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Abstract

Chirps are signals (or sums of signals) that may be characterized by a local (i.e.
time-dependent) amplitude and a local frequency. Time-frequency representations
such as wavelet representations are well adapted to the characterization problem
of such chirps. Ridges in the modulus of the transform determine regions in the
transform domain with a high concentration of energy, and are regarded as natural
candidates for the characterization and the reconstruction of the original signal. A
couple of algorithmic procedures for the estimation of ridges from the modulus of the
(continuous) wavelet transform of one-dimensional signals are described, together
with a new reconstruction procedure, using only information of the restriction of
the wavelet transform to a sample of points from the ridge. This provides with a
very efficient way to code the information contained in the signal.

1 Generalities

There exists a large class of signals that may be modeled as sums of amplitude and
frequency modulated components, i.e. in the form

f(x) =
∑

k

Ak(x) cosφk(x) (1)

where the relative variations of the amplitudes are assumed to be small compared with
the oscillations, and the local frequencies

νk(x) =
1

2π
φ′

k(x) (2)

are assumed to be slowly varying.
The characterization of such signals and the separation of their components (in the

presence of noise) is a classical problem of signal analysis and signal processing, that goes
back to pioneering work of J. Ville [16]. Applications can be found in many situations, such
as for instance radar/sonar detection and speech processing [13]. Clearly, time-frequency
methods (linear methods such as wavelet or short time Fourier transforms, or bilinear
methods such as Wigner distributions) can provide satisfactory answers, at least in some
situations and for large values of the signal to noise ratio.
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The main point of the analysis is the following heuristics: Let f(x) = A(x) cosφ(x) be
a real-valued function. Time-frequency representations of f(x) happen to “concentrate”

in regions of the time-frequency plane determined by the instantaneous frequency φ′(x).
One may then use the time-frequency localization of these representations to obtain a
characterization of this class of signals (see Flandrin’s book [9] for a review).

A family of algorithms was proposed in 1990 by the group of Marseille (see [8] and [15]
for a survey). These algorithms may be called “differential methods”, in the sense that
they are based on a local study of the variations of the modulus and the phase of the
continuous wavelet (or Gabor) transform. In a noisy situation, it is however necessary to
use additional informations to stabilize the estimation. We shall describe here two methods
in which the a-priori information (namely the smoothness of the ridge, consequence of the
slowly varying character of the frequencies, and the slow variations of the amplitudes) is
taken into account. Our approach (developed in [5]) combines the wavelet transform with
a simulated annealing algorithm [10], and is an “integral-type method”. We also propose
a stable method (also based on an optimization procedure) for signal reconstruction from
the numerically computed ridges.

For the sake of simplicity, our discussion will be restricted to the case of the wavelet
transform. But it is important to notice that since our algorithms deals only with post-
processing of time-frequency transforms, they can be extended to any time-frequency
energetic representations (see for example [6] where another stochastic search algorithm
based on Gabor transform is introduced).

Our notations and conventions are as follows. We shall work with the L2(IR) set-
ting, and we shall concentrate on the case of the continuous (complex-valued) wavelet
transform. If ψ ∈ L1(IR) is such that:

0 < cψ =
∫

∞

0
|ψ̂(ξ)|2

dξ

ξ
<∞, (3)

(where the convention for the Fourier transform is f̂(ξ) =
∫
∞

−∞
f(x)e−iξxdx), i.e. fulfills the

wavelet admissibility condition, then the wavelet transform of a signal f(x) with respect
to ψ is given by:

Tf (b, a) =
1

a

∫
∞

−∞

f(x)ψ

(
x− b

a

)
∗

dx. (4)

We will focus on the case of complex-valued wavelets (namely we assume that ψ(x) ∈

H2(IR) =
{
f ∈ L2(IR), f̂(ξ) = 0 ∀ξ ≤ 0

}
and we set:

ψ(b,a)(x) =
1

a
ψ

(
x− b

a

)
. (5)

The synthesis from wavelet transform is expressed as follows. If f ∈ H2(IR):

f =
1

cψ

∫
∞

0

∫

IR
Tf (b, a)ψ(b,a) db

da

a
. (6)

Since a real-valued signal is completely characterized by its positive frequencies, the case
of real-valued signals is handled similarly.
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2 Ridge detection from the wavelet transform modulus

The keystones of our descriptions will be the “wavelet Plancherel formula”

||Tf ||
2
L2(IR+×IR) = cψ||f ||

2, f ∈ L2(IR). (7)

which allows us to interpret the square-modulus of the continuous wavelet transform as
a “time-scale” energy density, and the following lemma

Lemma 2.1 Let f(x) = A(x) cosφ(x), and let Tf (b, a) be its wavelet transform. Then

Tf (b, a) =
1

2
A(b)eiφ(b)ψ̂(aφ′(b))∗ +O

(
|A′| ,

∣∣∣∣∣
φ′′φ

φ′2

∣∣∣∣∣

)
(8)

which expresses the fact that as long as the remainder can be neglected, the wavelet
transform is essentially concentrated in a neighborhood of a curve of the form

a = ϕ(b) =
ω0

φ′(b)
(9)

for some constant ω0 determined by the wavelet ψ(x) (the so-called central frequency of
the wavelet). Characterizing the signal’s instantaneous frequency by the wavelet transform
can then be achieved (within certain accuracy) by extracting numerically the ridge as a
set of local extrema of the modulus of the wavelet transform.

2.1 Ridge estimation

Let us now turn to the case of noisy signals. Let then

f(x) = A(x) cosφ(x) + noise (10)

be our noisy signal, and let Tf (b, a) be its continuous wavelet transform. It is clear that
for significantly negative values of the SNR, both the modulus and the phase can be
corrupted by the noise. In order to characterize the signal, we introduce more rigidity into
the method, by implementing the a-priori information that the ridge has to be a smooth
function of the time variable.

Denote by Φ the space of all the smooth (say twice continuously differentiable functions
with square integrable derivatives) functions. We then introduce the following penalty
function Ff on the set Φ of ridge candidates ϕ:

Ff (ϕ) = −
∫

|Tf (b, ϕ(b))|
2db+

∫ [
λϕ′(b)2 + µϕ′′(b)2

]
db (11)

Our estimate of the unknown ridge of the wavelet transform of the signal f will be the
function a = ϕ(b) that minimizes Ff (ϕ). It is not very difficult to obtain the Euler equation
associated with this minimization problem (see [5]), and to solve it numerically, say by
some finite differences method. However, the presence of noise may result in the existence
of many local extrema in the wavelet transform modulus, so that any standard algorithm
may be trapped in local extrema of Ff (ϕ). At this point an alternative is provided by a
simulated annealing algorithm (see e.g. [10] [12]) which can jump over the local extrema
to reach the global one(s).
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2.1.1 The algorithm The first step is a discretization of the problem. Assuming that we
start from a wavelet transform defined for the discrete grid [0, 1, ..., B−1]× [0, 1, ..., A−1]
in the time-scale plane, the ridge will take the form of a finite sequence:

{ϕ(0), ϕ(1), ...ϕ(ℓ), ...ϕ(n− 1)} (12)

We then need to specify a neighborhood system for our discretized ridges. The neighbors
we shall consider are the simplest possible ones. The set N(ϕ) of neighbors of ϕ is the set
of finite sequences:

{ϕ(0), ϕ(1), ...ϕ(ℓ)± 1, ...ϕ(n− 1)} (13)

with ℓ = 0, ...n− 1.
Our algorithm is then given by the following iteration:

• Initialization: Start from a given value T0 = C/ ln(2) of the temperature and from
an initial guess: {ϕ0(0), ϕ0(1), ...ϕ0(n− 1)} and compute Ff (ϕ0).

• Step k: If the ridge at step k − 1 is known, say:

ϕk−1 = {ϕk−1(0), ϕk−1(1), ...ϕk−1(n− 1)} .

– Update the temperature with a given schedule, for instance (see [12] for a
discussion of other possible schedules):

Tk =
C

ln(1 + k)
(14)

– Generate randomly (with uniform probability) an integer ℓ ∈ [0, n − 1] and a
number ε = ±1. The candidate ϕck for step k is then

ϕck = {ϕck(0), ϕ
c
k(1), ...ϕ

c
k(ℓ) + ε, ...ϕck(n− 1)} .

– Compute the value of the cost function Ff (ϕ
c
k) and compare it with Ff (ϕk−1).

– If Ff (ϕ
c
k) ≤ Ff (ϕk−1) update the ridge: the new ridge at step k is : ϕk = ϕck.

– If Ff (ϕ
c
k) > Ff (ϕk−1) pick a random number σ uniformly distributed between

0 and 1.

∗ If σ ≤ exp{− [Ff (ϕk)− Ff (ϕk−1)] /Tk} update the ridge: ϕk = ϕck.

∗ otherwise keep the previous ridge: ϕk = ϕk−1.

• Stopping criterion: When the ridge has not changed for a certain number of steps
(fixed in advance), stop the iteration (see [12] for a discussion of some possible
stopping criteria).

Remark: In practice it is useful to run this algorithm on a “smoothed+subsampled”
version of the wavelet transform T (b, a), in order to reduce the computational cost of the
algorithm.
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2.1.2 Pre-denoising In some situations, some “a-priori” knowledge of the noise is avail-
able. We can for instance quote the cases where the power spectrum of the noise is known
in advance, or the cases where a piece of the signal is known to contain only noise (which
gives us the chance to learn about the statistics of this noise). Then one can “correct” the
wavelet transform, by substracting what is supposed to be the “average” contribution of
the noise. This contribution could be chosen to be the expectation IE[|Tn(b, a)|

2] over all the
possible realizations of the additive noise, say n. If an a-priori model for the noise is avail-
able, such a quantity may be estimated by Monte-Carlo simulations, or sometimes by a
direct computation For instance, in the case of a second order stationary noise, with power
spectrum of the form p(ξ) = σ2ξα, it is easy to derive that IE[|Tn(b, a)|

2] ∼ Kασ
2a−α−1;

for this the wavelet ψ(x) has to be such that Kα =
∫
uα|ψ̂(u)|2du <∞.

In the general case, we only have one realization of the noise at hand, and it is
impossible to compute directly this expectation .... But a simple ergodic argument justifies
the use of the estimate:

V (a) =
1

B

∫ B

0
|Tn(b, a)|

2db. (15)

Then the cost function given in equation (11) may be replaced by

F̃f [ϕ] = −
∫ [

|Tf (b, ϕ(b))|
2 − V (ϕ(b))

]
db+

∫ [
λϕ′(b)2 + µϕ′′(b)2

]
db (16)

Such a modification sometimes avoids “trapping” the ridge in regions dominated by the
noise. In the numerical experiments presented in [5], this modified cost function allowed
us to handle values of the SNR up to −6dB. Of course there exists other possibilities for
a-priori models of the noise, which may be implemented in our scheme in a simple way.

2.2 Illustration

Detailed illustration of the algorithms described here may be found in [5], where real
signals corrupted by Gaussian noise with various values of the SNR are presented.

We only exhibit here simple examples, based on an academic signal, a simple model
for a whistle with time-varying tone. We present in figure 2 the modulus (coded with
gray levels) of the wavelet transform of the chirp signal shown in figure 1 and at the top
of figure 2 (the instantaneous frequency is a linear function of time, and the amplitude
is a Gaussian function), together with the associated ridge (the analyzing wavelet is in
this case the Morlet wavelet ψ(x) = exp{−x2/2} exp{iω0x} with ω0 = 2π, which is not
strictly speaking an admissible wavelet, but is such that ψ̂(0) is small enough to be
neglected in double precision calculations). The ridge is easily seen to localize in the most
energetic region of the time-frequency plane. More precisely it reproduces the law given by
equation (9), and the results of the algorithm are seen to be very close to those obtained
with previously developed methods (see [8]).

A similar analysis was done on a noisy copy of the chirp signal (the noise was an
uniform white noise, with signal to noise ratio around 0dB; we used the penalty function
Ff [ϕ] and not F̃f [ϕ]). The results are presented in figure 3 (the noisy signal is displayed
at the top of the figure). The ridge is detected correctly, although the wavelet transform
can be seen to be dramatically perturbed by the noise; this is the effect of the smoothness
penalty of the cost function.
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Figure 1: Chirp signal used to illustrate the reconstruction procedure.

Figure 2: Chirp signal: ridge extraction by the annealing method.

Figure 3: Noisy chirp signal: ridge extraction by the annealing method.
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2.3 The snake approach

The annealing approach described above has several limitations. In particular, the bound-
aries of the ridge are not handled in a systematic way: since one is looking for ridges of
the form a = ϕ(b), the boundary values of b have to be fixed in advance (at least in the
current form of the algorithm). One then has to know in advance the time duration of
the signal under consideration (which is not a trivial problem in the noisy situation), or
to introduce in the algorithm a post-processing stage to determine the actual location of
the amplitude and frequency component under consideration.

An alternative algorithm may be based on the concept of “snakes” (or “active cou-
tour models”) developed in [11] in an image analysis context. In this second method the
boundaries of the ridge adjust dynamically to the likely boundaries of the unknown ridge
of the signal. In addition, this new algorithm can handle more complicated ridges. Finally,
when combined with segmentation methods such as those proposed in [1] it could also
handle multiple ridges. The new algorithm is then more adaptive. On the other hand, the
price to pay is a loss of stability, and the latter can be significant in very noisy situations
(see the discussion in [6].

2.3.1 Snake energy penalization Let us now consider a ridge as a parametrized curve
in the time-frequency plane:

r(s) =

(
ρ1(s)
ρ2(s)

)
. (17)

where s ∈ [0, 1]. The ridge then takes the form of a “snake” in the time-scale plane. To
localize the snake near the location of the maxima of the modulus of the wavelet transform,
we introduce a new cost function, based on the squared-modulus of the wavelet transform,
as well as some additional terms needed in order to ensure the smoothness of the ridge
(now understood as a smoothness requirement both in the b and a directions). Let us set:

Ff (r) = −
∫
|Tf (ρ1(s), ρ2(s)) |

2ds

+
∫ [

λaρ
′

2(s)
2 + µaρ

′′

2(s)
2 + λbρ

′

1(s)
2 + µbρ

′′

1(s)
2
]
ds,

. (18)

where λa, λb, µa and µb are positive constants (in practice, these constante have to be
adjusted to the overall normalization of the signal, and also to the number of nodes of
the discretized snake). In the “snake terminology” of [11] the second term (containing the
derivatives of ρ1 and ρ2) is the “internal energy” of the snake, and controls the smoothness
and the rigidity of the snake. The first term is the “external energy” or the “image energy”
of the snake, and accounts for the interaction of the snake with the wavelet transform
modulus.

Remark: As before, when some spectral information on the noise is available, it may
be incorporated into the cost function in the form of a renormalization potential V (a),
replacing |Tf (ρ1(s), ρ2(s)) |

2 by |Tf (ρ1(s), ρ2(s)) |
2 − V (ρ2(s)).

Again the associated Euler equations are easily derived (see for instance [11] [5]). An
iterative scheme was proposed in [11] for the numerical solution of these Euler, that has
been widely used since then (see for example [1]). However, as before, such a scheme is
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efficient for smooth data, but not in the case of noisy signals. In addition, in the examples
described in [11], they had to be started quite close to the actual solution, which is not
adequate for the problem we address here. For that reason we turn again to simulated
annealing procedures.

2.3.2 Cost minimization In practice, the snake is a discrete object. A discrete snake
will be a collection of vectors of the form

r = (ρ1, ρ2) = {(ρ1(0), ρ2(0)), (ρ1(1), ρ2(1)), · · · , (ρ1(n− 1), ρ2(n− 1))} . (19)

The integral in the cost function Ff (r) is naturally replaced by a finite sum, taking into
account the values of the snake at the nodes 0, 1, ...n− 1 (see [11] for more details on the
discrete formulation).

Starting from an initial guess r0 = (ρ1,0, ρ2,0) for the ridge, we update it after each
time step by randomly moving (by a given amount δv or δh) a randomly chosen snake
node. The neighborhood system is defined as follows: two neighboring ridges r = (ρ2, ρ2)
and r′1 = (ρ′1, ρ

′

2) can only differ at one point ℓ at most and in such a way that:

{
ρ′2(ℓ) = ρ2(ℓ)± δv and ρ′1(ℓ) = ρ1(ℓ) or
ρ′2(ℓ) = ρ2(ℓ) and ρ′1(ℓ) = ρ1(ℓ)± δh

More precisely, the general algorithm goes as follows 3.

• Initialization: For a given initial value for the temperature, say T0 = C/ ln(2), start
from an initial guess for the ridge:

r0 = {(ρ1,0(0), ρ2,0(0)), (ρ1,0(1), ρ2,0(1)), · · · , (ρ1,0(n− 1), ρ2,0(n− 1))}

and compute the corresponding value Ff (r0) of the cost function.

• Step k: Given the estimate at step k − 1 of the ridge:

– Update the temperature (for instance with the schedule (14).

– Select randomly an integer ℓ ∈ [0, n − 1] and a possible jump: left,right,up or
down. Depending on the result, define the increments εv = 0 or ± δv, εh =
0 or ± δh. For instance, in the case of a left jump, the vertical increment
εv = 0 and the horizontal increment εh = −1, while εh = 1 for a right jump.
The candidate for the ridge at step k is then:

rck =
{
(ρc1,k(0), ρ

c
2,k(0)), (ρ

c
1,k(1), ρ

c
2,k(1)), · · · , (ρ

c
1,k(n− 1), ρc2,k(n− 1))

}

where ρc1,k(j) = ρ1,k−1(j) and ρc2,k(j) = ρ2,k−1(j) for all j 6= ℓ, and ρc1,k(ℓ) =
ρ1,k−1(ℓ) + εv and ρ

c
2,k(ℓ) = ρ2,k−1(ℓ) + εh.

– Compute the value of the cost function Ff (r
c
k) and compare it with Ff (rk−1).

– If Ff (r
c
k) ≤ Ff (rk−1) update the ridge: the new ridge at step k is : rk = rck.

3We give the details of the algorithm in the case of the cost function Ff (r) defined in (18). The same

procedure can be used with the modified cost function F̃f (r).
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– Otherwise, pick a random number σ uniformly distributed between 0 and 1
and:

∗ if σ ≤ exp{− [Ff (r
c
k)− Ff (rk−1)] /Tk} update the ridge: rk = rck.

∗ otherwise keep the previous ridge: rk = rk−1.

• Stopping criterion: When the ridge hasn’t changed for a certain number of steps
(fixed in advance), stop the iteration.

Again, a lot of variations around such a scheme are possible: the neighborhood system,
the temperature schedule and the stopping criterion may be modified.

Remark: In the first method, we introduced a “smoothing + subsampling” procedure,
in order to stabilize the algorithm by reducing its complexity and smoothing the data.
In the case of the “snake” algorithm, the complexity reduction is automatically done by
considering a limited number of nodes to describe the snake. However, it is still useful to
smooth the wavelet transform modulus, to improve the stability of the algorithm.

3 Signal reconstruction from the ridge

We now want to achieve the characterization of the model signal, i.e. the reconstruction
part. For the sake of simplicity we shall restrict ourselves to the case of a single ridge (the
general case of finitely many arbitrary ridges is studied in [6]). We assume that the ridge
can be parametrized as a continuous function: [bmin, bmax] ∋ b →֒ ϕ(b) ∈ (0,∞). A good
starting point could be the result of a ridge estimation procedure such as those presented
in Section 2.1 and in Section 2.3. In any case, one will presumably only know few (sample)
points:

(b1, ϕ1), (b2, ϕ2), · · · , (bn, ϕn)

and the smooth function b →֒ ϕ(b) which we use is merely a guess which one constructs
from the sample points. We use a smoothing spline (but any other kind of nonlinear
regression curve would do as well).

3.1 The problem

The starting point of our analysis is again the heuristics inspired by the lemma 2, from
which we expect that the restriction of the wavelet transform to its ridge (the so-called
skeleton of the wavelet transform) reproduces the behavior of the signal itself (or more
precisely that of its Hilbert transform, see [8] and [15]).

We assume that the values of the wavelet transform of an unknown signal of finite
energy f0(t) are known at sample points (bj, ϕj) which are tentatively regarded as repre-
sentative of the ridge of the modulus of the wavelet transform of the (unknown) signal
f0(t).

Tf0 ((bj, ϕj)) = zj (20)

The set of sample points (bj, ϕj) together with the values zj constitutes the skeleton of
the wavelet transform of the signal to be reconstructed, and we use a smooth function
b →֒ ϕ(b) which interpolates the sample points as our best guess for the ridge of the
modulus of the wavelet transform of f0.
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We look for a signal f(t) of finite energy whose wavelet transform Tf (b, a) satisfies:

Tf (bj, ϕj) = zj, j = 1, · · · , n (21)

and has the graph of the function ϕ(b) as ridge4 .

The signal f(x) solving this problem will be denoted f̂(x).

3.2 Penalization

We shall solve the reconstruction problem via the solution of an optimization problem.

We then look for a signal f(t) whose wavelet transform Tf (b, a) has the prescribed
values at the sample points of the ridge, i.e. which satisfies the constraints (21) while the
L2-norm in the scale variable a (for b fixed) of the modulus Mf (b, a) = |Tf (b, a)| is kept
to a minimum (this is meant to enforce the localization of the wavelet transform near the
ridge). In other words we search for a signal f(t) which minimizes the functional:

F1(f) =
1

cψ

∫
db
∫ da

|a|
|Tf (b, a)|

2 = ||f ||2 (22)

while its wavelet transform has the prescribed values at the sample points of the ridge.
Since the cost function F1(f) is a quadratic form in the unknown function f , the solution
is easily computed by means of the use of Lagrange multipliers (see e.g. [3]). A solution is
obtained as a linear combination of the wavelets ψ(bj ,ϕj) at the sample points of the ridge,
the coefficients being given by the solution of a n× n linear system.

Such a reconstruction procedure is very similar to the reconstructions obtained by
restricting the wavelet transform to its skeleton over its ridges, as suggested by lemma 2.

However, this solution is not completely satisfactory, in particular, in the case where
the sampling of the ridge is a coarse one. It also ignores the assumption that the restriction
of the modulus |Tf (b, a)| to the ridge is smooth and slowly varying. In order to force the
solution of the constrained optimization problem to respect this requirement, we add the
following contribution to the cost function:

F2(f) =
∫ bmax

bmin

(
|
d

db
Tf (b, ϕ(b))|

2 −
ω2
0

ϕ(b)2
|Tf (b, ϕ(b))|

2

)
db (23)

viewed as an approximation of the more natural one, which is unfortunately not a
quadratic form

F̃2(f) =
∫ bmax

bmin

∣∣∣∣∣
d

db
|Tf (b, ϕ(b))|

∣∣∣∣∣

2

db, (24)

and consider the minimization of the cost function:

inf F (f) = inf (F1(f) + ǫF2(f)) (25)

where the free parameter ǫ > 0 can be chosen to control the relative importance of the
two contributions to the penalty. Consequently our reconstruction is given by the solution
of the constrained optimization problem (25), subject to the linear constraints (21).

4An alternative would consist in constraining only on the modulus of the wavelet transform at the
sample points on the ridge, and to use the ridge information to reconstruct the phase; we won’t discuss
this approach here.
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3.3 Solution of the minimization problem

A simple computation shows that the cost function may be expressed as:

F (f) =
∫ ∫

Q(x, y)f(x)f(y) dxdy

where the kernel Q(x, y) is defined as follows:

Q(x, y) = δ(x− y) + ǫ
∫ db

ϕ(b)4

{
ψ

(
x− b

ϕ(b)

)
∗

ψ

(
y − b

ϕ(b)

) [
ϕ′(b)2 − ω2

0

]

+ ψ′

(
x− b

ϕ(b)

)
∗

ψ′

(
y − b

ϕ(b)

)[
(x− b)(y − b)

ϕ(b)2
+ 1 +

x− 2b+ y

ϕ(b)

]

+ ψ

(
x− b

ϕ(b)

)
∗

ψ′

(
y − b

ϕ(b)

)
ϕ′(b)

[
1 +

y − b

ϕ(b)

]
(26)

+ ψ′

(
x− b

ϕ(b)

)
∗

ψ

(
y − b

ϕ(b)

)
ϕ′(b)

[
1 +

x− b

ϕ(b)

]}
.

(For the purpose of practical applications, the kernel Q(x, y) becomes a finite matrix,
whose entries can be computed using formula (26)).

From this point on the procedure introduced in [3] can be used to reconstruct the
signal. Let us first introduce the pseudo-wavelets

ψ̃j(x) = Q−1ψ(bj ,ϕj), j = 1, · · · , n. (27)

Then there exist complex numbers λ1, · · ·, λn (the Lagrange multipliers of the problem)
such that the solution f̂ of the optimization problem is given by the formula:

f̂(x) =
n∑

j=1

λjψ̃j(x) (28)

Defining the matrix M by

Mkℓ = 〈ψ̃k, ψ(bℓ,ϕℓ)〉 = 〈Q−1ψ(bj ,ϕj), ψ(bℓ,ϕℓ)〉 (29)

we finally obtain the values of the Lagrange multipliers as follows

λj =
∑

ℓ

(
M−1

)
jℓ
zℓ (30)

The results of the discussion of this section can be summarized in the following algo-
rithm.

1. determination of a sampling (b1, ϕ1), · · · , (bn, ϕn) of the ridge,

2. construction of a smooth estimate b →֒ ϕ(b) of the ridge from the sample points,
for instance via spline interpolation,

3. computation of the matrix Q(x, y) of the penalty along the ridge estimate,
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4. computation of the reconstruction wavelets ψ̂j = Q−1ψbj ,ϕj
at the ridge sample

points of the time-scale plane,

5. computation of the coefficients λj.

The solution f̂ to the reconstruction problem is then given by formula (28).
As we shall see in the next illustrations, the matrix of the kernel Q(x, y) has a very

simple structure. It is then very likely that it may be computed in an efficient way. This
would speed up steps 3 and 4 of the reconstruction algorithm (these steps are the most time
consuming part of the algorithm; in particular we used a numerical integration procedure
for the illustration of the next section).

Remark: An alternative to the penalty (22) is given by the following one

F̃1(f) =
1

cψ

n∑

k=1

∫ da

|a|
|Tf (bk, a)|

2 (31)

that only uses the samples of the ridge. The advantage of such a formula is that it does
not penalize the modulus of the wavelet transform in between ridge samples.

3.4 Illustration

To illustrate the method, we present in figures 4 and 5 the chirp signal reconstructed from
the ridge using the above described procedure (figure 4), and the difference between the
reconstructed signal and the original (figure 5). The signal (see figure 1) is a 128 samples
one, and the number of values of the wavelet transform used here (i.e. the number of
samples (bk, ϕ(bk))) is of the order of 30. The quality of reconstruction is quite good (the
order of magnitude of the error is seen to be about 2%).

The kernel Q(x, y) (see (26)) was evaluated using a standard Romberg numerical
integration routine and its modulus is displayed (coded with gray levels) in figure 6.
It is interesting to notice that the kernel has a very simple shape (Q(x, y) − δ(x − y)
is diagonal dominant, as well as Q(x, y) and Q−1(x, y)). It is then very likely that its
numerical evaluation can be performed efficiently using adapted methods, see [2]). In
addition, the complete kernel is in general a perturbation of the identity, so that for ǫ
small enough, standard iterative methods may be used to evaluate Q−1.

Again, more detailed illustrations may be found in [5].

4 Final remarks

Let us stress that the “ridge identification + reconstruction” algorithm may be called
an adaptive one. Indeed, it only uses information from the region in the time-frequency
plane where the signal is localized. No threshold is needed here; the algorithm in some
sense forces to zero the irrelevant regions of the time-frequency plane, as would do the
non-linear thresholding methods.

Let us also stress that the method is really dedicated to chirp-like signals, i.e. signals
that may be characterized by a ridge. Similar methods may probably be adapted to other
situations, such as singular or transient signals (see [4]).
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Figure 4: Chirp signal reconstructed with the above procedure.
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Figure 5: Difference between original and reconstructed chirp signals.

Figure 6: Matrix representation of the kernel |Q(x, y)− δ(x− y)|.
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