0

( rz
α2

)
,

where (c) comes from the change of variable w = θ − ψ
and (d) follows because the integral representation I0(x) =
1

2π

∫ 2π

0
excoswdw [15]. Let us denote by fZ2

the PDF of the
random variable Z2 and by η =

(
1
α2 + 1

ζ2

)
. To obtain fZ2

,



we integrate over [0,∞) with respect to the variable r the
preceding equation

fZ2
(z)

(e)
=

∫ ∞
0

rz

(αζ)2
e
−
(
r2

2 η+ z2

2α2

) ∞∑
n=0

(1/4)n

(n!)2

( rz
α2

)2n

dr

=
z

(αζ)2
e−

z2

2α2

∞∑
n=0

(1/4)n

(n!)2

(
z2

α4

)n ∫ ∞
0

r2ne−
r2

2 ηrdr

(f)
=

z

(αζ)2η
e−

z2

2α2

∞∑
n=0

(
z2

2α4η

)n
n!

=
z

(αζ)2η
e−

z2

2α2 e
z2

2α4η

(g)
=

z

α2 + ζ2
e
− z2

2(α2+ζ2) ,

where (e) comes from the series representation I0(x) =∑∞
n=0

(1/4)n

(n!)2 x
2n [15], while (f) follows after the formula∫ ∞

0

r2ne−
r2

2 ηrdr =
2n

ηn+1
n!,

and (g) after soma algebraic manipulations and from the
definition of η.

B. Initial calculations for the closest cluster association

In this subsection, we provide the calculations to obtain the
coverage probability in equation (15) from the definition of
the SINR in equation (14). We begin with the analysis for the
first term with the non-cooperative signal

E

[
1{

f̃(R1)

σ2+Î(R1,R1)
>T

}1{R1<min {R2,Z2}}

]

= E

[
E

[
1{

f̃(R1)

σ2+Î(R1,R1)
>T

}1{R1<min {R2,Z2}}

∣∣∣R1, R2, Z2

]]
(a)
= E

[
1{R1<min {R2,Z2}}E

[
1{

f̃(R1)

σ2+Î(R1,R1)
>T

}∣∣∣R1, R2, Z2

]]
(b)
= E

[
1{R1<min {R2,Z2}}E

[
1{

f̃(R1)

σ2+Î(R1,R1)
>T

}∣∣∣R1

]]
(c)
= E

[
1{R1<min {R2,Z2}}P

(
f̃ (R1)

σ2 + Î(R1, R1)
> T

∣∣∣R1

)]
,

where (a) comes from properties of the conditional expecta-
tion, (b) follows because the random variable f̃(R1)

σ2+Î(R1,R1)
>

T is independent of R2 and Z2, and (c) because E[1B |Y ] =
P(B|Y ).

After a similar analysis for the two terms with the cooper-
ative signal

E

[
1{

g̃(R2,Z2)

σ2+Î(R2,R2)
>T

}1{R2<min {R1,Z2}}

]

= E

[
1{R2<min {R1,Z2}}P

(
g̃ (R2, Z2)

σ2 + Î(R2, R2)
> T

∣∣∣R1

)]
,

E

[
1{

g̃(R2,Z2)

σ2+Î(Z2,R2)
>T

}1{Z2<min {R1,R2}}

]

= E

[
1{Z2<min {R1,R2}}P

(
g̃ (R2, Z2)

σ2 + Î(Z2, R2)
> T

∣∣∣R1

)]
,

C. Further calculations for the closest cluster association

Denote by

G(r) := P

(
f̃ (R1)

σ2 + Î(R1, R1)
> T

∣∣∣R1 = r

)

H(r, z) := P

(
g̃ (R2, Z2)

σ2 + Î(R2, R2)
> T

∣∣∣R2 = r, Z2 = z

)

K(r, z) := P

(
g̃ (R2, Z2)

σ2 + Î(Z2, R2)
> T

∣∣∣R2 = r, Z2 = z

)
.

Remark that at the end of section V we obtained the ex-
pressions for the deterministic functions G(r), H(r, z) and
K(r, z) (see equations (16) and (18)). To complete the analysis
in subsection V-B, we need to find the coverage probability
expressed in equation (15), thus, we need expressions for

E
[
G(R1)1{R1<min{R2,Z2}}

]
,

E
[
H(R2, Z2)1{R2<min{R1,Z2}}

]
,

E
[
K(R2, Z2)1{Z2<min{R1,R2}}

]
.

Let us begin by the first one,

E
[
G(R1)1{R1<minR2,Z2}

]
(a)
= E

[
E
[
G(R1)1{R1<minR2,Z2}|R1

]]
= E

[
G(R1)E

[
1{R1<minR2,Z2}|R1

]]
(b)
= E [G(R1)P (min{R2, Z2} > R1|R1)] ,

where (a) follows by properties of the conditional expectation
and (b) because E[1B |Y ] = P(B|Y ). Thus, we only have
left to find an expression for P (min{R2, Z2} > R1|R1 = r).
Because R1 is independent of (R2, Z2),

P(min {R2, Z2} > R1|R1 = r) = P(min {R2, Z2} > r),

and then

P(min {R2, Z2} > r) = 1− FR2
(r)− FZ2

(r) + FR2,Z2
(r, r),

where FR2
, FZ2

, and FR2,Z2
are the CDF of R2, Z2, and

(R2, Z2) that can be explicitly obtained after considering
equations (19) and (2).



In the same fashion,

E
[
H(R2, Z2)1{R2<minR1,Z2}

]
= E [H(R2, Z2)P(min{R1, Z2} > R2|R2, Z2)] ,

E
[
K(R2, Z2)1{Z2<minR1,R2}

]
= E [K(R2, Z2)P(min{R1, R2} > Z2|R2, Z2)]

and

P(min {R1, Z2} > R2|R2 = r, Z2 = z) = (1− FR1
(r))1{z>r},

P(min {R1, R2} > Z2|R2 = r, Z2 = z) = (1− FR1
(z))1{r>z},

where FR1
is the CDF of R1 that can be explicitly obtained

after considering equation (19).
Having done this, we can evaluate the coverage probability

given by equation (15). For example, to evaluate

E [H(R2, Z2)P(min{R1, Z2} > R2|R2, Z2)] ,

we use the explicit form of the function H(r, z), given in
equation (18), with the explicit form of

P(min{R1, Z2} > R2|R2 = r, Z2 = z) = (1−FR1(r))1{z>r},

and the joint distribution of (R2, Z2), given in Lemma 1.

D. Validity of the numerical analysis.

In Figure 6 we compare the plots of the coverage probability
from the numerical integration of the analytical formula in
(13), with simulations for the superposition model, for the
fixed single transmitter case.

In Figure 7 we compare the plots of the coverage probability
from the numerical integration of the analytical formula in
(15), with simulations for the superposition model, for the
closest cluster case transmitter defined in subsection V-B.

As we can see, the simulations and the numerical analytical
results fit perfectly, both for larger values of β, like β = 4,
and for critical ones, like β = 2.5.
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Fig. 6. Validity of the analysis for the superposition model for the fixed single
transmitter.
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Fig. 7. Validity of the analysis for the superposition model for the closest
cluster association.


