François Laudenbach 
email: francois.laudenbach@univ-nantes.fr
  
Carlos Moraga Ferrándiz 
  
Carlos Moraga 
  
Ferrándiz Homoclinic 
  
Homoclinic bifurcation in Morse-Novikov theory a doubling phenomenon

Keywords: 2010 Mathematics Subject Classification. 57R99, 37B35, 37D15 Closed one-form, Morse-Novikov theory, gradient, Kupka-Smale, homoclinic bifurcation

teaching and research institutions in France or abroad, or from public or private research centers.  

May 20, 2019

Homoclinic bifurcation in Morse-Novikov theory, a doubling phenomenon

François Laudenbach & Carlos Moraga Ferrándiz

Abstract. We consider a compact manifold of dimension greater than 2 and a differential form of degree one which is closed but non-exact. This form, viewed as a multi-valued function has a gradient vector field with respect to any Riemannian metric. After S. Novikov's work and a complement by J.-C. Sikorav, under some genericity assumptions these data yield a complex, called today the Morse-Novikov complex. Due to the non-exactness of the form, its gradient has a non-trivial dynamics in contrary to gradients of functions. In particular, it is possible that the gradient has a homoclinic orbit. The one-form being fixed, we investigate the codimension-one stratum in the space of gradients which is formed by gradients having one simple homoclinic orbit. Such a stratum S breaks up into a left and a right part separated by a substratum. The algebraic effect on the Morse-Novikov complex of crossing S depends on the part, left or right, which is crossed. The sudden creation of infinitely many new heteroclinic orbits may happen. Moreover, some gradients with a simple homoclinic orbit are approached by gradients with a simple homoclinic orbit of double energy. These two phenomena are linked.

1. Introduction 1.1. Morse-Novikov Theory setup. We are given a closed connected n-dimensional manifold M equipped with a closed differential form of degree one α of type Morse, meaning that its zeroes are non-degenerate. In other words, the local primitives f loc of this 1-form are Morse functions. Morse-Novikov Theory deals with the case where α is non-exact, that is the cohomology class u of α is non-zero in H 1 (M ; R). The set of zeroes of α will be denoted Z(α); each zero p ∈ Z(α) has a Morse index i(p) ∈ {0, . . . , n}. The set of zeroes of index k is noted Z k (α).

Since the undeterminacy of f loc is just an additive constant, for any Riemannian metric the descending or negative gradient -∇f loc is globally defined. Such a vector field X will be said an α-gradient. The zeroes of X coincide with the zeroes of α and are hyperbolic. Therefore, each zero p of α has a stable manifold W s (p, X) and an unstable manifold W u (p, X). Both are manifolds which are injectively immersed 1 in M ; the unstable (resp. stable) manifold is diffeomorphic to R i(p) (resp. R n-i(p) ). In the present article, we will point out some dynamical particularities of gradients of multivalued Morse functions, according to the terminology introduced by S. Novikov for speaking of Morse closed 1-forms [START_REF] Novikov | Multivalued functions and functionals. An analogue of the Morse theory[END_REF].

By Kupka-Smale's theorem [START_REF] Peixoto | On an approximation theorem of Kupka and Smale[END_REF][START_REF] Palis | Geometric theory of dynamical systems : an introduction[END_REF], generically among the α-gradients the invariant manifolds W u (p, X) and W s (q, X) are mutually transverse for every p, q ∈ Z(α). Note that this property is not open in general. A vector field whose zeroes are hyperbolic and which fulfils this transversality property will be named a Kupka-Smale vector field in what follows though the classical definition is more restrictive;2 for brevity, we shall speak of KS vector fields. In that case, if an orbit of X is a connecting orbit going from p to q then, as in Morse Theory, we have (1.1) i(p) > i(q).

In particular, as p = q such an orbit is heteroclinic.

1.2.

A key fact. Let us define the α-length of an α-gradient orbit by (1.2) L( ) :=α.

1.3. Introduction to the Morse-Novikov complex.

In our paper, the Morse-Novikov complex is just a tool for encoding a part of the dynamics of α-gradients: namely, the count of orbits connecting two zeroes whose Morse indices differ by one. We adopt a point of view which is due to J.-C. Sikorav [START_REF] Sikorav | Points fixes de difféomorphismes symplectiques, intersections de sous-variétés lagrangiennes, et singularités de 1-formes fermées[END_REF]. For him, the universal Novikov ring Λ u is some completion of the group ring Z[π 1 (M, * )] of the fundamental group associated with the cohomology class [α] = u (see Novikov Condition (3.3)).

The Morse-Novikov complex is only defined when the α-gradient X is Kupka-Smale. As a graded module, N C * (α, X) in degree k is the free module generated by Z k (α) over the ring Λ u . Each unstable manifold W u (p, X) is oriented arbitrarily. The differential ∂ X : N C k (α, X) → N C k-1 (α, X) has the following form on a generator p ∈ Z k (α):

(1.3) ∂ X p = q∈Z k-1 (α)   γ∈Γ q p n γ (p, q)γ   q
Here, n γ (p, q) is a relative integer, Γ q p denotes the set of homotopy classes of paths from p to q. As the unstable manifolds are oriented, and hence, the stable manifolds are co-oriented, each connecting orbit from p to q carries a sign (once some conventions are fixed). The integer n γ (p, q) is the total number of the signs carried by the connecting orbits in the homotopy class γ. If n γ (p, q) = 0, there is at least one connecting orbit from p to q in the class γ. One checks that ∂ X • ∂ X = 0 which justifies the term "complex" in the algebraic sense.

By Stokes' formula, all connecting orbits in a given homotopy class γ have the same α-length. Thus, by the key fact, n γ (p, q) is finite. Moreover, by definition of the Novikov ring Λ u (see [START_REF] Farber | Topology of Closed One-Forms[END_REF] or (3.3)), the incidence coefficient (1.4) n(p, q) := γ∈Γ q p n γ (p, q)γ is an element of Λ u , and hence, ∂ X is a morphism of graded Λ u -rings of degree -1. Note the following: If n(p, q) is an infinite series then there is a sequence (γ j ) of homotopy classes in Γ q p whose α-lengths go to +∞ and such that each γ j contains at least one connecting orbit.

Homoclinic bifurcation.

The complement of the set of KS gradients is stratified thanks to a measure of the default to be a Kupka-Smale vector field. Here, we list the strata 3 of "codimension one":

1) There is a unique pair (p, q) with i(p) = i(q) + 1 and a unique X-orbit from p to q along which W u (p, X) shows a minimal transversality defect to W s (q, X). Crossing this stratum consists of creating or cancelling a pair of orbits of opposite sign. Such a pair does not appear in the counting above mentioned. So, we neglect the strata of this type. 2) There is a unique pair (p, p ), with i(p) = i(p ) and p = p , and a unique connecting orbit from p to p . Crossing such a stratum consists of making a handle slide in the sense of Morse Theory. This is out of the scope of our paper. 3) There is a unique homoclinic orbit from p to itself which is simple4 and non-broken 5 . We are only interested in the study of this bifurcation which we call homoclinic bifurcation. This was also considered by M. Hutchings [START_REF] Hutchings | Reidemeister torsion in generalized Morse theory[END_REF] (see also [START_REF] Ferrándiz | Elimination of extremal index zeroes from generic paths of closed 1-forms[END_REF]). If the gradient X belongs to the stratum S under consideration in 3), the unique homoclinic orbit of X forms a loop with the zero p ∈ Z(α) as a base point. As previously said, the α-length is positive and by Stokes' formula, the loop is not homotopic to zero. Let g denote its homotopy class in π 1 (M, p) and let denote by S g ⊂ S the stratum made of the α-gradients whose homoclinic orbit belongs to the homotopy class g. Actually, S is the disjoint union { g S g | g ∈ π 1 (M, p)}.

From now on, we are going to make some restrictions on the underlying Riemannian metric: we impose the metric to make the α-gradient adapted, meaning that it is linearizable at every zero p ∈ Z(α) with a spectrum in {-1, 1} (See Definition 2.1). Up to some rescaling, this spectrum condition means that in linearizing coordinates about p the α-gradients are radial on both the local stable and unstable manifolds. Let F α denote the space of adapted α-gradients.

This constraint on the specrum (not at all generic) is more informative than a metric yielding a non-resonant spectrum. 6 Our constraint, for which Kupka-Smale's Theorem still applies (among the adapted α-gradients with given germs), enriches the holonomy of so much that there is a well-defined real function χ : S g → R which depends only on the linearized holonomy of from p to itself and is continuous. This function will be constructed in Section 2) and will plays the main rôle in our paper. We name χ the character function. We have the following statement.

Theorem 1.5.

(1) The stratum S g is a codimension-one, co-oriented submanifold of F α of class C ∞ .

(2) Assume n > 2 and S g = ∅. Then, the vanishing locus S 0 g of χ is a non-empty cooriented codimension-one submanifold of class C ∞ in S g meeting each of its connected components.

S + g S - g S 0 g Figure 1.
Local situation in F α of every connected component of S g near S 0

g . The arrows indicate the co-orientation of S g in F α and S 0 g in S g .

Set S + g := {X ∈ S g | χ(X) > 0} and S - g := {X ∈ S g | χ(X) < 0}. We shall see that crossing S g positively through S + g or S - g changes the Morse-Novikov complex in a completely different manner.

1.6. Bifurcation by crossing S g .

Since S g is co-oriented, we can study the generic one-parameter families ν = (X s ) s∈Op(0) which intersect S g positively at X 0 ; here, we use Gromov's notation: Op(0) stands for an open interval which contains 0 and whose size is chosen as small as desired. 7 The next theorem has a complicated statement due to the fact that, in general, s = 0 is not an isolated parameter value of homoclinic bifurcation in the path ν. It becomes isolated if we are given some positive L and ignore in the counting all the heteroclinic orbits of α-length greater than L.

We recall p, the zero of α which is involved in the homoclinic orbit of X 0 . Let q ∈ Z(α) be any zero whose Morse index satisfies i(q) = i(p) -1.

We denote by n(p, q) - L the incidence coefficient from p to q, truncated at the level L when s is negative and close enough to 0. Similary, we have the incidence coefficient n(p, q) + L . The next theorem states how these truncated incidence coefficients change through crossing S g . 8It requires some genericity assumption, namely the property for X ∈ S g to be almost Kupka-Smale (Definition 3.5 and Proposition 3.6). The corresponding residual set is noted S g,∞ . More explanation of the formulas will be given just after the statement.

Theorem 1.7. Let (X s ) s∈Op(0) be a path crossing S g positively at time s = 0. If X 0 ∈ S g,∞ the following holds for every L > 0:

(1) when X 0 belongs to S - g , then n(p, q)

+ L = (1 + g) • n(p, q) - L (mod. L), (2) when X 0 belongs to S + g , then n(p, q) + L = (1 + g + g 2 + • • • ) • n(p, q) - L (mod. L).
Of course, in order to keep the squared differential equal to zero there are similar formulas for the change of the incidence n(q , p) ± L when the Morse indices satisfy i(q ) = i(p) + 1. More precisely, we have:

(3) when X 0 ∈ S - g , then n(q , p)

+ L = n(q , p) - L • (1 -g + g 2 -g 3 + • • • ) (mod. L), (4) when X 0 ∈ S + g , then n(q , p) + L = n(q , p) - L • (1 -g) (mod. L).
The explanation for the product in Formulas ( 1) and ( 2) goes as follows (and similarly for (3) and ( 4)). On the one hand, recall Formula (1.4); namely, n(p, q) = γ n γ (p, q)γ where γ ∈ Γ q p is a homotopy class of paths from p to q and n γ (p, q) is a relative integer which gives the total algebraic number of connecting orbits in that class. On the other hand g is a homotopy class of loops based at p. So, the concatenation g j • γ makes sense and yields a new element in Γ q p . This product is distributive with respect to the sum. Remark 1.8. We have examples described in [START_REF] Laudenbach | A geometric Morse-Novikov complex with infinite series coefficients[END_REF] where the homoclinic bifurcation is isolated. In that case, the truncation by L is unnecessary. There are a pair p, q of zeroes with i(p) = i(q) + 1 and a one-parameter family of adapted α-gradients (X s ) s∈[-ε,+ε] crossing S g positively such that:

-for every s < 0 there is a unique heteroclinic orbit from p to q; -for every s > 0 there are infinitely many heteroclinic orbits from p to q. This infinity which appears at once reads as follows: one heteroclinic orbit in each homotopy class g j • [ ], for j = 0, 1, 2, ...; here, [-] stands for the homotopy class.

The doubling phenomenon.

This relates the strata S g and S g 2 . Look for instance at the above-mentioned example and consider a small generic loop in F α going around the codimension-two stratum S 0 g , beginning by crossing S - g positively and returning by crossing S + g negatively. Then the cumulative factor after one turn is (1g 2 ) while it should be equal to 1; this is a contradiction. The next theorem solves this contradiction. We emphasize that its statement does not need the presence of any other zero of α than the base point of the homoclinic orbit.

Theorem 1.10. Again assume n > 2 and S g = ∅. Then, there exists a codimension-two stratum S 0,0 g in S g , contained in S 0 g , such that S 0 g S 0,0 g is a boundary of class C 1 of S g 2 ,9 more precisely of its positive part S + g 2 .

In dynamical language, if X is an adapted α-gradient in S 0 g (that is, χ(X) = 0) whose homoclinic orbit is , then X can be approximated by an adapted α-gradient X having a unique homoclinic orbit turning twice around . In particular,

[ ] = [ ] 2 in π 1 (M, p).
The precise definition of S 0,0 g yields a decomposition S 0 g S 0,0 g = S 0,- g S 0,+ g (see Definition 4.1). Locally along S 0 g S 0,0 g , the stratum S g 2 approaches from one side of S g only. As a matter of fact, S g 2 approaches S 0,+ g (resp. S 0,- g ) from the positive (resp. negative side) of the co-oriented stratum S g . A precise statement about the latter facts is given in Theorem 4.2 and may be illustrated by Figure 2.

S 0,+ g S 0,- g S + g 2 S + g 2 S 0,0 g Figure 2.
The stratum S 0 g S 0,0 g as a boundary of S g 2 which is grayed.

Remarks 1.11. 1) Our doubling phenomenon evokes the period doubling bifurcation, also called Andronov-Hopf's bifurcation. In this aim, it would be good to know that crossing S g creates (or destroys) a periodic orbit in the free homotopy class g. Shilnikov's theorem [START_REF] Shilnikov | On the generation of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type[END_REF] deals with this question. Unfortunately, it is not applicable here because we are going to use very non-generic Morse charts (only +1 and -1 as eigenvalues of the Hessian at critical points). In counterpart, such charts offer very nice advantages.

2)

We were asked the question whether our results depend on the assumption that the αgradient X is adapted in the sense of Definition 2.1. Most probably, if this assumption is not fulfilled, there is no way to define something which gives so much information as the character function. In this case, all of the three above-stated theorems disappear. 103) We were also suggested to find a more general setting for our results. For instance, one could fix a Riemannian metric and look at vector fields with given hyperbolic zeroes. In this setting, the key fact 1.2 still holds true if the α-length is replaced with the Riemannian energy. Unfortunately, there is no natural stratification of the complement of Kupka-Smale vector fields. Namely, there is no "grading" of the homoclinic orbits based at a zero of the considered vector fied. For instance, one faces, in general, a defect of equicontinuity of sequences of the homoclinic orbits in a given homotopy class. Therefore, we do not see any natural generalization of our study.
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Homoclinic bifurcation, orientation and character

We are focusing on homoclinic bifurcations even though some of the statements hold true for other bifurcations (see list in Subsection 1.4). We consider an α-gradient X with a simple homoclinic orbit based at some zero p ∈ Z(α) in the homotopy class g ∈ π 1 (M, p). In this section, we are going to show that if the Morse coordinates about p are simple in the sense of Definition 2.1 then the Morse model M p in these coordinates allows us to enrich the holonomy of with some specific information. From this latter we deduce the character function which is the key new tool of the paper. Finally, we prove Theorem 1.5. Definition 2.1. 1) For each zero p of α of index i(p) = i, simple Morse coordinates about p are coordinates where the form α is equal to the differential of the standard quadratic form

Q i := 1 2 -x 2 1 + . . . -x 2 i + x 2 i+1 + . . . + x 2 n .
2) An α-gradient X is said to be adapted if for every p ∈ Z(α) there are simple Morse coordinates about p such that X coincides with the standard descending gradient X i of Q i , where i = i(p), that is:

X i = i 1 x k ∂ x k - n i+1 x k ∂ x k .
Such Morse coordinates are also said to be adapted to X.

The property for X to be adapted depends only on the germ of X near Z(α). We recall that for simplicity we fix the germ of adapted α-gradients once and for all at every zero of α; the set of such adapted α-gradients noted F α .

Remark 2.2. The simplicial group G := Diff(Q i ) of germs of diffeomorphisms of (R n , 0) preserving Q i retracts by deformation to O(i, ni), the linear group of isometries of Q i . Indeed, if ϕ ∈ G, the Alexander isotopy ϕ t : x → 1 t ϕ(tx) is made of elements in G for every t ∈ (0, 1] and tends to the derivative ϕ (0)x as t goes to 0. Moreover, O(i, ni) retracts by deformation to its maximal compact subgroup O(i) × O(ni) which is the isometry group of the pair (Q i , X i ).

As a consequence, the space of germs of adapted α-gradients is made of a unique element up to the action of Diff(M rel Z(α)). For this reason, with no loss of generallity, we may fix the germ at p of all the considered adapted α-gradients in what follows for every p ∈ Z(α). This choice will be done for all bifurcation families in Sections 3 and 4.

2.1. Morse model. Given p ∈ Z(α) of Morse index i, a Morse model M p ⊂ M with positive parameters (δ, δ * ) (which we do not make explicit in the notation) is diffeomorphic to the subset of

R i × R n-i made of pairs (x -, x + ) such that Q i (x -, x + ) ∈ [-δ * , +δ * ], |x -| 2 |x + | 2 ≤ δδ * and α| Mp = dQ i . The bottom of M p , that is its intersection with {Q i = -δ * } is denoted by ∂ -M p ;
similarly, the top is denoted by ∂ + M p . The rest of the boundary of M p is denoted by ∂ M p and X i is tangent to it. Note that:

-the group G preserves M p for every parameters (δ, δ * ); -the set of Morse models, as compact subsets of R n , is contractible. The flow of X i is denoted by (X t i ) t∈R . The local unstable (resp. local stable) manifold is formed by the points x ∈ M p whose negative (resp. positive) flow line X t i (x) goes to p when t goes to -∞ (resp. +∞) without getting out of M p . Denote by Σ -the (i -1)-sphere which is formed by the points in the bottom of M p which belong to W u loc (p, X i ); that is (2.1)

Σ -= {(x -, x + ) | |x -| 2 = 2δ * , |x + | = 0}.
This is called the attaching sphere. Similarly, Σ + denotes the co-sphere, the (ni -1)-sphere which is contained in the top of M p and made of points belonging to W s loc (p, X i ), that is (2.2)

Σ + = {(x -, x + ) | |x -| = 0, |x + | 2 = 2δ * }.
We will use the two projections associated with these coordinates:

(2.3)

π + : ∂ + M p → Σ + and π -: ∂ -M p → Σ -.
2.2. Simple homoclinic orbit, tube and orientation. Let X be an adapted α-gradient and let M p be a Morse model adapted to X about p ∈ Z(α). A homoclinic orbit of X based at p is said to be simple when at any point m ∈ the span

T m W u (p, X) + T m W s (p, X) is of codimension one in T m M .
When X is said to have a unique homoclinic orbit it will be meant that this orbit is simple, that is unique with multiplicity.

In this setting, denote by the closure of M p ; it will be named the restricted homoclinic orbit. The end points of are denoted respectively a -∈ Σ -and a + ∈ Σ + . We also introduce a compact tube T around made of X-trajectories from ∂ -M p to ∂ + M p . As is simple, if the tube is small enough there are coordinates on T that we note (x, y, v, z)

∈ R i-1 × R n-i-1 × [-1, 1] × [0, 1] with the following properties: -X is positively colinear to ∂ z , -{z = 0} = T ∩ ∂ -M p and {z = 1} = T ∩ ∂ + M p ; -T ∩ Σ -= {y = 0, v = 0, z = 0} and T ∩ Σ + = {x = 0, v = 0, z = 1}; -= {x = 0, y = 0, v = 0}; -the frame (∂ x , ∂ y , ∂ v ) is tangent to the leaves of α. In what follows, {z = 0} (resp. {z = 1}) will stand for T ∩ ∂ -M p (resp. T ∩ ∂ + M p ).
Orient the unstable W u (p, X). Thus, the stable manifold W s (p, X) is co-oriented. Therefore, we can choose the coordinate v in the tube so that, for every z 0 ∈ [0, 1], the following holds:

(2.4) ∂ v ∧ or (W u (p, X) ∩ {z = z 0 }) = co-or(W s (p, X)).
If the orientation of W u (p, X) is changed, then the co-orientation of W s (p, X) is also changed and the above equation shows that the positive direction of v remains unchanged.

Remark 2.3. It is important to notice that (2.4) tells us nothing about the holonomy along of the foliation defined by X (see the next subsection). Therefore, for a given ∂ v ∈ T a + (∂ + M p ), the tangent vector ∂ v ∈ T a -(∂ -M p ) may have any position not contained in the hyperplane R {∂ x , ∂ y }, depending on X.

2.3.

Holonomy and perturbed holonomy. The foliation of M Z(α) by the orbits of X together its two transversals ∂ ± M p defines a holonomy diffeomorphism H

X : N - X → N + X , that is: -N - X is an open connected neighborhood of {z = 0} in ∂ -M p ; -{z = 1} ⊂ N + X ⊂ ∂ + M p ;
-the restriction of H X to {z = 0} is defined by (x, y, v, 0) → (x, y, v, 1); -for every a ∈ N - X , the image H X (a) belongs to the X-orbit of a. By the connectedness of N - X , the time of the flow X t for going from a to H X (a) is continuous and hence smooth.

The existence of such holonomy diffeomorphism is an open property with respect to X. More precisely, if X is a close enough approximation of X in the C 1 -topology, there is a perturbed holonomy diffeomorphism

H X from an open neighborhood N - X of {z = 0} in ∂ -M p to an open neighborhood N + X of {z = 1} in ∂ + M p . Remark 2.4. It makes sense to speak of H -1 X (Σ + ) ∩ {z = 0}. It is an (n -i -1)-disc C 1 -close to the y-axis in {z = 0}. Similarly, it makes sense to speak of H X (Σ -) ∩ {z = 1}. It is an (i -1)-disc close to the x-axis in {z = 1}.
We now state and prove the first item of Theorem 1.5. Let p ∈ Z(α). For every g ∈ π 1 (M, p), we consider S g ⊂ F α , the set of adapted α-gradients which have a unique homoclinic orbit forming a loop based at p in the homotopy class g; the existence of a broken homoclinic orbit is excluded from S g . Recall u, the cohomology class of the closed form α; if the evaluation u(g) is non-negative then S g is empty.

Proposition 2.5. For every g ∈ π 1 (M, p), the subset S g ⊂ F α is a C ∞ codimension-one submanifold of F α , that is S g is locally defined by a regular real valued equation. This stratum has a canonical co-orientation.

Proof. Let X 0 be any point in S g . Let denote the homoclinic orbit which forms a loop whose class g ∈ π 1 (M, p). We intend to find a regular real valued equation for S g near X 0 . From Remark 2.2 we have the two following properties:

-the local C ∞ stability near p of the adapted α-gradients ; -the acyclicity of the space of Morse models adapted to X 0 near p.

Therefore, the action of the group Diff(M ) on F α reduces us to consider a local slice S ⊂ F α for this action and to look for the smoothness of S g ∩ S. Namely, choose a Morse model M p adapted to X 0 and define S := {X ∈ F α | X = X 0 in M p }. Thanks to the stability property above-mentioned, this S is indeed a local slice for the action of Diff(M ).

We use the tube T and its coordinates as introduced in Subsection 2.2. The Implicit Function Theorem allows us to follow continuously, for X close to X 0 , a connected component D(X) of W u (p, X) ∩ {z = 1} which coincides with {y = 0, v = 0, z = 1} when X = X 0 . Let (2.5)

p v : {z = 1} → {v = 0, z = 1}
denote the projection parallel to ∂ v onto the (x, y)-space. The image p v (D(X)) is transverse to Σ + . The intersection is a point a + (X) which depends C ∞ on X. Let b(X) be the point of D(X) which has the same coordinates as a + (X) except the last coordinate v. Thus, the desired equation is

(2.6) v(b(X)) = 0 .
This is clearly a C ∞ equation. For proving this equation is regular it is sufficient to exhibit a one-parameter family (X s ) s∈Op(0) passing through X 0 and satisfying the following inequality:

(2.7) ∂ s (v(b(X s )) |s=0 > 0.
This is easy to perform by taking

X s = X 0 + s g(x, y, z, v) ∂ v
where g is a small non-negative, supported in the interior of the tube T and has a positive integral along . Let us check that such (X s ) fulfils (2.7). Indeed, at every point of the tube T the vector X s is in the span{∂ v , ∂ z }. Therefore, if H s denotes the perturbed holonomy along of the flow of X s then b(X s ) = H s (a -) and v(b(X s )) = s 1 0 g dz. Hence, (2.7) is fulfilled. Right after (2.4) we noticed that the positive direction of v does not depend on the chosen orientation of the unstable manifolds. Therefore, (2.7) defines a canonical co-orientation of S g .

What we have done is not sufficient for proving the statement. Equation (2.6) only solves the question of existence of a homoclinic orbit at p close to . We still have to prove that S g does not accumulate to itself11 near X 0 . More precisely, it does not exist a sequence X k ∈ S g converging to X 0 such that

(2.8) v(b(X k )) = 0 for every k.
Assume such a sequence exists. Let k be the unique homoclinic orbit of X k based at p. As the sequence (X k ) is close to X 0 , the C 0 -norm of X k is uniformly bounded and then the family ( k ) is equicontinuous. By Ascoli's Theorem, there is a sub-sequence converging C 0 to some line ∞ from p to p.

Let us show that ∞ is a (possibly broken) homoclinic orbit of X 0 . Indeed, let (x k ) be a sequence of points with

x k ∈ k converging to x ∞ ∈ ∞ . Let X t k be the flow of X k . For every given t, the sequence (X t k (x k )) converges to X t 0 (x ∞ ) since X k tends to X 0 as k goes to +∞. Therefore, the piece of ∞ between x ∞ and X t 0 (x ∞ ) is contained in the X 0 -orbit of x ∞ . If x k
is close to , then the restricted homoclinic orbit k lies in the tube T , and hence v(b(X k )) = 0, contradicting our assumption (2.8). Therefore, there exists a small tube T around such that k avoids T for every k and the C 0 -limit ∞ as well. Finally, we get two distinct homoclinic orbits of X 0 based at p, one of them being possibly broken. This is excluded by the very definition of S g . Definition 2.6. Let (X s ) s∈Op(0) be a one-parameter family of adapted α-gradients with X 0 ∈ S g . This family is said to be positively transverse to the stratum S g if it satisfies (2.7). Let (X s ) s∈Op(0) be such a one-parameter family and let H s be the perturbed holonomy along of the flow of X s . Below, we use the coordinates (x, y, v) both in {z = 0} and in {z = 1}. For further use, we are interested in the local solution x s of the equation (2.9)

(x • H s )(x, 0, 0) = 0
which is equal to 0 when s = 0. In this equation, the unknown is the unique point of the x-space in {z = 0} whose image through H s is in the y-space of {z = 1}. And similarly, we consider the solution y s of the equation

(2.10) (y • H -1 s )(0, y, 0) = 0 which is equal to 0 when s = 0.
Lemma 2.7. With the above data and notations, the following equality holds:

(2.11) ∂ s (v • H s ) (x s , 0, 0) |s=0 + ∂ s v • H -1 s (0, y s , 0) |s=0 = 0 .
Proof. A Taylor expansion gives

(v • H s )(x s , 0, 0) = (v • H s )(0, 0, 0) + O(s 2 ) .
That follows from the fact that the velocity of x s is a vector which is contained in the kernel of dv. Similarly, we have:

(v • H -1 s )(0, y s , 0) = (v • H -1 s )(0, 0, 0) + O(s 2 ) . Observe that H 0 (x, y, v) = (x, y, v). Thus, derivating the composed map H -1 s • H s = Id with respect to s at s = 0 yields: ∂ s H -1 s (0, 0, 0) |s=0 + ∂ s H s (0, 0, 0) |s=0 = 0
. Altogether, we get the desired formula.

Equators, signed hemispheres and latitudes.

We introduce some useful notations. Let D k , k ≥ 1, be the closed Euclidean disc of dimension k and radius 1 equipped with spherical coordinates (r, θ) ∈ [0, 1] × S k-1 . A point θ ∈ S k-1 will also be viewed as unit vector θ ∈ T 0 D k .

Suppose that we are given a preferred co-oriented hyperplane ∆ ⊂ T 0 D k . It determines a preferred co-oriented equator E ∆ ⊂ S k-1 . The oriented normal to ∆ determines two poles on the sphere: the North pole ν ∆ on the positive side of D k and the South pole σ ∆ on the negative side; and two open hemispheres of S k-1 respectively noted H + (S k-1 ) and H -(S k-1 ).

Any point θ ∈ S k-1 determines an angle with respect to the North pole ν ∆ . The cosinus of this angle defines a latitude cos ∆ : S k-1 → [-1, 1] defined by the scalar product (2.12) cos ∆ (θ) := ν ∆ , θ .

Proposition 2.8. Every X in S g defines a preferred latitude on both the attaching sphere Σ - and the co-sphere Σ + .

For this aim, we use multispherical coordinates (φ, r, ψ)

∈ S i-1 × [0, 1] × S n-i-1
on each level set of M p (not well defined on the local stable/unstable manifolds). We recall the map (2.13) Desc :

∂ + M p Σ + → ∂ -M p Σ -
obtained by descending the flow lines in M p . This map reads Id in these coordinates.

The preferred latitude that we are going to define on Σ -and Σ + will be called respectively the φ-latitude and the ψ-latitude. We insist that these functions depend on X ∈ S g . We denote them by

(2.14) cos X φ : Σ -→ [-1, 1] and cos X ψ : Σ + → [-1, 1].
When the vector field is clear from the context, these functions will just be denoted cos φ and cos ψ . We shall decorate all the data related to cos φ or cos ψ by using the letter φ or ψ respectively; namely, the preferred hyperplane ∆ φ , the preferred equator E φ ⊂ Σ -, the poles ν φ and σ φ in Σ -, and so on.

Proof. Take any X in S g and denote by its unique homoclinic orbit from p to itself. The end point a + of has coordinates a + = (-, 0, ψ 0 ); as usual with polar coordinates, when the radius is 0 the spherical coordinate is not defined. Let (2.15)

π ψ 0 : ∂ + M p → {ψ = ψ 0 }, π ψ 0 (φ, r, ψ) = (φ, r, ψ 0 ),
be the projection onto the meridian i-disc.

Let H : {z = 0} → {z = 1} denote the holonomy diffeomorphism defined by the vector field

X in the tube T . The image of T ∩ Σ -through H is a (i -1)-disc D ⊂ ∂ + M p .
Due to the transversality condition associated with , this disc is a graph over its projection D ψ 0 := π ψ 0 (D) if the tube is small enough around . Then, (2.16)

∆ φ := T a + D ψ 0 ⊂ T a + {ψ = ψ 0 } is the preferred hyperplane.
As we noticed in Remark 2.3, the vector ∂ v ∈ T a + ∂ + M p is neither tangent to Σ + nor to D, which implies that (2.17)

dπ ψ 0 a + (∂ v ) defines a co-orientation of ∆ φ in T a + {ψ = ψ 0 }. This provides a preferred latitude on the φ-sphere ∂{ψ = ψ 0 } ∼ = S i-1 × {1} × {ψ 0 }. By the canonical isomorphism (2.18) S i-1 × {1} × {ψ 0 } ∼ = S i-1 × {0} × {-} ∼ = Σ -,
the preferred latitude on ∂ {ψ = ψ 0 } descends to some φ-latitude which defines the announced

c X φ : Σ -→ [-1, 1] in (2.14). The φ-equator is the locus {c X φ = 0}, the North pole is ν φ = (c X φ ) -1 (1) etc.
For the ψ-latitude on the co-sphere Σ + , we do the same construction by using the reversed flow and its holonomy H -1 . More precisely, take the image of

T ∩ Σ + through H -1 ; it is a (n -i -1)-disc D ⊂ ∂ -M p centered in a -whose spherical coordinates are a -= (φ 0 , 0, -). Let (2.19) π φ 0 : ∂ -M p → {φ = φ 0 }, π φ 0 (φ, r, ψ) = (φ 0 , r, ψ),
be the projection onto the meridian (ni)-disc and let D φ 0 be the image π φ 0 (D ). Hence, (2.20)

∆ ψ := T a -D φ 0 ⊂ T a -{φ = φ 0 } is the preferred hyperplane. Moreover, ∂ v ∈ T a -∂ -M p is neither tangent to Σ -nor to D , which implies that (2.21) dπ φ 0 a -(∂ v ) defines a co-orientation of ∆ ψ in T a -{φ = φ 0 }.
This yields a preferred latitude on the sphere ∂ {φ = φ 0 }, that can be carried to Σ + by means of the canonical isomorphism

(2.22) {φ 0 } × {1} × S n-i-1 ∼ = {-} × {0} × S n-i-1 ∼ = Σ + .
This defines the announced ψ-latitude cos X ψ in (2.14).

2.5. Holonomic factor and character function. By construction of the ψ-latitude and the ψ-latitude, we have the following splittings:

(2.23)

T a -{z = 0} = T a -Σ -⊕ (Rν ψ ⊕ ∆ ψ ), T a + {z = 1} = (∆ φ ⊕ Rν φ ) ⊕ T a + Σ + .
Given X ∈ S g , recall the homoclinic orbit whose homotopy class is g ∈ π 1 (M, p) and all associated objects that we introduced in Subsection 2.2: the tube T , its coordinates (x, y, v, z) and the holonomy diffeomorphism H : {z = 0} → {z = 1}. It reads Id in the (x, y, v)coordinates and H(a -) = a + . We are free to choose the coordinates of the tube such that the unit tangent vector

∂ 1 v := ∂ v ∈ T a + {z = 1} verifies (2.24) ∂ 1 v = ν φ . The linearized holonomy T a + H -1 maps ∂ 1 v to ∂ 0 v := ∂ v ∈ T a -{z = 0}
. By (2.23), the latter vector decomposes as

(2.25) ∂ 0 v = v x + η ν ψ + v y , where v x ∈ T a -Σ -, v y ∈ ∆ ψ , η ∈ R.
As we pointed in Remark 2.3, the only restriction on the holonomy of X along is that η = 0. Moreover, according to (2.21), the vector ∂ 0 v defines the positive side of the preferred hyperplane ∆ ψ . As a consequence, η must be positive.

Definition 2.9. The holonomic factor associated with X is the positive real number given by

(2.26) η(X) := 1 η > 0 .
The following subsets of S g are respectively called the φ-axis and the ψ-axis of S g :

(2.27) S φ g := X ∈ S g a + (X) ∈ E ψ and S ψ g := X ∈ S g a -(X) ∈ E φ , that we also call the spherical axes. Here, a + (X) and a -(X) stand for the respective extremities of the restricted orbit , where is the unique homoclinic orbit of X in the homotopy class g. Denote the intersection of the axes by: (2.28) S 0,0 g := S φ g ∩ S ψ g which is empty when one axis is so.

Remark 2.10. When the Morse index of S g is equal to 1, then the φ-equator is empty but there are still signed poles. In that case, the φ-latitude takes only the values {-1, +1} and the ψ-axis is empty. When the Morse index of S g equals n -1, then the ψ-equator and the φ-axis are empty and the ψ-latitude is valued in {-1, +1}. If n > 2, these two events do not happen simultaneously. This is the reason for the dimension assumption in Theorem 1.5 [START_REF] Hatcher | Pseudo-isotopies of compact manifolds[END_REF].

We are now ready for defining the important notion of character function togegther with its following ingredients. In order to simplify notations, we introduce the extended φ-and ψ-latitudes to S g by setting for every X ∈ S g :

(2.29) ω φ (X) := cos X φ (a -(X)) and ω ψ (X) := cos X ψ (a + (X)). Definition 2.11. The character function χ : S g → R is defined by:

(2.30) χ(X) := η(X) ω ψ (X) + ω φ (X)
Define S 0 g (resp. S + g , S - g ) as the locus where χ vanishes (resp. is positive, is negative). By the very definition of the latitudes, it is clear that each axis intersects S 0 g along S 0,0 g , as Figure 3 suggests (compare Figure 1).

S + g S - g S 0 g S 0,0 g S φ g S ψ g Figure 3.
The substratum S 0,0 g ⊂ S 0 g as the intersection of the φ-axis with the ψ-axis.

Below, we start giving some information about S 0,0 g and S 0 g from which Theorem 1.5 will be completely proved. Proposition 2.12.

1) The axes S φ g and S ψ g are C ∞ submanifolds of codimension 1 in S g . Moreover, when they are both non-empty their intersection S 0,0 g is non-empty and transverse. Hence, S 0,0

g is a C ∞ submanifold of codimension 2 in S g . 2) If n > 2 the zero set S 0 g = χ -1 (0) of the character function is a non-empty co-oriented C ∞ submanifold of codimension 1 in each connected component of S g . Proof. Let i = i(p) denote the Morse index of the zero p ∈ Z(α) where g is based.
1) The equation of the ψ-axis S ψ g in S g reads with the notations introduced in (2.29) and (2.27):

ω φ (X) = 0.
If the index i is equal to 1, by Remark 2.10, the ψ-axis is empty and there is nothing to prove.

If not, let X 0 ∈ S ψ g . We have to exhibit a germ (X s ) s∈Op(0) of path in S g passing through X 0 such that the s-derivative of ω φ (X s ) at s = 0 is non-zero. Let H s be the local holonomy diffeomorphism of X s from a neighborhood of {z = 0} in ∂ -M p to a neighborhood of {z = 1} in ∂ + M p . Let a -= (φ 0 , 0, -) and a + = (-, 0, ψ 0 ) be the end points of the restricted homoclinic orbit of X 0 . We arrange that H s keeps the π ψ 0 -projection of H s (Σ -) into the meridian {ψ = ψ 0 } ⊂ ∂ + M p independent of s. Thus, the equator E φ is so and the φ-latitude cos φ does not depend on s. Therefore, we are reduced to control the s-derivative of cos φ (a -(X s )).

We recall that every germ of isotopy of the holonomy H 0 lifts to a deformation of X 0 . Then, we are free to choose the holonomy so that s → a -(X s ) ∈ Σ -crosses the non-empty equator E φ transversely at time s = 0. Thus, we are done. For a similar reason, the equation ω ψ (X) = 0 of the φ-axis S φ g is regular. Let us show the property of S 0,0 g when both axis are non-empty. In that case, the Morse index verifies 1 < i < n -1, and it is available to have cos φ (a -) = cos ψ (a + ) = 0, that is S 0,0 g = ∅. Let any X 0,0 ∈ S 0,0 g . We choose a 2-parameter family X s,u ∈ S g whose holonomy H s,u satisfies the following conditions:

(1) the equator E φ is independent of s when u = 0 and ∂ s cos φ (a -(X s,0 )) > 0;

(2) the equator E ψ is independent of u when s = 0 and ∂ u cos ψ (a + (X 0,u )) > 0:

(3) for every (s, u) close to (0, 0), we have a -(X s,u ) ∈ Σ -and a + (X s,u ) ∈ Σ + . Condition (3) guarantees that X s,u runs in S g . Thanks to (1) and ( 2), the evaluation map

(s, u) → (a -(X s,u ), a + (X s,u )) ∈ Σ -× Σ + is transverse to the submanifold E φ × E ψ .
This proves that the system of equations defining S 0,0

g near X 0,0 , namely {ω φ (X) = 0, ω ψ (X)) = 0}, is of rank 2.
2) First, let us prove that the equation χ(X) = 0 has a solution in each connected component of S g . Let X ∈ S g and let a + and a -be the corresponding end point of its restricted homoclinic orbit . Any move of these points in their respective spherelifts to a deformation of X in the space of adapted α-gradients. If Σ + and Σ -are both connected, there is such a move until a - and a + lie in the equators of their respective sphere. Then, X is deformed in S g until it lies in S 0,0 g ⊂ S 0

g ; this answer the question in this case. As n > 2, one of the spheres Σ -and Σ + is not 0-dimensional, say Σ -= S 0 . Then, one can move X in S g and modify the holonomic factor by some homothety for making it less than 1; secondly, knowing that ω ψ (X) = ±1, one moves a -in Σ -and changes X accordingly, keeping the holonomic factor constant, up to reach the locus χ(X) = 0. So, S 0 g is visible in each connected component of S g .

It remains to prove that the equation χ(X) = 0 is regular everywhere. For every X 0 ∈ S 0 g we have to exhibit a germ of path (X s ) s in S g passing through X 0 such that ∂ s χ(X s ) > 0. Let be the restricted homoclinic orbit of X 0 ; let a + ∈ Σ + and a -∈ Σ -be its end points. First, we arrange that the equators E φ and E ψ do not depend on s by requiring that the holonomy H s along the homoclinic orbit of X 0 fulfils the following conditions: -for every s, there is a homoclinic orbit s (the end points of the restricted orbit s are noted a -(X s ) and a + (X s )); -the π ψ 0 -projection of H s (Σ -) into the meridian {ψ = ψ 0 } is constant; -the π φ 0 -projection of (H s ) -1 (Σ + ) into the meridian {φ = φ 0 } is constant. Now, there are two cases depending on whether cos ψ (a + (X 0 )) is equal to 0 or not. If cos ψ (a + (X 0 )) is not 0, the germ of H s at a -(X 0 ) is chosen to be a contraction: its center is a + (X 0 ) and its factor is e s (in the coordinate (x, y, v) of the extremity {z = 1} of the tube T around ). Notice that such a contraction preserves the above requirements for the constancy of the equators. Then, a calculation shows that the holonomic factor is multiplied by the same factor, which implies that ∂ s χ(X s ) > 0 since a ± (X s ) is constant.

Finally, we have to solve the case when cos ψ (a + (X 0 )) = 0. Here, we arrange the holonomy H s so that ∂ s cos ψ (a + (X s )) > 0 and ∂ s cos φ (a -(X s )) = 0, which again implies ∂ s χ(X s ) > 0 since η(X s ) > 0. This finishes the proof of Proposition 2.12. After Proposition 2.5 and Proposition 2.12 we have a complete proof of Theorem 1.5.

2.6.

Normalization of crossing path. The normalization in question will be used for proving Theorem 1.7 and Theorem 1.10. The normalization is achieved by making some group act on M . At the end of the subsection it will be proved that the stratification (S g , S 0 g , S 0,0 g ) is invariant under this action.

In this subsection we use notations as D 1 (0), C 1 (0) which will be used repeatedly in Section 3 (see Notation 3.9). Consider the image H 0 (Σ -∩ {z = 0}) ⊂ ∂ + M p by the holonomy map of X 0 along its homoclinic orbit in the homotopy class g ∈ π 1 (M, p). Let us define

D 1 (0) := H 0 (Σ -) ∩ {z = 1} and C 1 (0) := Desc(D 1 (0))
where Desc is the descent map defined in (2.13). We recall a + = ∩ Σ + (resp. a -= ∩ Σ -) whose spherical coordinate is noted ψ 0 (resp φ 0 ). Definition 2.13. A crossing path (X s ) s∈Op(0) of S g is said to be normalized if it fulfills the following requirements for every s, where H s denotes the perturbed holonomy of X s .

(1) D 1 (0) has to be contained in the preferred hyperplane ∆ φ of the meridian i-disc {ψ = ψ 0 }. s (Σ + ) ∩ {z = 0} has to move in the same meridian disc {φ = φ 0 }. Only the first item will be used to prove Theorem 1.7; the two other items enter the proof of Theorem 1.10. The main tool for normalization by conjugation (see Proposition 2.15) is given by the next lemma about diffeomorphisms of M p . Its proof by Taylor expansion is detailed in the Appendix to [START_REF] Laudenbach | Courants et Théorie de Morse[END_REF].

Lemma 2.14. Let K be a C 1 -diffeomorphism of ∂ + M p of the form (φ, r, ψ) → (φ, r, k(φ, r, ψ)) withk(φ, 0, ψ) = ψ. Then, K uniquely extends to M p as a C 1 -diffeomorphism which is the identity on both stable and unstable local manifolds and which keeps the standard vector field X i invariant. Moreover, the extension K is C 1 -tangent to Id along the attaching sphere Σ -.

It is worth noting that the extension cannot be C 2 in general, even if K is C ∞ . This lemma can be also used by interchanging the roles of ∂ + M p and ∂ -M p and simultaneously the roles of φ and ψ.

Proposition 2.15. Given a positive crossing path (X s ) s of the stratum S g , there exists a C 1diffeomorphism K of M , isotopic to Id M among the C 1 -diffeomorphisms keeping α and M p invariant, such that the crossing path (K * X s ) s carried by K is normalized. Moreover, K may be chosen so that it preserves pointwise.

Notice that the vector field (K * X s ) might only be C 0 . But it is integrable and the associate foliation is transversely C 1 ; its holonomy is changed by C 1 -conjugation.

Proof. 1) We first look for a diffeomorphism K of M carrying (X s ) s to a crossing path which fulfils the first item of Definition 2.13. If the tube T around is small enough D 1 (0) is nowhere tangent to the fibres of the projection π ψ 0 to the meridian disc {ψ = ψ 0 }. As a consequence, its projected disc D ψ 0 is smooth and there exists a smooth map k :

D ψ 0 → Σ + such that D 1 (0) reads D 1 (0) = {(φ, r, k(φ, r)) | (φ, r) ∈ D ψ 0 }.
Since its source is contractible, k is homotopic to the constant map valued in ψ 0 . By isotopy extension preserving the fibres of π ψ 0 , there exists some diffeomorphism K 1 of M p of the form assumed in Lemma 2.14 which maps the given D 1 (0) to D ψ 0 . Therefore, this K 1 extends to M p Since K 1 is isotopic to Id through diffeomorphisms of the same type, its extension K 1 to M p also extends to M with the same name. Moreover, the isotopy of K 1 to Id M is supported in a neighborhood of M p and preserves each level set of a local primitive of α. Since Σ ± are kept fixed by K 1 , it is easy to get that is fixed by K 1 .

After having carried X 0 by this K 1 , we are reduced to the case where D 1 (0) is contained in the meridian disc {ψ = ψ 0 }. Decreasing the radius of the tube T if necessary, the tangent plane T m D 1 (0) is almost orthogonal to the pole axis directed by ν φ at each m ∈ D 1 (0). This implies that, for every r ∈ (0, 1), the disc D 1 (0) is transverse to the (i -1)-sphere of radius r in {ψ = ψ 0 }.

The image C 1 (0) of D 1 (0) by Desc is diffeomorphic to S i-2 × (0, 1] and contained in the spherical annulus A ψ 0 := {(φ, r, ψ 0 ) | φ ∈ Σ -, r ∈ (0, 1]}. By tangency of D 1 (0) with the preferred hyperplane ∆ φ , the end of C 1 (0) when r → 0 compactifies as the φ-equator E φ ⊂ Σ -. Moreover, C 1 (0) is transverse (inside A ψ 0 ) to the sphere Σ -×{(r, ψ 0 )} for every r ∈ (0, 1), since the corresponding assertion holds in ∂ + M p . Thus, there is an annulus C eq ⊂ E φ × [0, 1] × {ψ 0 } such that C 1 (0) reads as the graph of some map κ : C eq → Σ -valued in the complement of the poles. Then, κ is homotopic to the map (φ, r) → φ from C eq to the equator E φ of Σ -.

By isotopy extension preserving each sphere Σ -× {(r, ψ)}, we have some diffeomorphism K 2 of ∂ -M p of the form (φ, r, ψ) → (κ(φ, r, ψ), r, ψ) which pushes C 1 (0) to its flat position C eq and satisfies κ(φ, 0, ψ) = φ. By applying Lemma 2.14 "up side down", K 2 extends to M preserving M p with its standard gradient. On the upper boundary of the Morse model, this means that K 2 pushes D 1 (0) to an (i -1)-disc in the hyperplane ∆ φ by some diffeomorphism tangent to Id in a + . As for K 1 , this K 2 may be chosen so that is fixed pointwise. The composed diffeomorphism K 2 • K 1 is as desired.

2) We now prove the last two items. It consists just in an easy addition to what we have done above. The diffeomorphism K 1 keeps fixed pointwise. Let π φ 0 be the projection of ∂ -M p ∼ = (Σ -× {φ = φ 0 }) onto its second factor. The tangent space in a -to Σ -, D (0) and J 0 are independent and their span is egal to T a -∂ -M p . Then, after shrinking the tube T if necessary π φ 0 embeds the union (∪ s D (s)) ∪ J 0 into {φ = φ 0 }; notice that due to the nonvanishing of the velocity with respect to s the union (∪ s D (s)) is an (ni)-disc transverse to the fibres of π φ 0 .

As a -is far from the equator E φ , it is easy to find a common diffeomorphism K 2 of ∂ -M p preserving the coordinates (r, ψ) such that it maps C 1 (0) to the equatorial annulus C eq -the job required for Item (1)-and simultaneously (∪ s D (s)) ∪ J 0 onto its π φ 0 -image in the meridian {φ = φ 0 } by diffeomorphism. This complete the proof.

Remark 2.16. Proposition 2.15 holds true for a finite dimensional family. For instance, if we are given a two-dimensional germ (X s,t ) s,t adapted to the pair (S g , S 0 g ) in X 0,0 -in the sense of Definition 4.1-then each crossing path γ t := (s → X s,t ) of S g has a normalization by some C 1 -diffeomorphism K t depending continuously on t in the C 1 -topology.

Notation 2.17. Let G ± be the groups of diffeomorphisms of M isotopic to Id M which fixe the homoclinic orbit pointwise, preserve the closed one-form α and its standard gradient in M p , and have the following form:

-the restriction of every element in

G + to ∂ + M p read φ, r, ψ) → (φ, r, k + (φ, r, ψ) with k + (φ, 0, ψ) = ψ; -the restriction of every element in G -to ∂ -M p reads (φ, r, ψ) → k -(φ, r, ψ), r, ψ with k -(φ, 0, ψ) = φ.
Proposition 2.18. The action of the groups G + and G -on the space of adapted α-gradients preserves the strata S g , S 0 g and S 0,0 g . Proof. We do it for G + . Let G ∈ G + and X 0 ∈ S g . Since G fixes the homoclinic orbit pointwise, the carried vector field G * (X 0 ) has the same homoclinic orbit. According to the form of the restriction of G to the upper boundary of M p , the projection of D 1 (0) to the meridian disc is unchanged. Therefore, the φ-equator is preserved. Looking in the lower boundary, one derives that the φ-latitude of a -(X 0 ) = Σ -∩ is preserved.

Consider the disc D 1 (0) := H -1 X 0 (Σ + ). Recall from Lemma 2.14 that G| ∂ -Mp is tangent to Id at every point of Σ -. Therefore, the tangent space T a -D 1 (0) remains invariant by G. It follows that the ψ-equator is not changed, and hence, the ψ-latitude of a + is preserved. Thus we have the invariance of the spherical axes and of their intersection S 0,0 g . It remains to show that the character function is invariant. We already have seen the invariance of the latitudes. The last term to control is the holonomic factor η(X 0 )-resp. η(G * (X 0 ))defined in (2.25). This factor remains unchanged by the action of G thanks to the invariance of:

-∂ 1 v by invariance of the φ-latitude (see Equation (2.24), -∂ 0 v since DG a -= Id, -the framing in which ∂ 0 v decomposes (this framing is preserved by invariance of the ψ-latitude).

3.

Change in the Morse-Novikov complex 3.1. A groupoid approach. A groupoid G is a small category where every arrow is invertible. The set of objects in G is noted G 0 and the set of arrows (or morphisms) is noted G 1 . Given two objects p, q ∈ G 0 , the set of arrows from p to q is noted Hom(p, q). The identity arrow at p is noted 1 p ∈ Hom(p, p). The map p → 1 p embeds G 0 into G 1 ; and hence, G may be identified with its set of arrows endowed with its subset of identity arrows. The maps source and target, s, t : G 1 → G 0 are defined by s(g) = p and t(g) = q for every morphism g ∈ Hom(p, q). Definition 3.2. The fundamental groupoid Π of the manifold M is defined as follows: its objects are the points of M and if (p, q) is a pair of points Hom(p, q) is the set of homotopy classes of paths from p to q. If γ is a such a path, its homotopy class [γ] will be called the Π-value of γ.

The closed 1-form α (whose cohomology class is noted u) defines a groupoid morphism

(3.2) u α : Π → R, g → γ α,
where g is the Π-value of a path γ in M and R is seen as a groupoid with a single object 0. The restriction of any such u α to the fundamental group π 1 (M, p) clearly coincides with the group morphism associated with u.

We denote by Π α the full subcategory of Π whose set of objects is the set Z(α), the zero set of α. By Remark 3.1, when α is Morse and Z(α) is non-empty, we may consider the groupoid ring

Z[Π α ]. A formal series λ ∈ Z[[Π α ]] fulfills the Novikov Condition if (3.3) for every L ∈ R, the set supp(λ) ∩ u -1 α (L, +∞) is finite. Denote by Λ u ⊂ Z[[Π α ]
] the subset of formal series satisfying the Novikov Condition. It can be easily checked that the product rule given in Remark 3.1 also gives a ring structure to Λ u , having the same identity element as Z[Π α ]. We call Λ u the Novikov ring associated with α.

Example 3.3. Let p ∈ Z(α) and g ∈ π 1 (M, p) with u(g) < 0 (for instance, the Π-value of a homoclinic orbit of some α-gradient). The following formal series are elements of the Novikov ring:

(3.4) ∞ j=1
g j and ∞ j=1 (-1) j g j Indeed, the Novikov Condition (3.3) is fulfilled since u α (g j ) = j.u α (g) which goes to -∞ as j → +∞. Thus, these two series belong to the Novikov ring Λ u . In particular 1 + g + g 2 + . . . is a unit whose inverse is 1g.

3.

2. The Morse-Novikov complex. Let X be an α-gradient which is assumed KS. An orientation is arbitrarily chosen on the unstable manifold W u (p, X) for each zero p ∈ Z(α). We are going to define a chain complex C * (α), ∂ X of Λ u -modules; it is graded by the integers i ∈ {0, 1, . . . , n = dim M }. This complex will be called the Morse-Novikov complex associated with the pair (α, X).

For each degree i, the module C i (α) is the left Λ α -module freely generated by Z i (α), the finite set of zeroes of α of Morse index i. The Λ u -morphism ∂ X * : C * (α) → C * -1 (α) must have the form following form on each generator of C i (α):

(3.5) ∂ X * (p) = q∈Z * -1 (α) n(p, q) X q,
where the coefficient of q has to be an element of Λ u (called the incidence of p to q). This coefficient n(p, q) X is the algebraic count which we are going to define. Let Orb X (p, q) denote the set of connecting orbits of X from p to q. First, we define the sign of a connecting orbit ∈ Orb X (p, q). Given a point x ∈ , the sign ε is defined by the following equation:

(3.6) ε X(x) ∧ co-or (W s (q, X)) = or (W u (p, X)) .
This definition is clearly indepedent of x ∈ .

Definition 3.4. Assume the α-gradient X is KS. The Morse-Novikov incidence associated with the data (p, q, X), p ∈ Z i (α), q ∈ Z i-1 (α), is defined by:

(3.7) n(p, q) X := ∈Orb X (p,q)
ε g

where g denotes the Π-value of the connecting orbit .

By Proposition A.1, this coefficient fulfills the Novikov Condition (3.3). So, it is an element of Λ u . Moreover, the map ∂ X as in (3.5) is indeed a differential; this can be found in [START_REF] Latour | Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham[END_REF]. The resulting C * (α), ∂ X is known as the Morse-Novikov complex (see [START_REF] Novikov | Multivalued functions and functionals. An analogue of the Morse theory[END_REF], [START_REF] Sikorav | Points fixes de difféomorphismes symplectiques, intersections de sous-variétés lagrangiennes, et singularités de 1-formes fermées[END_REF]).

We denote by Orb X L (p, q) the set of connecting orbits from p to q whose α-length L( ) is less than a fixed L > 0. Since these orbits verify the inequality u α (g ) > -L, we are led to define a L-truncation map T L : Λ u → Z[Π α ] by:

(3.8) T L (λ) := uα(g)>-L n g (λ)g.
Two elements λ, µ ∈ Λ α are said to be equal modulo

L if T L (λ -µ) = 0.
Finally, the L-incidence is defined as follows:

(3.9) n(p, q) X L :=

∈Orb X L (p,q) ε g ∈ Z[Π α ].
Of course we have T L n(p, q) X = n(p, q) X L .

3.3. Effect of homoclinic bifurcation on the incidence. Consider a generic oneparameter family of addapted α-gradients (X s ) s such that X 0 ∈ S g . By definition, X 0 has a unique homoclinic orbit connecting p ∈ Z(α) to itself whose Π-value is g. Denote the index of p by i.

The next definition specifies some genericity conditions that will be needed to prove the theorem below. The rest of this section is devoted to its proof and consequences. Definition 3.5. Let L > 0.

1) The α-gradient X is said to be Kupka-Smale up to L if, for every pair of zeroes p, q ∈ Z(α) and every X-orbit from p to q withα < L, the unstable and stable manifolds, W u (p, X) and W s (q, X), are transverse along . The subset of F α formed with such α-gradients is noted KS L .

2) An α-gradient X ∈ S g is said to be almost Kupka-Smale up to L, if the preceding transversality condition is fulfilled except for the unique homoclinic orbit whose Π-value is g. The subset of S g formed with such elements is noted S g,L .

3) The α-gradient X ∈ S g is said to be almost Kupka-Smale if it is KS up to L for every L > 0. These gradients are the elements of S g,∞ := L S g,L .

Proposition 3.6.

1) The subspace S g,L is open and dense in S g .

2) The subspace S g,∞ is residual in S g .

Proof. 1) One checks that the constraint to have a unique homoclinic orbit with a given Π-value does not prevent us from arguing as Peixoto [START_REF] Peixoto | On an approximation theorem of Kupka and Smale[END_REF].

2) This item is a little more subtle since S g is not a complete metric space. But it is separable. Then, it is sufficient to prove that, for any closed ball B in S g , the intersection S g,∞ ∩ B is residual in S g ∩ B. And now, we are allowed to follow Peixoto word for word. More details are left to the reader. Notation 3.7. It is easily seen that S g,L is open in S g ; and, if X ∈ S g,L there is an arbitrarily small neighborhood U of X in F α such that U S g is made of two connected components in KS L . In particular, if (X s ) s is a path which intersects S g transversely at X 0 ∈ S g,L the gradient X s is KS up to L for every s = 0 close enough to 0.

Therefore, for every q ∈ Z i-1 (α) the L-incidence n(p, q) Xs L is well defined and independent of s when s ∈ O + (resp. s ∈ O -); it is denoted by n(p, q) ± L respectively. Here, the symbol O - stands for an open interval (-, 0) whose size is not specified and which is as small as needed by the statement; and similarly for O + . Theorem 3.8. Let (X s ) s be a path of adapted α-gradients which intersects S g transversely at X 0 and let L > -u α (g). Assume X 0 is almost Kupka-Smale up to L, that is X 0 ∈ S g,L . Then we have the following. When (X s ) s intersects the stratum S g positively, the next relations hold in Λ u :

(1) if X 0 ∈ S + g , then n(p, q

) + L = 1 + g + g 2 + g 3 + . . . • n(p, q) - L (mod. L), (2) if X 0 ∈ S - g , then n(p, q) + L = 1 + g • n(p, q) - L (mod. L).
When (X s ) s intersects the stratum S g negatively, we have:

(1') if X 0 ∈ S + g , then n(p, q) + L = 1 -g • n(p, q) - L (mod. L), (2') if X 0 ∈ S - g , then n(p, q) + L = 1 -g + g 2 -g 3 + . . . • n(p, q) - L (mod. L).
It is worth noticing the reason for the truncation: in general, the bifurcation at s = 0 is not isolated among the bifurcation times of the path (X s ) s . When it is isolated, the truncation is not needed any more; this will be the case in [START_REF] Laudenbach | A geometric Morse-Novikov complex with infinite series coefficients[END_REF].

Proof of (1) ⇐⇒ (1 ) ⇐⇒ (2) ⇐⇒ (2 ). The first equivalence is obvious since 1g is the inverse of 1 + Σ ∞ j=1 g j ; and similarly for the last equivalence. Let us show the middle equivalence. It is obtained by changing the vector ∂ v into its opposite in the coordinates of the tube around the homoclinic orbit of X 0 . This amounts to put a sign in Formula (2.4). The latter change has three effects:

i) It reverses the co-orientation of S g . Hence, positive and negative crossings are exchanged. ii) The character is changed into its opposite since the φ-and ψ-latitudes are. Thus, both sides of S 0 g are exchanged.

iii) The homoclinic orbit becomes negative in the following sense: if the φ-sphere is seen as the boundary of the meridian disc at a + , the new positive hemisphere projects to the preferred hyperplane ∆ φ (whose orientation is unchanged) by reversing the orientation. This implies that in the algebraic count of connecting orbits from p to q (where i(p) = i(q) + 1) the coefficient g has into be changed to -g (see the orientation claim in Lemma 3.10). We are left to prove the Theorem 3.8 in case (1). This will be done in Subsection 3.5.

According to Proposition 2.18, the statement of Theorem 3.8 is invariant by the groups G ± introduced in Notation 2.17. After Proposition 2.15, it is sufficient to consider the case where the crossing path in question is normalized in the sense of Definition 2.13. This assumption is done in what follows. We need some more notations and lemmas. The setting of Theorem 3.8 is still assumed. Notation 3.9. 1) Recall from Subsection 2.3 that, H s denotes the perturbed holonomy diffeomorphism along the homoclinic orbit . For s ∈ Op(0), it maps

Op({z = 0}) ⊂ ∂ -M p to an open set of ∂ + M p containing {z = 1}. 2) For s ∈ Op(0), let D 1 (s) denote the image H s (Σ -) ∩ {z = 1}. Consider its projection π ψ 0 (D 1 (s)) onto the meridian disc {ψ = ψ 0 } and define (3.10) a + (s) := π ψ 0 (D 1 (s)) ∩ R∂ 1 v .
The crossing velocity of the crossing path is

(3.11) V 1 := d ds a + (s) |s=0 .
After reparametrization, we may assume V 1 = 1.

3) For s ∈ O ± , by definition of a crossing path D 1 (s) avoids Σ + . Therefore we are allowed to define C 1 (s) := Desc(D 1 (s)) ⊂ ∂ -M p . It is still an (i -1)-disc.

Lemma 3.10. Recall the natural projection π -: ∂ -M p → Σ -. Let K be any compact disc in the open hemisphere H -(Σ -) (as in Subsection 2.4). Then, for s ∈ O -, the disc C 1 (s) ∩ (π -) -1 (K) is a graph over K of a section of π -. This section goes to the zero-section 0 K of π - over K in the C 1 -topology as s goes to 0. Moreover, π -: C 1 (s) → Σ -is orientation reversing. A similar statement holds when K ⊂ H + (Σ -) and s ∈ O + , except that π -: C 1 (s) → Σ -is orientation preserving in that case.

Proof. The statement about orientation is clear after the claim about the C 1 -convergence. Consider the case s ∈ O -, the other case being similar. Recall the normalization assumption: the disc D 1 (0) is contained in the meridian disc {ψ = ψ 0 }. Recall the projection π ψ 0 of ∂ + M p to the meridian disc. The normalization implies that the projected discs π ψ 0 (D 1 (s)) tend to D 1 (0) in the C 1 -topology.

Recall the identification ∂({ψ = ψ 0 }) ∼ = Σ -of (2.18) and think of K as a compact subset of the South hemisphere in the boundary of the meridian disc {ψ = ψ 0 }. For every such K, the following property holds:

For every s close enough to 0 and for every φ ∈ K, the disc π ψ 0 (D 1 (s)) intersects only in one point and transversely the ray directed by φ in {ψ = ψ 0 }. This point is denoted by m s (φ); it is the image of some ms (φ) ∈ D 1 (s) through π ψ 0 . We have m 0 (φ) = m0 (φ) = a + , but when s = 0, the point ms (φ) has well-defined multi-spherical coordinates (φ, r s (φ), ψ s (φ)) where r s and ψ s depend smoothly on s.

Going back to ∂ -M p by the map Desc, we see that C 1 (s) is the image of a section of the projection π -over K. When s ∈ O -goes to 0, then D 1 (s) ∩ {(φ, r, ψ) ∈ ∂ + M p | φ ∈ K} goes to a + in the metric sense. In particular, max φ∈K {r | (φ, r, ψ) ∈ D 1 (s)} goes to 0. Therefore, C 1 (s) ∩ (π -) -1 (K) goes to 0 K in the C 0 -topology when s goes to 0 negatively.

For the C 1 -convergence, we use that K is far from the φ-equator of Σ -. Therefore, the angle in the meridian disc {ψ = ψ 0 } between the ray directed by φ and the tangent plane to π ψ 0 (D 1 (s)) at m s (φ) is bounded from below. Including the fact that s → 0 -implies r → 0, it follows that the smooth functions r s (φ) and ψ s (φ) satisfy

|dr| = O s (r)|dφ|, |dψ| = O s (r)|dφ|,
where O s (r) stands for a quantity which is uniformly bounded by a positive multiple of r when s goes to 0. This yields the claimed

C 1 -convergence of the part of C 1 (s) over K ⊂ H -(Σ -) to 0 K = K.
3.4. Geometric interpretation of the character function. We still consider a germ of normalized positive crossing path (X s ) s . Let D 1 (0) be the connected component W s (p, X 0 ) ∩ {z = 0} which contains a -. This is an (ni -1)-disc which is the image of Σ + by the inverse holonomy diffeomorphism H -1 0 along . For every s ∈ Op(0), consider now D 1 (s) :=

H -1 s (Σ + ) ∩ {z = 0}.
Recall from Subsection 2.2 that Σ -∩ {z = 0} is identified with the x-axis whereas D 1 (0) is identified with the y-axis. Let also p v : {z = 0} → {v = 0, z = 0} denote the projection parallel to ∂ v onto the (x, y)-space. When s ∈ Op(0) goes to 0, the family D 1 (s) accumulates to the y-axis in the C 1 -topology.

Under the condition ω φ (X 0 ) = 0, that is cos φ (a -) = 0, Lemma 3.10 tell us that the family C 1 (s) ∩ {z = 0} accumulates to the x-axis in the C 1 -topology if and only if s cos φ (a -) goes to 0 + . In particular, when s cos φ (a -) > 0 the projections p v (C 1 (s)) and p v (D 1 (s)) intersect in a unique point b 1 (s) and transversely. If s cos φ (a -) is negative, then C 1 (s)∩{z = 0} is empty.

Denote by c 1 (s) and d 1 (s) the only points in C 1 (s) ∩ {z = 0} and in D 1 (s) respectively such that p v (c 1 (s)) = b 1 (s) = p v (d 1 (s)). Consider the real number

(3.12) v 1 (s) := v(c 1 (s)) -v(d 1 (s)) for every s such that s cos φ (a -) ∈ O + .
This function v 1 (s) depends smoothly on s. Its derivative with respect to s is denoted by v1 (s).

Remark 3.11. By construction, v 1 (s) = 0 implies c 1 (s) = d 1 (s) which in turn implies the existence of an orbit s ∈ Orb Xs (p, p) passing through c 1 (s) such that [ s ] = g 2 . This remark will be used when analysing the doubling phenomenon in Section 4.

Lemma 3.12 will show the kinematic meaning of the character function χ at X 0 .

Lemma 3.12. Let (X s ) s be a normalized positive crossing path of S g whose crossing velocity (3.11) is equal to +1. If cos φ (a -) = 0 then the following relation holds:

(3.13) cos φ (a -) v1 (0) = χ(X 0 ).
Proof. Let us study the v-coordinate of c 1 (s) first. We notice that, if c1 (s) is another point of C 1 (s) depending smoothly on s and such that c1 (0) = a -= (φ 0 , 0, -), we have the same velocity in s = 0:

(3.14) d ds v (c 1 (s)) |s=0 = d ds v (c 1 (s)) |s=0 .
Indeed, C 1 (s) accumulates C 1 to Σ -∩ {z = 0} (Lemma 3.10), then the difference ċ1 (0) -ċ1 (0) is a vector in T a -Σ -. We apply this remark to the point c1 (s

) := C 1 (s) ∩ {φ = φ 0 }. Let d 1 (s) ∈ D 1 (s) the lift of c1 (s) by Desc -1 .
Since Desc preserves the (φ, r, ψ)-coordinates, both paths s → c1 (s) and s → d 1 (s) have the same coordinates (φ(s) = φ 0 , r(s), ψ(s)) when s = 0. As c1 (s) ∈ {φ = φ 0 }, the vector ḋ1 (0) belongs to the (ni)-plane which is the span of {R φ 0 , T a + Σ + }. Let d1 (0) be its projection to the line R φ 0 in the meridian disc {ψ = ψ 0 }. Then, (3.15) d1 (0) = ρ φ 0 where ρ = d ds r(s) |s=0 .

By definition of the φ-latitude (Proposition 2.8) we have:

(3.16) ν φ , d1 (0) = ρ ν φ , φ 0 = ρ cos φ (a -).
By definition, the hyperplane ∆ φ is tangent in a + to D 1 (0). Therefore, some calculus of Taylor expansion tells that

(3.17) ν φ , d1 (0) = d ds a + (s) |s=0 = +1 .
We derive:

(3.18) ρ = 1 cos φ (a -) .
Since d 1 (s) goes to a + = (-, 0, ψ 0 ) as s goes to 0 and since the radial velocity is preserved by Desc, then we have:

(3.19) ċ1 (0) = ρ ψ 0 ∈ T a -{φ = φ 0 }.
Using again (2.12), but relatively to the preferred hyperplane ∆ ψ which defines the ψ-latitude we obtain

(3.20) ν ψ , ċ1 (0) = ρ cos ψ (a + ) ν ψ .
This together with the decomposition of T a -{z = 0} of (2.23) says that there are two vectors

w x ∈ T a -Σ -and w y ∈ ∆ ψ such that (3.21) ċ1 (0) = w x + ρ ω ψ (a + )ν ψ + w y . By(3.21), we have v( ċ1 (0)) ∂ 0 v = ρ ω ψ (a + ) ∂ 0 v , ν ψ .
On the other hand, (2.25) tells us that:

(3.22) v(ν ψ ) = 1 η = η .
Putting together (

) we obtain:

(3.23) v( ċ1 (0)) = v( ċ1 (0)) = ρ ω ψ (a + ) v(ν ψ ) = cos ψ (a + ) cos φ (a -) η .
We come now to estimate the term v( ḋ 1 (0)). We apply Lemma 2.7 for comparing velocities associated with the holonomy H s and its inverse. From Formula (3.11) we derive that d ds (v • H s )(a -) |s=0 = +1. Then, the inverse holonomy satisfies

(3.24) d ds (v • H -1 s )(a + ) |s=0 = -1
from which it is easily derived that v( ḋ 1 (0)) = -1. Therefore:

(3.25) v1 (0) = η cos ψ (a + ) cos φ (a -) + 1
which is a reformulation of the desired formula.

Lemma 3.13 right below is the last tool that we need for proving Theorem 3.8. It extracts the geometric information contained in Equation (3.13). The setting is the same as in the previous lemma. We are only looking at normalized paths (X s ) s which cross S g positively at a point X 0 ∈ S + g . Lemma 3.13. 1) Suppose the φ-latitude cos φ (a -) is positive (and hence v1 (0) > 0). Then, for s ∈ O + there are sequences of non-empty (i -1)-discs (D k (s)) k>1 and (C k (s)) k>1 inductively defined from the previous D 1 (s) and C 1 (s) by

(3.26) D k (s) := H s (C k-1 (s)) ∩ {z = 1} C k (s) := Desc (D k (s)) ⊂ ∂ -M p
Moreover, as s goes to 0, the disc C k (s) tends to the North hemisphere H + (Σ -) in the C 1topology, uniformly over every compact set of H + (Σ -). When s ∈ O -, both previous sequences are empty when k > 1.

2) If v1 (0) and cos φ (a -) are negative, then for s ∈ O -the disc C 2 (s) is well defined as in (3.26) and the subsequent discs, D 3 (s), ..., are empty. Moreover, C 2 (s) tends to H + (Σ -) in the C 1 -topology with the reversed orientation. When s ∈ O + , all discs in (3.26) are empty when k > 1.

Proof. 1) When s ∈ O -, the disc C 1 (s) does not meet the tube T around the homoclinic orbit . Then D 2 (s) is empty and hence, all further discs are so. Assume now that s ∈ O + . In that case, C 1 (s) goes to H + (Σ -) (Lemma 3.10) and therefore meets the set {z = 0}. Then, the discs D 2 (s) and C 2 (s) defined in (3.26) are non-empty. We are going to compute the position of C 2 (s) with respect to D 1 (s) measured by some v 2 (s) in the direction of the v-coordinate. We shall check the positivity of v2 (0) which will allow us to pursue the induction.

Recall the projection π ψ 0 : ∂ + M p → {ψ = ψ 0 } and define the spherical annulus A := (π ψ 0 ) -1 (R∂ 1 v ). Consider the point c1 (s) which is the transverse intersection C 1 (s) ∩ H -1 s (A). By projecting to the v-axis we find a function v(c 1 (s)) which satisfies

(3.27) d ds v(c 1 (s)) |s=0 = d ds v(c 1 (s)) |s=0 (Indeed, if s goes to 0 + , lim c1 (s) = lim c 1 (s) = a -). Recall the definition of d 1 (s) ∈ D 1 (s) from (3.12). Compute the derivative V 2 at s = 0 of v [H s (c 1 (s))] -v [H s (d 1 (s))],
which is nothing but the velocity of the projection of H s (c 1 (s)) ∈ D 2 (s) onto the v-axis of {z = 1} at s = 0. Using c1 (0) = d 1 (0) = a -and dH 0 (a -) = Id in the coordinates of the tube T , we find:

(3.28) V 2 = v1 (0)
which is positive by assumption. This V 2 will play the same rôle as the crossing velocity. Since V 2 > 0, Lemma 3.10 tells us that C 2 (s) meets {z = 0} when s ∈ O + . Therefore, we choose points c 2 (s) ∈ C 2 (s) = Desc(D 2 (s)) and d 2 (s) ∈ D 1 (s) which forms the unique pair of points of the respective subsets which have the same p v -projection. We define

(3.29) v 2 (s) := v(c 2 (s)) -v(d 2 (s))
The computation of v2 (0) is exactly the same except we have to replace

V 1 = 1 with V 2 .
The result is:

(3.30) v2 (0) = η cos ψ (a + ) cos φ (a -) V 2 + 1.
Here, some discussion is needed according to the sign of cos ψ (a + ):

(i) if cos ψ (a + ) is positive, then v2 (0) is larger than V 1 = +1.
In that case the induction goes on with

V k > V k-1 > . . . > 1. (ii) if cos ψ (a + ) is negative, then 0 < V 2 = v1 (0) < 1,
where the last inequality comes from (3.25). Therefore, v2 (0) -1 is the product of two numbers12 of opposite signs and whose absolute values are smaller than 1. Thus, v2 (0) belongs to (0, 1). Such a fact is preserved at each step of the induction.

The induction can be carried on.

2) Take s ∈ O -. The calculation yielding the equality (3.28) still holds and tells us that V 2 is negative. Remark that H s (d 1 (s)) ∈ Σ + . As s < 0, one derives:

v [H s (c 1 (s))] = v [H s (c 1 (s))] -v [H s (d 1 (s))] > 0.
Thus, Lemma 3.10 says that C 2 (s) tends to H + (Σ + ) in the C 1 -topology. As cos φ (a -) < 0, C 2 (s) does not meet {z = 0} and the next discs are empty. Concerning the orientation, we check that D 2 (s) tends to -D 1 (0) in ∂ + M p . Then, C 2 (s) tends to -H + (Σ -). Finally, the statement when s ∈ O + is clear.

Remark 3.14. In the previous analysis, from Notation 3.9 to Lemma 3.13, we have given the lead role to the bottom of the Morse model, the attaching sphere Σ -, the perturbed holonomy and the map Desc. Here, the non-vanishing of the φ-latitude is required. One can make a similar analysis with the top of the Morse model, the co-sphere Σ + , the inverse of perturbed holonomy and Desc -1 . There, the non-vanishing of the ψ-latitude is needed. But the the statements of the lemmas are analogous. As a consequence, if the proof of Theorem 3.8 can be completed under the assumption ω φ (X 0 ) = 0, then it can also be completed when ω ψ (X 0 ) = 0.

3.5. Proof of Theorem 3.8 continued. We continue the proof which begins right after the statement of this theorem. After a series of equivalences, we are left to prove the case (1) of a positive crossing of the stratum S g at a point X 0 ∈ S g,L where the character functon is positive. We recall that the statement of Theorem 3.8 is preserved under the action of the groups G ± (see Notation 2.17). Therefore, we may assume that X 0 ∈ S g,L is normalized. Moreover, as χ(X 0 ) = 0, one of the extended φ-latitude and ψ-latitude is non-zero. By Remark 3.14, it is sufficient to complete the proof when ω φ (X 0 ) = 0.

The element g ∈ Π α is thought of as an arrow from the set of zeroes Z(α) into itself. Then g determines its origin p which is also its end point. Recall that the Morse index of p is i. We look at any zero q ∈ Z(α) of Morse index i -1. We have to compute the change of n(p, q) X L when X changes from X 0 -to X 0 + in the given crossing path (X s ) s . It is useful to make some partition, adapted to g, of the set of connecting orbits from p to q for the gradient X 0 -. Partition of the connecting orbits. We may assume that each connecting orbit of X 0 - from p to q is the unique one in its homotopy class. In general, one would take the multiplicity into account. Recall Γ q p , the set of homotopy classes of paths from p to q. The equivalence relation defining the partition of Γ q p is the following:

[γ 0 ] ∼ [γ 1 ] if and only if the homotopy class of γ 1 reads [γ 1 ] = g k • [γ 0 ] with k ∈ Z.
Consider [γ] ∼ , the ∼-class of a fixed connecting orbit γ. Since the α-lengths of connecting orbits are positive, we have u α ([γ ]) < 0 for every γ ∈ [γ] ∼ . Therefore, as u(g) < 0 there are only finitely many connecting orbits γ ∈

[γ] ∼ verifying u α ([γ ]) ≥ u α ([γ]). Let γ 0 be a connecting or- bit in [γ] ∼ such that u α ([γ 0 ]) is maximal. Then, any element of [γ] ∼ reads g k •[γ 0 ] for some k ≥ 0.
End of the proof. By Λ u -linearity of the Morse-Novikov differential, without loss of generality we may assume that the above partition has only one ∼-class and that the maximal element γ is a positive connecting orbit (with respect to the chosen orientations). Let b := γ ∩ Σ -and ∆ s , s = 0 -, be the connected component of W s (q, X s ) ∩ ∂ -M p containing b. After shrinking the parameter δ of M p if necessary (see Subsection 2.1), ∆ s is an (ni)-disc which intersects Σ -transversely and only at b.

We are looking for the change formula up to α-lenght L (for every L > -u(g)). Let (X s ) s∈Op(0) be a crossing path with X(0) in S + g . We do it first in the case where the φ-latitude ω(X(0)) = 0. There are still four cases to consider where a -stands for a -(X 0 ) and H ± stand for H ± (Σ -): Definitions.

1) The positive (resp. negative) part of W u (p, X 0 ) is the union of all X 0 -orbits passing through the positive (resp. negative) hemisphere H + (Σ -) (resp. H -(Σ -)). It will be denoted by W u (p, X 0 ) ± .

2) For a given k > 0, we say that the unstable manifolds W u (p, X s ) accumulate to g k •W u (p, X 0 ) ± when s goes to 0 -(resp. 0 + ) if it is true when lifting to the universal cover, that is: if p (resp. X s ) is a lift of p (resp. X s ), the unstable manifolds W u (p, X s ) accumulate to W u (g k p, X 0 ) ± .

Here, it is worth noting that when a point lies in the accumulation set its whole X 0 -orbit is also accumulated. As a consequence, Lemma 3.10 tells us that W u (p, X s ) accumulate to g • W u (p, X 0 ) ± in the C 1 -topology when s goes to 0 ± . Thanks to this topology, it makes sense to compare the orientations. The result is the following: when s → 0 ± , then W u (p, X s ) accumulate to ±g • W u (p, X 0 ) ± . Accumulation to g k • W u (p, X 0 ) ± for some k > 1 is dictated by Lemma 3.13 depending on the sign of the φ-latitude (knowing χ(X 0 ) > 0). We are now ready for proving (1) fromTheorem 3.8 in each above-enumerated case.

Let λ -(γ) (resp. λ + (γ)) denote the element of the Novikov ring Λ u which is the contribution of [γ] ∼ in n(p, q) Xs when s < 0 (resp. s > 0). We have to check the next formula up to the given L > 0 in each case (a.1) ... (b.2).

(3.31) λ + (γ) = (1 + g + g 2 + • • • ) • λ -(γ)
Case (a.1). When s → 0 -, the oriented unstable manifolds W u (p, X s ) accumulate to -g • W u (p, X s ) -and nothing else. Therefore, as b ∈ H + , we have λ

-(γ) = [γ].
When s → 0 + , then W u (p, X s ) accumulate to +g k • W u (p, X 0 ) + for every k > 0 and will intersect g k • ∆ 0 transversely at a single point. Thus, we have λ

+ (γ) = (1 + g + g 2 + . . .) • [γ].
The change of λ ± (γ) from s < 0 to s > 0 is really given by Formula (3.31).

Case (a.2). As b ∈ H -and taking into account the accumulation described right above, we have: λ -(γ) = (1g) • [γ] and λ + (γ) = [γ]. Formula (3.31) is still fulfilled.

Case (b.1).

Here, the accumulation of W u (p, X s ) is dictated by part 2) of Lemma 3.13 and the reason for Formula (3.31) is more surprising than in the previous cases. When s → 0 -, the manifolds W u (p, X s ) accumulate to -g • W u (p, X 0 ) -and to -g 2 • W u (p, X 0 ) + and then nothing else. When s → 0 + , the manifolds W u (p, X s ) accumulate to +g • W u (p, X 0 ) + and nothing else.

As b ∈ H + , we have λ The answer is the following. The dichotomy S + g , S - g still exists by the sign of the character function. Since the bifurcation factors (1 + g + g 2 + • • • ) and (1 + g) do not depend on q, one can associate them with each part of S g S 0 g even if there is no q. In order to validate this association, it is sufficient to imagine a virtual zero q virt whose stable manifold intersects ∂ -M p along one generic meridian at the beginning of a positive crossing path of S g . The same proof as before tells us how changes the number of virtual connecting orbits from p to q virt . 3.6. Proof of Theorem 1.7. Here, the statement claims something to hold for every L > -u(g) instead of for a given L. In that case, it is natural that some genericity condition should be required. The condition in question-that is, a subset of S g -is the intersection of all conditions: X 0 ∈ S g,L for L → +∞, each of them being the condition which makes Theorem 3.8 hold. A priori, this intersection could be empty. But thanks to Proposition 3.6, this intersection is a residual set in S g and we are done.

-(γ) = (1 -g 2 ) • [γ] and λ + (γ) = (1 + g) • [γ]. Formula (3.31) is right since the identity (1 + g + g 2 + • • • )(1 -g 2 ) = 1 +
4. The doubling phenomenon. Proof of Theorem 1.10 4.1. Notations and statement. In this section, we state and prove the refined version of Theorem 1.10 which is given right after specifying some definition and notations. It is about the local structure of S 0 g -the co-oriented locus in S g where the character function χ vanishes-in the complement of S 0,0 g , the latter being the locus where both of the extended φ-latitude and ψ-latitude vanish. g is defined by the sign of the extended φ-latitude, that is:

X ∈ S 0,± g ⇔ ω φ (X) ∈ R ± .
2) Let X 0,0 ∈ S 0 g S 0,0 g . Let D(s, t) := X s,t be a germ at X 0,0 of a two-parameter family in F α , the space of adapted α-gradients. This germ is said to be adapted to the pair (S g , S 0 g ) if the following conditions are fulfilled:

(1) The one-parameter family D(0, t) t∈Op(0) is contained in S g , transverse to S 0 g and ∂ t D(0, 0) is non-zero and points towards S + g . (2) The partial derivative ∂ s D(0, 0) is transverse to S g and points towards its positive side.

In particular, such a D is transverse to S 0 g . Theorem 4.2. Let D be a germ of 2-discs transverse to S 0 g S 0,0 g and adapted to the pair (S g , S 0 g ). Then D intersects S g 2 transversely along an arc of S + g 2 . The trace on D of the strata

F α , S g ∪ S + g 2 , S 0,± g is C 1 -diffeomorphic to R 2 , R × {0} ∪ {0} × R ± , {(0, 0)} .
Moreover, the natural co-orientation of S g 2 restricts to the natural co-orientation of S 0 g in S g or to its opposite depending upon S g 2 approaches S 0,+ g or S 0,- g respectively (Figure 2). Finally, if X 0,0 also fulfills the generic property S g,∞ (Definition 3.5) then the germ D does not meet S g k for k > 2.

Actually, the proof of Proposition 3.6 yields that the last property is generic in S 0 g . Indeed, the new constraint χ(X) = 0 only involves a compact domain of W u (p, X).

We first prove Theorem 4.2 for particular germs D which we call elementary. Such a germ consists of a one-parameter family of positive normalized crossing paths of S g in the sense of Definition 2.13 with some additional requirements. The definition of elementary path looks a bit strange, but it is inspired by a toy model of crossing S g when all moving objects are affine subspaces in the coordinates of M p . 4.2. Elementary crossing path. Let (X s ) s be a normalized positive crossing path of S g . After the normalization (Proposition 2.15) we are still allowed to prescribe more special dynamics of X s ; the perturbed holonomy will be specified near the respective homoclinic orbit of X 0 ∈ S g Let a ± = ∩ ∂ ± M p ; let (φ 0 , 0, -) and (-, 0, ψ 0 ) be the respective muti-spherical coordinates of a -and a + . Consider the spherical annulus A ψ 0 := Σ -× (0, 1) × {ψ 0 } ⊆ ∂ -M p . Assume the ψ-latitude of a + different from zero-by its very definition it is always the case when X 0 ∈ S 0,± g . Therefore, whatever the perturbed holonomy H s along the inverse image D 1 (s) of Σ + by H s is transverse to A ψ 0 for every s close to 0. Call b(s) the intersection point D 1 (s) ∩ A ψ 0 when the intersection is non-empty; this is the case either when s < 0 or s > 0 depending on whether the ψ-latitude cos ψ (a + ) is negative or positive. By normalization, b(s) belongs to the ray {(φ 0 , r, ψ 0 ) | r ≥ 0}. Below, we use Notation 3.9.

Definition 4.3. The germ (X s ) s is said to be elementary if it is normalized (Definition 2.13 ) and the following conditions are fulfilled.

(1) The disc D 1 (s) := H s (Σ -) ∩ {z = 1} moves in the meridian disc {ψ = ψ 0 } while remaining parallel to the preferred hyperplane ∆ φ (2.16). ( 2) Let a + (s) be the intersection of D 1 (s) with the pole axis. For every s, (3) For every s close to 0 the velocity of b(s) is

(4.2) ∂ s b(s) = - 1 η cos ψ (a + ) .
Here, η stands for the holonomic factor of X 0 (Definition 2.9).

This definition makes sense only when the ψ-latitude of a + (X 0 ) is not 0, that is, when X 0 does not lie on the φ-axis S φ g (2.27). This is always the case when X 0 belongs to S 0 g S 0,0 g . Lemma 4.4. Let X 0 ∈ S g S φ g be an α-gradient in normal form. Then there exists a germ of elementary path (X s ) passing through X 0 and depending smoothly on s in the C 1 -topology.

Proof. Recall the tube T with coordinates (x, y, v, z) around the restricted homoclinic orbit of X 0 . The holonomy H 0 is defined on a neighborhood of {z = 0} in ∂ -M p and valued in a neighborhood of {z = 1} in ∂ + M p . Since we are looking for a one-parameter perturbation (X s ) of X 0 whose properties are readable in T it is sufficient to describe it is near T .

For |s| small enough, the perturbed holonomy always reads H s = H 0 • K s where K s is a diffeomorphism of ∂ -M p supported in its interior with K 0 = Id. In order to satisfy conditions (4.1) and (4.2) of Definition 4.3, we first choose a + (s) and D 1 (s) before choosing K s . For a + (s) we take the point in {ψ = ψ 0 } moving in the oriented pole axis with velocity +1 such that a + (0) = a + . For D 1 (s) we take the paralell disc to D 1 (0) passing through a + (s). Take K s , smooth with respect to s, such that:

(4.3) K s (a -) = H -1 0 (a + (s)) K s (Σ -) = H -1 0 (D 1 (s))
in Op{z = 0} Thus, the first two items are fulfilled. Note that by normalization of X 0 the point K s (a -) runs on a prescribed curve in the meridian {φ = φ 0 }, namely the curve H -1 0 (Rν φ ). Its velocity at time s = 0 is the vector ∂ 0 v . By (2.25) we have

(4.4) ∂ 0 v , ν ψ = 1 η .
We are now dealing with the last item. We impose D (s) = K -1 s (D (0)) to move in the meridian {φ = φ 0 }; this is possible as the point κ s := K -1 s (a -) already moves in this meridian by normalization. There are two more contraints: the first one is ∂ s κ s | s=0 = -∂ 0 v by Lemma 2.7; the second one is (4.2). This two constraints are compatible since ∂ s b(s), ν ψ = -1 η . For having a one-parameter family (K s ) of diffeomorphisms of ∂ -M p converging C 1 to identity when s goes to 0, one has to choose conveniently ∂ s K s at time s = 0. But is is easy to achieve since the velocity distribution is given along transverse submanifolds in the extended space (∂ -M p ) × Op(0). Remark 4.5. Note the great difference between the normalization process of a crossing path and the building of an elementary crossing path. The first one is achieved by an ambient C 1 -conjugation; so, it does not change the dynamics. The second one is a genuine bifurcation.

Clearly, Lemma 4.4 holds with parameters, for instance when the data is a one-parameter family in S g S φ g . Then, the next corollary follows.

Corollary 4.6. Let X 0,0 ∈ S 0 g S 0,0 g and let γ(t) = (X 0,t ) t be a germ of path in S g passing through X 0,0 and crossing S 0 g transversely, such that ∂γ ∂t (0) points towards S + g . Then, there exists a two-parameter family D = (X s,t ) of pseudo-gradients of α adapted to (S g , S 0 g ) such that, for every t close to 0, the path s → X s,t is elementary. Moreover, there are such X s,t which are smooth with respect to the parameters in the C 1 -topology. Definition 4.7. Let D be a 2-disc in F α transverse to S 0 g S 0,0 g and adapted to the pair (S g , S 0 g ). We say that D is elementary if it is made of a one-parameter family of elementary crossing paths as in Corollary 4.6.

Proof of Theorem 4.2.

First, we prove the theorem in the particular case where the transverse disc D is elementary. Even in this particular case the proof is slightly different depending on where the base point X 0,0 lies either in S 0,- g or in S 0,+ g . In each case, the proof has three items: 1. What is the trace of S g 2 on D? Is there a non-empty trace of S g k for k = 1 or 2? 2. Is D transverse to S g 2 ? How is the positive co-orientation of S g 2 ? 3. Which part S + g 2 or S - g 2 is intersected by D?

Case X 0,0 ∈ S 0,- g . In other words, a -(X 0,0 ) has a negative φ-latitude. 1. The pseudo-gradient X 0,t has a homoclinic orbit t based in p and the φ-latitude of a -(X 0,t ) lies in [-1, 0) for every t ∈ Op(0). Denote by φ t the spherical coordinate of a -(X 0,t ). We use the tube T around 0 and its extremities:

{z = 0} ⊂ ∂ -M p and {z = 1} ⊂ ∂ + M p .
For simplicity, we specify even more the path (X 0,t ) t by adding some assumptions (the discussion is similar with the other cases of latitudes by using other specifications 13 ):

(i) The φ-equator of X 0,t is fixed and the φ-latitude cos φ (a -(X 0,0 )) is not equal to -1.

(ii) The point a + (X 0,t ) = Σ + ∩ t and the ψ-equator of X 0,t are fixed.

(iii) The holonomic factor η(X 0,t ) remains constant and is denoted by η. Note that (i) allows one to take (X 0,t ) t positively transverse to S 0 g while satisfying (ii) and (iii). More precisely, one makes the φ-coordinate φ t of a -(X 0,t ) vary on t by increasing the φ-latitude.

Denote the spherical coordinate of a + (X 0,t ) by ψ 0 , independent of t. In this setting, as the paths s → X s,t are elementary the discs D 1 (s, t) ⊂ {z = 1} depend only on s and are denoted by D 1 (s). For every s = 0, their images by the descent map are discs C 1 (s) contained in the spherical annulus A ψ 0 := {(φ, r, ψ 0 ) | φ ∈ Σ -, r ∈ [0, 1]}. When s goes to 0 -, by Lemma 3.10 the discs C 1 (s) accumulate to the negative hemisphere H -(Σ -).

Since s → X s,t is elementary and cos ψ (ψ 0 ) > 0, the disc D 1 (s, t), preimage in {z = 0} of Σ + by the respective perturbed holonomy, intersects A ψ 0 in one point b(s, t) when s ≤ 0 and nowhere when s > 0, according to Definition 4.3. When t is fixed, b(s, t) moves on the ray {(φ t , r, ψ 0 ) | r ≥ 0} and its velocity is given by the formula in Definition 4.3. According to Remark 3.11, we have:

(4.5) X s,t ∈ S g 2 if and only if b(s, t) ∈ C 1 (s).
Denote by c 1 (s, t) the intersection point of C 1 (s) with the meridian disc {φ = φ t }. When t is fixed, c 1 (s, t) also moves on the ray {(φ t , r, ψ 0 ) | r ≥ 0} and its radial velocity is the same as the one of its lift through Desc in D 1 (s) ⊂ ∂M + p . Therefore,

(4.6) ∂ s c 1 (s, t) = 1 cos φ (φ t )
As X 0,0 belongs to S 0 g , that is χ(X 0,0 ) = 0, the curves b(s, 0) and c 1 (s, 0), defined for s < 0, have the same radial velocities. Since both tend to a -(X 0,0 ) on the same ray when s goes to 0 -, we have b(s, 0) = c 1 (s, 0) for every s. Then, (4.5) tells us that X s,0 ∈ S g 2 for every s close to 0 negatively.

For t = 0 and s < 0, the radial velocities of c 1 (s, t) and b(s, t) are distinct while their limits when s goes to 0 coincide. Therefore, (4.5) tells us that X s,t never lies in S g 2 for s < 0.

When s > 0, the discs C 1 (s) accumulate to the positive hemisphere H + (Σ -). There is no chance for C 1 (s) to intersect D 1 (s, t) which is far from any point in H + (Σ -).

What about S g k ? If k ≤ 0, we have u(g k ) ≥ 0 and there is no homoclinic orbit in the homotopy class g k . When k > 2, we have to discuss the successive passages of the unstable manifold W u (p, X s,t ) in ∂ -M p , more precisely in {z = 0}.

By Lemma 3.13, if t > 0, that is χ(X 0,t ) > 0, and s < 0 only the discs C 2 (s, t) of the second passage are non-empty, but they accumulate to the positive hemisphere H + (Σ -). Therefore, no further passage could give rise to a homoclinic orbit. When s > 0, even the second passage does not exist.

If t < 0, one is able to see that there are infinitely many passages in {z = 0}. But, by velocity considerations C k (s, t) never meet D 1 (s, t). We do not give more details here because this is similar to the symmetric case X 0,0 ∈ S 0,+ g and t > 0 where the analysis of velocities will be completely achieved. Thus, the first item of case X 0,0 ∈ S 0,- g is proved.

2. The reason for transversality to S g 2 relies again on some computations of velocity. Define for s ≤ 0: δ(s, t) := v (c 1 (s, t))v (b 1 (s, t)) and V (t) := ∂δ(s, t) ∂s | s=0 .

Although points are not the same, this velocity V (t) at s = 0 is easily checked to be the same as the velocity computed in Lemma 3.12. Then, for every t close to 0 we have:

(4.7) V (t) = η cos ψ (ψ 0 ) cos φ (φ t ) + 1 which implies dV (t) dt < 0 .

By definition of the character function, we have V (0) = 0 which implies V (t) < 0 for t > 0. Define V (s, t) := ∂ s δ(s, t). By construction of (X s,t ), we have V (s, 0) = 0 for every s < 0 close to 0. By (4.7), the second partial derivative ∂ 2 ts δ(s, t) is negative for every (s, t) close to (0, 0) with s ≤ 0 (here we use the smoothness with respect to the parameters 14 ). By integrating in the variable s from s 0 < 0 to 0 and noticing that δ(0, t) = 0, we get: For t = 0, this is exactly the transversality of D to S g 2 at X s 0 ,0 .

We are now looking at orientation. Take s 0 < 0 such that b(s 0 , 0) lies in {z = 0}. It belongs to a homoclinic orbit in the homotopy class g 2 . There is a tube T around with coordinates (x , y , v , z ). The y -axis is contained in D 1 (s 0 , 0) and is given a co-orientation which follows from the co-orientation of D 1 (0, 0) by continuity. The x -axis is contained in C 1 (s 0 ). Its projection to the x-axis is orientation reversing (Lemma 3.10). Therefore: This translates the fact that ∂ t points to the negative side of S g 2 for s < 0 while for s = 0, ∂ t defines the positive co-orientation of S 0 g in S g .

3.

Let L > 0. Consider a small circle γ ⊂ D centered at the origin of the coordinates (s, t) and turning positively with respect to the orientation given by these coordinates. If the radius of γ is small enough 15 and if X 0,0 is generic, γ avoids all codimension-one strata in F α except: -S g which is crossed once in S - g positively, and once in S + g negatively, -S g 2 which is crossed once positively according to the above discussion. As noted in Remark 3.15 each crossed signed stratum is endowed with a bifurcation factor. The product of these factors should be equal to 1 up to L in the Novikov ring after traversing γ once. The bifurcation factor of the a small sub-arc of γ crossing S g 2 is still unknown; call it m(g). This (commutative) product is m(g) • (1 + g + g 2 + • • • ) -1 • (1 + g) = 1 (mod. L).

Then, m(g) = (1g 2 ) -1 (mod. L), that can only happen if the crossing of S g 2 takes place in S + g 2 . The proof of Theorem 4.2 is complete for an elementary 2-disc in the case X 0,0 ∈ S 0,- g .

Case X 0,0 ∈ S 0,+ g . In other words, a -(X 0,0 ) has a positive φ-latitude. 1. The discussion is led in the same manner as in the previous case with same notation. We only mention the main differences. Here, a -(X 0,0 ) belongs to the positive hemisphere of Σ - while ψ 0 belongs to the negative hemisphere of Σ + . The discs C 1 (s) intersect {z = 0} only when s > 0. Therefore, for s < 0 there is no chance for meeting S g k , for any k = 0.

By Lemma 3.13 there are infinitely many passages C k (s), k ≥ 1, s > 0 of W u (p, X s,t ) in ∂ -M p meeting {z = 0}. Recall that the (i -1)-discs C k (s) do not depend on t. The fact that X s,t belongs to S g 2 if and only if s > 0 and t = 0 is proved exactly as in the previous case.

Then, we are left to show that for every k > 2, S g k does not intersect D. Here it is important to think of D as a germ because for a given representative this result is not true; when k increases, the domain of the representative has to be restricted. Let C k (s, t) denote the (i -1)disc in ∂ -M p corresponding to the k-th passage of the unstable manifold W u (p, X s,t ) (see Lemma 3.13); let D 1 (s, t) denote the (ni -1)-disc corresponding to the first passage of the stable manifold W s (p, X s,t ). Observe that D intersects S g k+1 if and only if, for (s, t) close to (0, 0), C k (s, t) intersects D 1 (s, t). This translates in the next equation: (4.10) c k (s, t) = d k (s, t) 15 The more L is large, the more this radius has to be small.

where c k (s, t) and d k (s, t) are the only two points of {z = 0} lying respectively on C k (s, t) and D 1 (s, t) which have the same (x, y)-coordinates. Then, the above equation becomes: When s goes to 0, these two points go to the same point a -(X s,t ) ∈ Σ -. By computations done in the proof of Lemma 3.13, we know that: It follows that, for s close to 0 (closeness depending on t), the equation (4.11) cannot be fulfilled.

The answer to questions 2 and 3 are exactly as in the case X 0,0 ∈ S 0,- g . Then, Theorem 4.2 is proved for elementary 2-discs as in Definition 4.7.

For finishing the proof of Theorem 4.2 it is suitable to use some C 1 -topology. More precisely, we choose a system of finitely many closed flow boxes (B j ) j∈J of X 0,0 whose end faces ∂ ± B j are tangent to ker α and union covers M except a small open neighborhood N of the zero set of α. It is assumed that when slightly shrinking every B j to B j tangentially to ker α, the union ∪ j B j still covers M N . Fix a closed C 0 -neighborhood U of X 0,0 among the uniquely integrable vector fields whose transverse holonomy is well defined for every j ∈ J from ∂ -B j to ∂ + B j and of class C 1 . This U endowed with the C 0 -topology of vector fields and the C 1 -topology of holonomies B j → B j , j ∈ J, may be thought of as a closed ball in a Banach manifold.

By Proposition 2.15, there exists a neighborhood V of X 0,0 in S 0 g such that the following properties are fulfilled for every Y ∈ V :

-there exists a C 1 -diffeomorphism Υ Y of M which carries Y to a vector field in normal form, that is, (Υ Y ) * Y is normalized; -Υ Y preverses the strata S g , S 0 g and S 0,0 g (Proposition 2.18).

It is easy to make Υ Y depend continuously on Y in the C 1 -topology with the property that Υ Y = Id when Y is already in normal form. Let D be an elementary 2-disc centered at X 0,0 . If Y ∈ V is close enough to X 0,0 and normalized one finds an elementary 2-disc D Y centered at Y , depending C 1 on Y and equal to D if Y = X 0,0 . If Y ∈ V is not normalized we still have a 2-disc centered at Y , namely (4.13) D Y := (Υ Y ) -1 * D Υ * Y . This D Y is not elementary is the strict sense but it is conjugate to an elementary 2-disc in U . As Υ Y preseves the stratification, in particular S g 2 , the intersection of D Y with the different strata under consideration is the same as in the elementary case. Finally, we have a C 1 -map

F : V × [-1, +1] 2 → U, (Y, s, t) → F (Y, s, t)
which meets S g 2 if and only if t = 0 and s ∈ R ± depending upon X 0,0 ∈ S 0,± g . Moreover, the germ of F at (s, t) = (0, 0) avoids all S g k for k = 1, 2.

One checks that span{∂ s F, ∂ t F } at (s, t) = (0, 0) is transverse to S 0 g in U . The Inverse Function Theorem is available and states that for V small enough F is a C 1 -diffeomorphism onto its image N , an open set in U . Therefore N has a product structure and a projection

( 2 ) 3 )

 23 Let R a -denote the half ray {φ = π 2 sign(cos φ (a -)), r ∈ [0, 1], ψ = ψ 0 }. The curve J 0 := H -1 0 (R a -) has to be contained in the meridian disc {φ = φ 0 } of ∂ -M p . (The disc D (s) := H -1

Remark 3 . 1 .

 31 We denote by Z[[G ]] the set of formal series of the arrows of G . An element λ ∈ Z[[G ]] is usually written as λ = g∈G n g (λ)g, where n g (λ) ∈ Z. Define the support of λ as the set supp(λ) := {g ∈ G | n g (λ) = 0}. Consider the set (3.1) Z[G ] := {λ ∈ Z[[G ]] | supp(λ) is finite} . Given two arrows g, h-seen as elements of Z[G ]-the product gh ∈ Z[G ] is defined by their composition in G 1 when t(g) = s(h) and by 0 otherwise. Extending the previous rule distributively with respect to the sum, we obtain a ring structure for Z[G ]. Moreover, when G 0 is finite, the element 1 := p∈G 0 1 p ∈ Z[G ] gives an identity element for this product. We call Z[G ] the groupoid ring associated with G . The next definition is classical.

(a. 1 )

 1 The φ-latitude cos φ (a -) is positive and b belongs to H + . (a.2) The φ-latitude cos φ (a -) is positive and b belongs to H -. (b.1) The φ-latitude cos φ (a -) is negative and b belongs to H + . (b.2) The φ-latitude cos φ (a -) is negative and b belongs to H -. The proof consists of applying Lemma 3.13. It is convenient to use the following definiton.

  g holds in the Novikov ring. Case (b.2). Accumulation is as right above. One derives that λ -(γ) = (1g) • [γ] and λ + (γ) = [γ]. The desired formula is still satisfied. The proof of Theorem 3.8 is now complete since only one L is involved. Remark 3.15. One could ask what happens when there is no critical points q of index i(p) -1.

Definition 4. 1 . 1 )

 11 Let R + (resp. R -) be the set of positive (resp. negative) real numbers. The open set S 0,± g ⊂ S 0

( 4 . 1 )

 41 ∂ s a + (s) = 1.

2

 2 ts δ(s, t) ds > 0.

(4. 9 )

 9 v(∂ v ) < 0.By (4.8) we have:∂ ∂t [v (c 1 (s 0 , t))v (b 1 (s 0 , t))] | t=0 = ∂δ ∂t (s 0 , 0) > 0.By replacing v with v in the last inequality, we get:∂ ∂t [v (c 1 (s, t))v (b 1 (s, t))] | t=0 < 0 .

(4. 11 )

 11 v c k (s, t) = v d k (s, t) .

  k (s, t)v d k (s, t) | s=0 = 0 .

In the literature, a vector field is said to be Kupka-Smale if the periodic orbits are all hyperbolic and their center-stable and center-unstable manifolds are mutually transverse.

At the beginning, the stratification in question is just a collection of disjoint subsets of the space of considered gradients. Theorem 1.5 gives some of them the status of genuine strata.

'Simple' in the multiplicity sense-see Subsection (2.2).

A broken orbit is the concatenation of orbits, one being linked to the next one by some zero.

This brings us back to a principle that R. Thom strongly defended in the seventies: a non-generic object is richer than one of its generic approximations since it contains the information of its universal unfolding.

More generally, if A is a closed subset of B, Op(A) stands for an open neighborhood of A in B which is not specified.

This makes more precise the statement of [9, Prop. 2.2.36] whose proof was inaccurate.

This does not contradicts the fact that by their very definition S g and S g 2 are disjoint.

This confirms Thom's principle which we have mentioned in Footnote 6.

as does a leaf of the irrational linear foliation on the 2-torus.

One of them being V 2 .

If ω φ (X 0,0 ) = -1, one makes ∂η ∂t (X 0,t ) > 0. Since ω ψ (X 0,0 ) must be positive, ∂χ ∂t (X 0,t ) > 0.

The vector fields in a normalized crossing path are not smooth with respect to the space variable. Their holonomy is C 1 only. Nevertheless, as the C 1 -maps (of degree zero) ∂ -M p → ∂ + M p form a Banach manifold it makes sense to consider a smooth family of such holonomies.

Both authors were supported by ERC Geodycon; the second author was also supported by the Japan Society for the Promotion of Science, under the "FY2013 Postdoctoral Fellowship (short-term) for North American and European Researchers" program.

P : N → [-1, +1] 2 such that, for every X ∈ N , the following equivalences hold: (4.14)    X ∈ S g ⇐⇒ s • P (X) = 0 X ∈ S 0 g ⇐⇒ P (X) = (0, 0) X ∈ S g 2 ⇐⇒ t • P (X) = 0 and s • P (X) ∈ R ± depending on X 0,0 ∈ S 0,± g . Let D be any germ of two-parameter family centered in X 0,0 transverse to S 0 g S 0,0 g and contained in N . Its projection P • D is submersive. The equivalences (4.14) finish the proof of Theorem 4.2.

Appendix A.

Proof of the key fact 1.2

Let us recall the statement in question.

Proposition A.1. Let X be an α-gradient which is assumed Kupka-Smale. Let p and q be two zeroes of α of respective Morse indices k and k -1. Then, for every L > 0 the number of connecting orbits from p to q whose α-length is bounded by L is finite.

Proof. The proof mainly consists of comparing the α-length of any X-trajectory γ drawn on the unstable manifold W u (p, x) to the distance of its end points after lifting γ to the universal cover of M . By definition, the α-length L(γ) is additive with respect to any finite subivision of the considered trajectory γ.

First part. For a trajectory γ descending from the top of a Morse model M(z) about any zero z ∈ Z(α) to the bottom of M(z) without getting out of it, L(γ) is equal to the oscillation of any local primitive of α on M(z). And hence, it does not depend on γ. Without loss of generality, we may assume that this oscillation is the same for every zero of α; it is noted h. Therefore, given a trajectory γ of α-length bounded by L, the number κ of segments traced on γ by the compact union

In the complement of M, that is away from the zeroes of α, there is some positive constant C such that we have |X(x)| ≥ C for every x ∈ M * := M M. Denote by λ(γ) := γ | γ| the length of a path γ and set γ * := γ ∩ M * . Then, for every X-trajectory γ whose α-length is bounded by L, we deduce

Here the variable t is the time of the flow of X.

Denote by W L (p) the union of the X-trajectories descending from p whose α-length is less than L. This is an open domain in the unstable manifold W u (p, X); it is homeomorphic to an open ball whose dimension is k. Let M π → M be the universal cover of M and let p ∈ π -1 (p). Let X be the lift of X to M . It is a hyperbolic vector field and the unstable manifold W u (p, X) is the lift of W u (p, X) through p. Moreover, its truncation W u L (p, X) is the lift of W u L (p, X).

Let be an X-trajectory descending from p in W u L (p, X), let e be its end point. Take its lift ˜ from p and denote by ẽ its end point. One looks at the subdivision S of ˜ marked by its crossings with π -1 (M). From (A.1), (A.2) and the triangular inequality applied to the vertices of S, one deduces that the lifted distance satisfies

where δ stands for the maximal diameter of M(z), z ∈ Z(α). Therefore, we have an inclusion

where B(p, R) stands for the ball of M about p of radius R and where R(L) is the right hand side of (A.3). The consequence of these elementary estimations is that the closure cl L (p) of W u L (p, X) is compact. In particular, it contains finitely many lifts of the zero q that we are interested in. Indeed these lifts cannot accumulate as their mutual distance is bounded from below.

Second part. The end of the proof uses the KS assumption. Let f be a global primitive of π * α; it exists since M is simply connected. The descending gradient of f with respect to the lifted metric is equal to X. The truncation of W u (p, X) to the upper level set { f > f (p) -L} is exactly the truncation W u L (p, X). The end point of a gradient line of α-length L belongs to the level set { f = f (p) -L}.

Let us enumerate q1 , . . . , qm the lifts of q which belongs to cl L (p). Now, we can argue as in usual Morse theory. For 1 ≤ j ≤ m, consider the Morse model M(q j ) and the so-called co-sphere Σ j , a sphere of dimension (nk) in the top of M(q j ). By the KS assumption, the two following properties hold for every j = 1, ..., m:

(1) the singular part (that is the frontier) of cl L (p) avoids Σ j ;

(2) the regular part, that is W u L (p, X), is transverse to Σ j . It is classical that the compactness of cl L (p) joined to these two properties implies the finitness of Σ j ∩ WL (p). Therefore, there are finitely many orbits of X descending from p and ending at qj for every j. This is the desired finiteness.