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Homoclinic bifurcation in Morse-Novikov theory,
a doubling phenomenon

François Laudenbach & Carlos Moraga Ferrándiz

Abstract. We consider a compact manifold of dimension greater than 2 and a differential
form of degree one which is closed but non-exact. This form, viewed as a multi-valued function
has a gradient vector field with respect to some auxiliary Riemannian metric. According to S.
Novikov’s work and a complement by J.-C. Sikorav, under some genericity assumptions these
data yield a complex, called today the Morse-Novikov complex. Due to the non-exactness of the
form, its gradient has non-trivial dynamics in contrary to gradients of functions. In particular,
it is possible that the gradient has a homoclinic orbit. The one-form being fixed, we investigate
the codimension-one stratum in the space of (pseudo-) gradients formed by vector fields having
one homoclinic orbit in a given homotopy class of loops. This stratum S breaks up into a
left and a right part separated by a substratum. The algebraic effect on the Morse-Novikov
complex of crossing S depends on the part, left or right, which is crossed. This difference makes
necessary the doubling phenomenon mentioned in our title.

1. Introduction

We are given a closed connected n-dimensional manifold M with a non-zero de Rham co-
homology class u ∈ H1(M ;R). This class is represented by closed differential 1-forms of type
Morse, meaning that their zeroes are non-degenerate. The set of Morse 1-forms in the class u
is denoted by Fu . For a Morse 1-form α, the set of its zeroes will be denoted Z(α); each zero
p ∈ Z(α) has a Morse index i(p). Along a path in Fu, the zeroes can be followed continuously
and their respective indices are constant.

As in Morse theory, it is important to equip each α ∈ Fu with a descending pseudo-gradient X
which is said to be adapted to α (see Definition 2.1). The set of equipped Morse 1-forms (α,X)
with α ∈ Fu is denoted by F̃u . The Morse-Novikov theory is devoted to the understanding of
this space.

With each zero p of α in M , there are associated a stable and an unstable manifold. These
are respectively denoted by W s(p,X) and W u(p,X). Generically, X has the property that all
these invariant manifolds when p runs in Z(α) are mutually transverse. In that case, the pair
(α,X) will be called Morse-Smale1 In that case, if an orbit of X is a connecting orbit going
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from p to q then i(p) > i(q). The α-length of a connecting orbit `, defined by

(1.1) L(`) := −
∫
`

α,

must be positive. Moreover, a Morse-Smale pair (α,X) yields the so-called Morse-Novikov
differential ∂X that counts the incidences 〈p, q〉X between the zeroes of α whose indices verify
i(q) = i(p) − 1 (see Subsection 3.1). The formulation we are going to use for this complex is
due to Jean-Claude Sikorav in his thesis [13].

In a generic one-parameter family (Xs)s∈I of vector fields adapted to a given α ∈ Fu, the
pair (α,Xs) is Morse-Smale for every s outside (A tB) ⊂ I, where A t B is a countable set
of bifurcation times. To be more precise, for each s ∈ A tB there is only one connecting orbit
` along which the transversality condition W u(p,Xs) t W s(q,Xs) fails and, for each L > 0,
there are finite subsets AL ⊂ A and BL ⊂ B such that, for s ∈ AL t BL, the non-transverse
connecting orbit of Xs has α-length less than L. The set A – which is beyond the purposes
of the present paper – consists of annihilation times where i(q) = i(p) − 1 and, at each point
of the connecting orbit ` = W u(p,Xs) ∩W s(q,Xs), there is a two-dimensional plane tangent
to both W u(p,Xs) and W s(q,Xs). We are concerned with slide times s ∈ B, where the loss
of transversality comes from the fact that i(p) = i(q); in this case, the mentioned connecting
orbit ` is called a slide orbit. Remark that at a slide time, we can have p = q in which case `
is a self-slide orbit, classically called homoclinic orbit.

Given a pseudo-gradient X of α ∈ Fu, a homoclinic orbit is a connecting orbit ` from p to
itself, where p is a zero of α. This was also considered by M. Hutchings [3] (see also [10]).
This orbit makes a loop in M based at p (never smooth there). In order to avoid dependency
on base points, we introduce the fundamental groupoid Π of M (see Definition 3.2). Denote
by Πloop ⊂ Π the subgroupoid of homotopy classes of based loops in M . This is a topological
groupoid and there is a continuous evaluation map Πloop → M which maps each based loop
to its base point; its fibre is discrete. The homoclinic orbit ` based in p has a homotopy
class g := [`] ∈ Πloop which will be called the Π-value of `. The canonical isomorphism
H1(M ;R) ∼= Hom (π1(M, p),R) yields the morphism g ∈ π1(M, p) 7→ u(g) ∈ R and, if g is the
Π-value of `, we have:

(1.2) u(g) = −L(`).

As a consequence, ` is not homotopic to zero.
In what follows, the form α will be kept fixed and we denote by Fα the fibre of the forgetful

map F̃u → Fu. An element of Fα will be denoted by (α,X) or by X only if α is implied by
the context. For g ∈ Πloop, we consider the “stratum” Sg ⊂ Fα made of elements (α,X) where
X has exactly one homoclinic orbit ` whose Π-value is g, the field X being allowed to have
another slide orbits. An element of Sg will be called a self-slide. The stratum Sg may have
several connected components but, by definition of Πloop, the element g indicates which zero p
of α is involved in the self-slide. In particular, with Sg it is associated a Morse index which is
surely distinct from 0 and n since these indices do not allow homoclininic orbits.

Generically in Sg, a self-slide possesses a natural character which is an element in {+,−}
and which will be defined later (see Definition 2.11). We define S+

g (resp. S−g ) to be the open
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set in Sg made of elements having the mentioned character. Finally, S0
g denotes the self-slides

for which the character is not defined.

Theorem 1.1. For every g ∈ Πloop verifying u(g) < 0, the following holds true:
(1) The stratum Sg is a codimension-one, co-oriented stratum of Fα of class C∞.
(2) Assume n > 2. Then, the stratum S0

g is a non-empty codimension-one, co-oriented
sub-stratum of class C∞ in Sg. Moreover, S0

g meets every connected component of Sg.

S+
g

S−
g

S0
g

Figure 1. Local situation on every connected component of Sg ⊂ Fα near S0
g .

Since Sg is co-oriented, we can study the generic one-parameter families (α,Xs) which in-
tersect Sg positively at (α,X0). Let q ∈ Z(α) be any zero whose Morse index equals i(p) − 1.
When passing from s < 0 to s > 0, the incidence 〈p, q〉Xs gets multiplied by an element λ of
the Novikov ring which does not depend on q and that we call the self-slide factor. It turns out
that λ depends on the character of (α,X0). For clarity, we give a simplified version of Theorem
3.6 right below. This theorem tells us the precise manner in which the incidence changes. This
makes more precise the statement of [9, Prop. 2.2.36] whose proof was inaccurate.

Theorem 1.2. The self-slide factor is given by the following formulas:
(1) λ = 1 + g if (α,X0) ∈ S−g (Polynomial type),
(2) λ = 1 +

∑∞
j=1 g

j if (α,X0) ∈ S+
g (Series type).

Of course, in order to keep the squared differential equal to zero there are similar formulas for
the change of the incidence 〈p, q〉Xs when the Morse indices satisfy i(q) = i(p)+1. The doubling
phenomenon that has motivated our article relates the strata Sg and Sg2 . If γ : S1 → Fα
denotes a small generic loop going around the codimension-two stratum S0

g , this loop cannot
avoid crossing Sg2 :
Theorem 1.3. The stratum S0

g lies in the closure of Sg2. Furthermore, there exists a codimension-
two stratum S0,0

g of Sg, contained in S0
g , such that S0

g r S0,0
g is a boundary of class C1 of Sg2.

The precise definition of S0,0
g yields a decomposition S0

g r S0,0
g = S0,−

g t S0,+
g (see Definition

4.1). Locally along S0
g r S0,0

g , the stratum Sg2 approaches from one side of Sg only. As a
matter of fact, Sg2 approaches S0,+

g (resp. S0,−
g ) from the positive (resp. negative side) of the

co-oriented stratum Sg. Moreover, only S+
g2 (the positive part of Sg2) approaches S0

g . A precise
statement about the latter facts is Theorem 4.2, that may be illustrated by the following figure:
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S0,+
g

S0,−
g

S+
g2

S+
g2

S0,0
g

Figure 2. The stratum S0
g r S0,0

g as a boundary of Sg2 .

Remarks 1.4.
1) It easily seen that the total space of the fibration F̃u → Fu has also a stratification which
is given in each fibre Fα by the union of S0

g ⊂ Sg ⊂ Fα where g runs in Πloop. As a stratified
fibration, it is locally trivial but it could be globally non-trivial. Indeed, a connected component
of a codimension-one stratum could intersect Fα along some components of Sg and Sg′ where
g and g′ are freely homotopic and based in different points.

2) Our doubling phenomenon evokes the period doubling bifurcation, also called Andronov-
Hopf’s bifurcation. In this aim, it would be good to know that crossing Sg creates (or destroys)
a periodic orbit in the free homotopy class g. Shilnikov’s theorem [12] deals with this question.
Unfortunately, it is not applicable here because we are going to use very non-generic Morse
charts (only +1 and −1 as eigenvalues of the Hessian at critical points). In counterpart, such
charts offer very nice advantages.

3) We were asked the question whether our results depend on the assumption that the pseudo-
gradientX is adapted to α in the sense of Definition 2.1. Most probably, if that assumption is not
fulfilled, the statement of Theorem 1.3 is not true, at least in the simple form shown in Figure 2.
If the spectrum of X at one zero p is not contained in the real axis, some spiralling phenomenon
appears in the dynamics of X through the Morse model about p and this phenomenon destroys
our analysis. If the spectrum is real but not concentrated in one eigenvalue for each sign,
which is the case of the gradient vector field of a generic Riemannian metric, there is still
some asymptotic phenomenon which also destroys our analysis. Even Theorem 1.1, item (2),
would be involved in these complications since the definition of the character of a self-slide (see
Definition 2.11) would be concerned.

Motivation 1.5. The study of homoclinic bifurcations is interesting in itself from the point of
view of dynamical systems.

Another possible application could be found in creating a pseudo-isotopy theory for non-exact
closed 1-forms. Namely, suppose we are given α0 and α1 in Fu without zeroes. Taking a generic
path 2 (αs) from α0 to α1 in the cohomology class u, that is in the closure of Fu, is it possible to

2A path of 1-forms in the class u is said to be generic if it avoids Fu finitely many times only.



5

deform (αs) – keeping {α0, α1} fixed – to a path of closed forms with no zeroes? In the latter
case, α0 and α1 are isotopic according to the classical Moser’s Isotopy Lemma [8].

One way to proceed is to equip the path (αs) with a generic family (Xs) to perform a
parametric Morse-Novikov theory. This approach has already been taken in the same problem
for functions on compact manifolds N × [0, 1] (see [2]), which corresponds to the case u = 0.

What the exact case tells us is that some second Whitehead group should be involved. But
right now, nobody knows what this group Wh2(u) is in Novikov version.

2. Self-slide stratum, orientation and character

We are focusing on self-slides despite some of the statements hold true for other slides. In
the discussion below, we are given a pair (α,X) ∈ F̃u where α is a closed 1-form on M (in
the cohomology class u) equipped with an adapted vector field X in the sense which is now
specified.

Definition 2.1. For each zero p of X of index i(p) = i, Morse coordinates near p are coordi-
nates where the form α equals the differential of the standard quadratic form of index i

Qi := −x2
1 + . . .− x2

i + x2
i+1 + . . .+ x2

n.

A vector field X is said to be a (negative) pseudo-gradient adapted to α if the two next condi-
tions are fulfilled:

- α(X) < 0 outside Z(α);
- for every p ∈ Z(α) there are Morse coordinates about p such that X coincides with the
standard descending gradient Xi of Qi, where i = i(p), that is:
Xi = 2

∑i
1 xk∂xk − 2

∑n
i+1 xk∂xk .

Given (α,X) ∈ F̃u and p ∈ Z(α), Morse coordinates about p are said to be adapted to (α,X) if
X = Xi in these coordinates. It will also be said that X is adapted to these Morse coordinates.

Remark 2.2. The natural action of G := O(i) × O(n − i) on Rn keeps the pair (Qi, Xi)
invariant and G is the subgroup of O(i, n − i) preserving Xi. Actually, the simplicial group
G := Diff(Qi, Xi) of germs of diffeomorphisms of (Rn, 0) preserving the pair (Qi, Xi) retracts by
deformation to G. Indeed, if ϕ ∈ G, the Alexander isotopy ϕt : x 7→ 1

t
ϕ(tx) is made of elements

in G for every t ∈ (0, 1] and tends to the derivative ϕ′(0)x as t goes to 0. As a consequence,
given (α,X) ∈ F̃u and p ∈ Z(α), the set, modulo G, of Morse coordinates about p which X is
adapted to is contractible.

2.1. Morse model. Given p ∈ Z(α) of Morse index i, a Morse model Mp with positive
parameters (δ, δ∗) (which we do not make explicit in the notation) is diffeomorphic to the
subset of Ri ×Rn−i made of pairs (x−, x+) such that Qi(x

−, x+) ∈ [−δ∗,+δ∗], |x−|2|x+|2 ≤ δδ∗

and α|Mp = dQi. The bottom of Mp, that is its intersection with {Qi = −δ∗} is denoted by
∂−Mp; similarly, the top is denoted by ∂+Mp. The rest of the boundary ofMp is denoted by
∂`Mp and Xi is tangent to it. Notice that:

- the group G preservesMp for every parameters (δ, δ∗);
- the set of Morse models, as compact subsets of Rn, is contractible.

The flow of Xi is denoted by (X t
i )t∈R. The local unstable (resp. local stable) manifold is formed

by the points x ∈Mp whose negative (resp. positive) flow line X t
i (x) goes to p when t goes to
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−∞ (resp. +∞) without getting out ofMp. Denote by Σ− the (i− 1)-sphere which is formed
by the points in the bottom ofMp which belong toW u

loc(p,Xi); it is called the attaching sphere.
Similarly, Σ+ denotes the (n− i−1)-sphere which is contained both in the top ofMp and made
of points belonging to W s

loc(p,Xi); we call it the co-sphere. We will use the the two projections
associated with these coordinates:

(2.1) π+ : ∂+Mp → Σ+ and π− : ∂−Mp → Σ−.

2.2. Tube and orientation. Let α be a Morse closed 1-form on M , let X be an adapted
pseudo-gradient and ` be a homoclinic orbit of X, based at p ∈ Z(α). Denote by ` the closure of
`rMp; it will be named the restricted homoclinic orbit. Its end points are denoted respectively
a− ∈ Σ− and a+ ∈ Σ+. We also introduce a compact tube T around ` made of X-trajectories
from ∂−Mp to ∂+Mp. Up to time rescaling, we may suppose X1(a−) = a+. On T , there are
coordinates (x, y, v, z) ∈ Ri−1 × Rn−i−1 × [−1, 1]× [0, 1] with the following properties:

- X is positively colinear to ∂z,
- {z = 0} = T ∩ ∂−Mp and {z = 1} = T ∩ ∂+Mp;
- T ∩ Σ− = {y = 0, v = 0, z = 0} and T ∩ Σ+ = {x = 0, v = 0, z = 1};
- ` = {x = 0, y = 0, v = 0};
- ∂v is tangent to the leaves of α.

We choose the base {z = 0} of T to be a closed polydisc.

Orient the unstable W u(p,X). Thus, the stable manifold is co-oriented. Therefore, we can
choose the coordinate v in the tube so that, for every z0 ∈ [0, 1], the following holds:

(2.2) ∂v ∧ or (W u(p,X) ∩ {z = z0}) = co-or(W s(p,X)).

If the orientation of W u(p,X) is changed, then the co-orientation of W s(p,X) is also changed
and the above equation shows that the positive direction of v remains unchanged.

Remark 2.3. It is important to notice that (2.2) tells us nothing about the holonomy along `
of the foliation defined by X (see the next subsection). Therefore, for a given ∂v ∈ Ta+(∂+Mp),
the tangent vector ∂v ∈ Ta−(∂−Mp) may have any position not contained in the hyperplane
R {∂x, ∂y}, depending on X.

2.3. Holonomy and perturbed holonomy. Since T is compact, there exists some open
neighborhood N−X ⊂ ∂−Mp (depending on X) of {z = 0} = T ∩ ∂−Mp on which the holonomy
along ` is defined from the transversal ∂−Mp to the transversal ∂+Mp, that is: if γ(u), u ∈ [0, 1]
is a path in N−X starting from a−, the solutions xu(t) of the differential equation ẋ = X(x)
with initial condition xu(0) = γ(u) cross ∂+Mp at a time θ(u) depending smoothly on u. In
particular, θ(0) = 1 and x0(θ(0)) = a+. In this setting, the map γ(1) 7→ x1(θ(1)) defines a
diffeomorphism HX from N−X to an open set N+

X ⊂ ∂+Mp which contains {z = 1}.
The existence of such holonomy diffeomorphism is an open property with respect to X. More

precisely, if X̃ is a close enough approximation of X in the C1-topology, there is a perturbed
holonomy diffeomorphism HX̃ from an open neighborhood N−

X̃
of {z = 0} in ∂−Mp to an open

neighborhood N+

X̃
of {z = 1} in ∂+Mp.
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Remark 2.4. According to this property of the perturbed holonomy, it makes sense to speak
of H−1

X̃
(Σ+) ∩ {z = 0}. It is an (n − i − 1)-disc close to the y-axis in {z = 0}. Similarly, it

makes sense to speak of HX̃(Σ−) ∩ {z = 1}. It is an (i− 1)-disc close to the x-axis in {z = 1}.
We now state and prove Item (1) of Theorem 1.1.

Proposition 2.5. For every g ∈ Πloop with u(g) < 0, the stratum Sg is a C∞ codimension-one
stratum of Fα. This stratum has a canonical co-orientation.

Proof. Let X0 be any point in Sg. Let ` denote the homoclinic orbit of Π-value g and let p be
the involved zero of α. We intend to find a regular real valued equation for Sg near X0. We
recall:

- the local stability of the adapted vector fields near p;
- the acyclicity of the space of Morse models adapted toX0 near p; near {z = 0}∪{z = 1}.

Therefore, the action of the group Diff(M) reduces us to consider a slice S ⊂ Fα such that
every X ∈ S near X0 satisfies the following: X = X0 in a given Morse modelMp.

We use the tube T and its coordinates as introduced in Subsection 2.2. The Implicit Function
Theorem allows us to follow continuously, for X close to X0, a connected component D(X) of
W u(p,X) ∩ T ∩ {z = 1} which coincides with {y = 0, v = 0, z = 1} when X = X0. Let

(2.3) pv : {z = 1} → {v = 0, z = 1}
denote the projection parallel to ∂v onto the (x, y)-space. The image pv(D(X)) is transverse
to Σ+. The intersection is a point a+(X) which depends C∞ on X. Let b(X) be the point of
D(X) which has the same coordinates as a+(X) except the last coordinate v. Thus, the wanted
equation is

(2.4) v(b(X)) = 0 .

This is clearly a C∞ equation. For proving this equation is regular it is sufficient to exhibit
a one-parameter family (Xs) passing through X0 and satisfying the next inequality:

(2.5) ∂s
(
v ◦Hs(a

−)
)
|s=0

> 0 ,

where Hs stands for the perturbed holonomy diffeomorphism of Xs. This is easy to perform by
taking Xs as X0 plus a small vector field s g(x, y, z, v)∂v where the function g is non-negative,
supported in the interior of the tube T and has a positive integral along ` .

After (2.2) we noticed that the positive sense of v does not depend on the chosen orientation
of the unstable manifolds. Therefore, (2.5) defines a canonical co-orientation of Sg. �

Definition 2.6. Let (Xs)s∈Op(0) be a one-parameter family 3 of vector fields adapted to α and
standard in Mp. It is assumed X0 ∈ Sg . The family Xs is said to be positively transverse to
the stratum Sg if it satisfies (2.5).

Consider a one-parametrer family (Xs) positively transverse to Sg. Below, we use the coor-
dinates (x, y, v) of T ∩ {z = 0, 1}. According to Subsection 2.3, for s close to 0 there exists
an open tube Ts ⊃ T made of trajectories of Xs going from ∂−Mp to ∂+Mp. That defines a

3Following M. Gromov, Op(0) stands for on open interval (−ε, ε) as small as wanted.
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holonomy local diffeomorphism Hs from a neighborhood of {z = 0} in ∂−Mp to a neighborhood
of {z = 1} in ∂+Mp and we have:

(2.6) v
[
Hs

(
Ts ∩ Σ−

)
∩ {z = 1, x = 0}

]
> 0 , when s > 0 .

A consequence of (2.6) for the inverse flow is the following:

(2.7) v
[
H−1
s

(
Ts ∩ Σ+

)
∩ {z = 0, y = 0}

]
< 0 , when s > 0 .

Actually, the above inequalities are implied by the some relation between velocities which is
stated below and will be useful elsewhere. In relation to (2.6), we are interested in the local
solution xs of the equation

(2.8) py,vHs(x, 0, 0) = 0

which equals 0 when s = 0; here, py,v stands for the projection parallel to the span of {∂y, ∂v}.
And in relation to (2.7), we consider the solution ys of the equation

(2.9) px,vH
−1
s (0, y, 0) = 0

which equals 0 when s = 0; here, px,v stands for the projection parallel to the span of {∂x, ∂v}.
Lemma 2.7. With the above data and notations, the following equality holds:

(2.10) ∂s (v ◦Hs(xs, 0, 0))|s=0 + ∂s
(
v ◦H−1

s (0, ys, 0)
)
|s=0

= 0 .

In particular, if the first term equals +1 the second equals −1.

Proof. A Taylor expansion gives

v ◦Hs(xs, 0, 0) = v ◦Hs(0, 0, 0) +O(s2) .

That follows from the fact that the velocity of xs is a vector which is contained in the kernel
of dv. Similarly, we have:

v ◦H−1
s (0, ys, 0) = v ◦H−1

s (0, 0, 0) +O(s2) .

Observe that H0(x, y, v) = (x, y, v). Thus, derivating with respect to s at s = 0 the composed
map H−1

s ◦Hs = Id gives:

∂sH
−1
s (0, 0, 0)|s=0 + ∂sHs(0, 0, 0)|s=0 = 0 .

Altogether, we get the desired formula. �

2.4. Equators, signed hemispheres and latitudes. We introduce some useful nota-
tions. Let Dk, k ≥ 1, be the closed Euclidean disc of dimension k and radius δ (the first
parameter of the Morse model), equipped with spherical coordinates (r, θ) ∈ [0,

√
δ] × Sk−1.

Denote by

(2.11) ∂θr ∈ T0Dk the unitary vector pointing towards θ ∈ Sk−1.

Suppose that we are given a preferred co-oriented hyperplane ∆ ⊂ T0Dk. We obtain a preferred
co-oriented equator E∆ ⊂ Sk−1.

The co-orientation of E∆ points to an open hemisphere denoted by H+(Sk−1); the opposite
hemisphere is denoted by H−(Sk−1). We have two marked points determined by the oriented
normal to ∆: a North pole ν ∈ H+(Sk−1) and a South pole σ ∈ H−(Sk−1).
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Any point x ∈ Sk−1 determines an angle with respect to the North pole ν. The cosinus of
this angle defines a latitude on Sk−1, relative to ∆, that we denote by:
(2.12) ω∆ : Sk−1 → [−1, 1].

Clearly ω−1
∆ (1) = {ν} , ω−1

∆ (−1) = {σ} and ω−1
∆ (0) = E∆. Moreover, if we denote by

(2.13) p∆ : T0Dk → R∂νr
the projection parallel to ∆, the definition of cosinus reads
(2.14) p∆(∂θr ) = ω∆(θ) ∂νr .

Proposition 2.8. Every X in Sg defines a preferred latitude on both the attaching sphere Σ−

and the co-sphere Σ+.

For this aim, we use radial-multispherical coordinates (φ, r, ψ) ∈ Si−1 × [0,
√
δ] × Sn−i−1 on

each level set ofMp and we recall the map

(2.15) Desc : ∂+Mp r Σ+ → ∂−Mp r Σ−

obtained by descending the flow lines inMp. This map reads Id in these coordinates.
The preferred latitude which we are going to define on Σ− and Σ+ will be called respectively

the φ-latitude and the ψ-latitude. We insist that these functions depend on X ∈ Sg. We denote
them by
(2.16) ωXφ : Σ− → [−1, 1] and ωXψ : Σ+ → [−1, 1].

When the vector field is clear from the context, these functions will just be denoted ωφ
and ωψ. We shall decorate all the data related to ωφ or ωψ by using the letter φ or ψ re-
spectively; namely, the preferred hyperplane ∆φ, the preferred equator Eφ ⊂ Σ−, the poles
νφ ∈ H+(Σ−), σφ ∈ H−(Σ−) and so on.

Proof. Take any X in Sg and denote by ` its homoclinic orbit from p to itself. The end point
a+ of ` has coordinates a+ = (−, 0, ψ0); as usual with polar coordinates, when the radius is 0
the spherical coordinate is not defined. Let
(2.17) πψ0 : ∂+Mp → {ψ = ψ0}, πψ0(φ, r, ψ) = (φ, r, ψ0),

be the projection onto the meridian i-disc.
Let H : {z = 0} → {z = 1} denote the holonomy diffeomorphism defined by the vector field

X in the tube T . The image of T ∩ Σ− through H is a (i − 1)-disc D ⊂ ∂+Mp. Due to the
transversality condition associated with `, this disc is a graph over its projection Dψ0 := πψ0(D)
if the tube is small enough around `. Then,
(2.18) ∆φ := Ta+Dψ0 ⊂ Ta+ {ψ = ψ0} is the preferred hyperplane.
As we noticed in Remark 2.3, the vector ∂v ∈ Ta+∂

+Mp is neither tangent to Σ+ nor to D,
which implies that
(2.19)

(
dπψ0

)
a+

(∂v) defines a co-orientation of ∆φ in Ta+ {ψ = ψ0} .
This provides a preferred latitude on the φ-sphere ∂{ψ = ψ0} = Si−1 × {

√
δ} × {ψ0}. By the

canonical isomorphism

(2.20) Si−1 × {
√
δ} × {ψ0} ∼= Si−1 × {0} × {−} = Σ−,
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the preferred latitude on ∂ {ψ = ψ0} descends to some φ-latitude which defines the claimed ωXφ
of (2.16).

For the ψ-latitude on the co-sphere Σ+, we do the same construction by using the reversed
flow and its holonomy H−1. More precisely, take the image of T ∩ Σ+ through H−1; it is a
(n− i−1)-disc D′ ⊂ ∂−Mp centered in a− whose spherical coordinates are a− = (φ0, 0,−). Let

(2.21) πφ0 : ∂−Mp → {φ = φ0}, πφ0(φ, r, ψ) = (φ0, r, ψ),

be the projection onto the meridian (n− i)-disc and let Dφ0 be the image πφ0(D′). Hence,

(2.22) ∆ψ := Ta−Dφ0 ⊂ Ta− {φ = φ0} is the preferred hyperplane.

Moreover, ∂v ∈ Ta−∂−Mp cannot be neither tangent to Σ− nor to D′, which implies that

(2.23)
(
dπφ0

)
a−

(∂v) defines a co-orientation of ∆ψ in Ta− {φ = φ0} .
This yields a preferred latitude on the sphere ∂ {φ = φ0}, that can be carried to Σ+ by means
of the canonical isomorphism

(2.24) {φ0} × {
√
δ} × Sn−i−1 ∼= {−} × {0} × Sn−i−1 = Σ+.

This defines the claimed ψ-latitude ωXψ of (2.16). �

2.5. Holonomic factor and character. By construction of the ψ-latitude, the tangent
space Ta− {φ = φ0} splits as R∂νψr ⊕∆ψ. This together with the decomposition of Ta+ {ψ = ψ0}
defined by the φ-latitude, we obtain the following decompositions:

(2.25)

{
Ta− {z = 0} = Ta−Σ− ⊕

(
R∂νψr ⊕∆ψ

)
,

Ta+ {z = 1} =
(
∆φ ⊕ R∂νφr

)
⊕ Ta+Σ+ .

Given (α,X) ∈ Sg, recall the homoclinic orbit ` whose Π-value is g and all associated
objects that we introduced in Subsection 2.2: the tube T , its coordinates (x, y, v, z) and the
holonomy diffeomorphism H : {z = 0} → {z = 1}. It reads Id in the (x, y, v)-coordinates and
H(a−) = a+.

We are free to choose the coordinates of the tube such that the unit tangent vector ∂1
v :=

∂v ∈ Ta+ {z = 1} verifies
(2.26) ∂1

v = ∂
νφ
r .

The linearized holonomy Ta+H−1 sends ∂1
v onto ∂0

v := ∂v ∈ Ta− {z = 0}. By (2.25), the latter
vector decomposes as

(2.27) ∂0
v = vx + η̄∂

νψ
r + vy, where vx ∈ Ta−Σ−, vy ∈ ∆ψ, η̄ ∈ R.

As we pointed in Remark 2.3, the only restriction on the holonomy of X along ` is that η̄ 6= 0.
Moreover, according to (2.23), the vector ∂0

v defines the positive side of the preferred hyperplane
∆ψ. As a consequence, η̄ must be positive.

Definition 2.9. The holonomic factor associated with (α,X) is the positive real number given
by

(2.28) η(X) :=
1

η̄
> 0 .
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The following subsets of Sg are respectively called the φ-axis and the ψ-axis of Sg:
(2.29) Sφg :=

{
X ∈ Sg

∣∣ a+(X) ∈ Eψ
}

and Sψg :=
{
X ∈ Sg

∣∣ a−(X) ∈ Eφ
}
,

that we also call the spherical axes. Here, a±(X) stand for the respective extremities of the
restricted orbit `, where ` is the unique homoclinic orbit of X in the homotopy class g. Denote
the intersection of the axes by:
(2.30) S0,0

g := Sφg ∩ Sψg
which is empty when one axis is so.

Remark 2.10. When the Morse index of Sg equals 1, then the φ-equator is empty but there
are still signed poles. In that case, the φ-latitude takes only the values {−1,+1} and the ψ-axis
is empty. When the Morse index of Sg equals n − 1, then the ψ-equator and the φ-axis are
empty and the ψ-latitude is valued in {−1,+1}. If n > 2, these two events do not happen
simultaneously. This is the reason for the dimension assumption in Theorem 1.1 (2).

We are now ready for defining the important notion of character.

Definition 2.11. Let χ : Sg → R be the character function given by:

(2.31) χ(X) := η(X)ωXψ (a+(X)) + ωXφ (a−(X)).

Let S0
g := χ−1 ({0}). The character of (α,X) is then defined as the map

(2.32) ε : Sg r S0
g → {+,−} ,

given by the sign of χ. Thus, Sg r S0
g divides into S+

g t S−g .
By the very definition of the latitudes, it is clear that each axis intersects S0

g along S0,0
g , as

Figure 3 suggests (compare to Figure 1).

S+
g

S−
g

S0
g

S0,0
g Sφg

Sψg

Figure 3. The substratum S0,0
g ⊂ S0

g as the intersection of the φ-axis with the ψ-axis.

Below, we start giving some information about S0,0
g and S0

g from which Theorem 1.1 will be
completely proved.

Proposition 2.12.
1) The axes Sφg and Sψg are C∞ submanifolds of codimension 1 in Sg. Moreover, they intersect
transversely. Hence, their intersection S0,0

g is a C∞-submanifold of codimension 2 in Sg.
2) If n > 2, the stratum S0

g is a non-empty co-oriented C∞ sub-stratum of codimension 1 in
each connected component of Sg.
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Proof.
1) First assume 1 < i < n − 1, where i denotes the Morse index of Sg. The equation of the
ψ-axis Sψg in Sg reads with the notations introduced in (2.16) and (2.29):

ωXφ (a−(X)) = 0.

Let X0 ∈ Sψg . In order to prove that the equation is regular, we have to exhibit a germ
(Xs)s of path in Sg passing through X0 such that the s-derivative of ωXsφ (a−(Xs)) at s = 0
is non-zero. For s close to 0, let Hs be the local holonomy diffeomorphism of Xs from a
neighborhood of {z = 0} in ∂−Mp to a neighborhood of {z = 1} in ∂+Mp. Let a− = (φ0, 0,−)
and a+ = (−, 0, ψ0) be the end points of the restricted orbit `. We arrange that Hs keeps the
πψ0-projection of Hs(Σ

−) into the meridian {ψ = ψ0} ⊂ ∂+Mp independent of s. Thus, the
equator Eφ is so. Therefore, we are reduced to control the s-derivative of ωφ(a−(Xs)).

We recall that every germ of isotopy of the holonomy H0 lifts to a deformation of X0. Then,
we are free to choose the holonomy so that s 7→ a−(Xs) ∈ Σ− crosses Eφ transversely at time
s = 0 and a+(Xs) moves in Σ+ (in order to guarantee Xs ∈ Sg). Thus, we are done.

For a similar reason, the equation ωXψ (a+(X)) = 0 of the φ-axis Sφg is regular. For showing the
transversality of the two axis, we consider any X0,0 ∈ S0,0

g . We choose a (germ of) 2-parameter
family Xs,u ∈ Sg whose holonomy Hs,u satisfies the next conditions:

(1) the equator Eφ is independent of s when u = 0 and ∂sωφ(a−(Xs,0)) > 0;
(2) the equator Eψ is independent of u when s = 0 and ∂uωψ(a+(X0,u)) > 0:
(3) for every (s, u) close to (0, 0), we have a−(Xs,u) ∈ Σ− and a+(Xs,u) ∈ Σ+.

Condition (3) guarantees that Xs,u runs in Sg. Thanks to (1) and (2), the evaluation map
(s, u) 7→ (a−(Xs,u), a

+(Xs,u)) ∈ Σ−×Σ+ is transverse to the submanifold Eφ×Eψ. This proves
the independence of ∂sXs,u and ∂uXs,u at (0, 0).

Suppose now 1 < i = n− 1. The axis Sφg is empty since Eψ = ∅. We only need to prove the
assertion about Sψg . The above proof is still correct by only noticing that a+(Xs) remains con-
stantly equal to a+ ∈ {(−, 0, νψ), (−, 0, σψ)} and that Eφ is a (n−3)-sphere inside Σ−. The case
i = 1 < n−1 is treated analogously. If n = 2, both axes are empty and there is nothing to prove.

2) By Definition 2.11, the equation of S0
g in Sg reads

χ(X) := η(X)ωXψ (a+(X)) + ωXφ (a−(X)) = 0

For proving that the equation is regular in any X0 ∈ S0
g whe have to exhibit a germ of path

(Xs)s in Sg passing through X0 such that ∂sχ(Xs) > 0.
First, we arrange that the equators Eφ and Eψ do not depend on s by requiring that the

holonomy Hs along the self-connecting orbit ` of X0 fulfils the next conditions:
- for every s, there is a self-connecting orbit `s (the end points of the restricted orbit `s
are noted a−(Xs) and a+(Xs));

- the πψ0-projection of Hs(Σ
−) into the meridian {ψ = ψ0} is constant;

- the πφ0-projection of (Hs)
−1(Σ+) into the meridian {φ = φ0} is constant.

Now, there are two cases depending on whether ωψ(a+(X0)) equals 0 or not. If ωψ(a+(X0)) 6=
0, the germ of Hs at a−(X0) is chosen to be a contraction: its center is a+(X0) and its factor
is es (in the coordinate (x, y, v) of the extremity {z = 1} of the tube T around `). Notice that
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such a contraction preserves the above requirements for the constancy of the equators. Then,
a calculation shows that the holonomic factor is multiplied by the same factor, which implies
that ∂sχ(Xs) > 0 since a±(Xs) is constant.

Finally, we have to solve the case when ωψ(a+(X0)) = 0. Here, we arrange the holonomy
Hs so that ∂sωψ(a+(Xs)) > 0 and ∂sωφ(a−(Xs)) = 0, which again implies ∂sχ(Xs) > 0 since
η(Xs) > 0.

It remains to prove that S0
g is visible in each connected component of Sg when n > 2. Let

X ∈ Sg. This vector field has a restricted connecting orbit ` with extremities a− ∈ Σ− and
a+ ∈ Σ+. Any move of these points in their respective sphere lifts to a deformation of X in the
space of descending pseudo-gradient adapted to α. If Σ+ and Σ− are both connected, there is
such a move until a− and a+ lie in the equators of their respective sphere. Then, X is deformed
in Sg until it lies in S0,0

g ⊂ S0
g .

If one sphere is disconnected, say Σ+, then by dimension assumption, Σ− is connected. First,
one can move X in Sg and modify the holonomic factor by some homothety for making it
less than 1; secondly, knowing that ωXψ (a+(X)) = ±1, one moves a− in Σ− and changes X
accordingly, keeping the holonomic factor constant, until reaching the locus χ(X) = 0. This
finishes the proof of Proposition 2.12.

�

After Proposition 2.5 and Proposition 2.12 we have a complete proof of Theorem 1.1. �

2.6. Normalization of crossing path. The normalization in question will be used for
proving Theorem 1.2 and Theorem 1.3. The normalization is achieved by making some group
act on M . At the end of the subsection it will be proved that the stratification (Sg,S0

g ,S0,0
g ) is

invariant under this action.
In this subsection we use notations as D1(0), C1(0) which will be used repeatedly in Section

3 (see Notation 3.7). Consider the image H0(Σ−) ⊂ ∂+Mp by the holonomy map of X0 along
its homoclinic orbit ` in the homotopy class g ∈ Πloop. Let us define

D1(0) := H0(Σ−) ∩ {z = 1} and C1(0) := Desc(D1(0)).

Definition 2.13.
1)The pseudo-gradient X0 ∈ Sg is said to be normalized or in normal form if D1(0) is
contained in the preferred hyperplane ∆φ of the meridian i-disc {ψ = ψ0}.
2) A crossing path (Xs)s of Sg is said to be normalized if X0 is so.

That any X0 ∈ Sg can be normalized by conjugation follows from the next lemma about
diffeomorphisms ofMp whose proof by Taylor expansion is detailed in the Appendix to [5].

Lemma 2.14. Let K be a C1-diffeomorphism of ∂+Mp of the form (φ, r, ψ) 7→ (φ, r, k(φ, r, ψ)).
It is assumed that k(φ, 0, ψ) = ψ. Then, K uniquely extends to Mp as a C1-diffeomorphism
which is the identity on both stable and unstable local manifolds and which keeps the standard
vector field Xi invariant. Moreover, the extension K is C1-tangent to Id along the attaching
sphere Σ−.
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It is worth noticing that the extension cannot be C2 in general, even if K is C∞. This lemma
can be also used by interchanging the roles of ∂+Mp and ∂−Mp and simultaneously the roles
of φ and ψ.

Corollary 2.15. Given a positive crossing path (Xs)s of the stratum Sg, there exists a C1-
diffeomorphism K of M , isotopic to IdM among the C1-diffeomorphisms keeping α and Mp

invariant, such that the crossing path (K∗Xs)s carried by K is normalized. Moreover, K may
be chosen so that it preserves ` pointwise.

Notice that the vector field (K∗Xs) could be C0 only. But it is integrable and the associate
foliation is C1 transversely; its holonomy is changed by C1-diffeomorphism.

Proof. Recall that D1(0) is nowhere tangent to the fibres of the projection πψ0 to the meridian
disc {ψ = ψ0}. As a consequence, its projected disc Dψ0 is smooth and there exists a smooth
map k̄ : Dψ0 → Σ+ such that D1(0) reads

D1(0) = {(φ, r, k̄(φ, r)) | (φ, r) ∈ Dψ0}.

Since its source is contractible, k̄ is homotopic to the constant map valued in ψ0. By isotopy
extension preserving the fibres of πψ0 , there exists some diffeomorphism K1 of Mp of the
form assumed in Lemma 2.14 which maps the given D1(0) to Dψ0 . This K1 extends to Mp

according to Lemma 2.14. Since K1 is isotopic to Id through diffeomorphisms of the same type,
its extension K1 toMp also extends to M with the same name. Moreover, the isotopy of K1

to IdM is supported in a neighborhood ofMp and preserves each level set of a local primitive
of α. Since Σ± are fixed by K1, it is easy to get that ` is fixed by K1.

After having applied this K1 we are reduced to the case where D1(0) is contained in the
meridian disc {ψ = ψ0}. Decreasing the “multi-radius” of the tube T if necessary, the tangent
plane TmD1(0) is almost orthogonal to the pole axis R∂νφr in each m ∈ D1(0). This implies
that, for every r ∈ (0,

√
δ), the disc D1(0) is transverse to the (i − 1)-sphere of radius r in

{ψ = ψ0}.
SinceD1(0) is a disc transverse to Σ+, its image C1(0) byDesc is diffeomorphic to Si−2×(0, 1]

and contained in the spherical annulus Aψ0 := {(φ, r, ψ0) | φ ∈ Σ−, r ∈ (0,
√
δ]}. By tangency

of D1(0) with the preferred hyperplane ∆φ, the end of C1(0) when r → 0 compactifies as the
φ-equator Eφ ⊂ Σ−. Moreover, C1(0) is transverse (inside Aψ0) to the sphere Σ− × {(r, ψ0)}
for every r, since the corresponding assertion holds in ∂+Mp. Thus, there is an annulus
Ceq ⊂ Eφ× [0,

√
δ]×{ψ0} such that C1(0) reads as the graph of some map κ̄ : Ceq → Σ− valued

in the complement of the poles. Then, κ̄ is homotopic to the map (φ, r) 7→ φ from Ceq to the
equator Eφ of Σ−.

By isotopy extension preserving each sphere Σ− × {(r, ψ)}, we have some diffeomorphism
K2 of ∂−Mp of the form (φ, r, ψ) 7→ (κ(φ, r, ψ), r, ψ) which pushes C1(0) to its flat position
Ceq and satisfies κ(φ, 0, ψ) = φ. By applying Lemma 2.14 “up side down”, K2 extends to M
preserving Mp with its standard gradient. On the upper boundary of the Morse model, this
means that K2 pushes D1(0) to an (i− 1)-disc in the hyperplane ∆φ by some diffeomorphism
tangent to Id in a+. As for K1, this K2 may be chosen so that ` is fixed pointwise. The
composed diffeomorphism K2 ◦K1 is as desired.



15

�

Remark 2.16. Corollary 2.15 holds true for a finite dimensional family. For instance, if we
are given a two-dimensional germ (Xs,t)s,t adapted to the pair (Sg,S0

g ) in X0,0 – in the sense
of Definition 4.1 – then each crossing path γt := (s 7→ Xs,t) of Sg has a normalization by some
C1-diffeomorphism Kt depending continuously on t in the C1-topology.

Notation 2.17. Let G± be the group of diffeomorphisms of M isotopic to IdM , fixing the
homoclinic orbit ` pointwise, preserving the closed one-form α and its standard gradient in
Mp, and having the following form:

- if G ∈ G+, its restriction to ∂+Mp reads
(
φ, r, ψ) 7→ (φ, r, k+(r, ψ)

)
with k+(0, ψ) = ψ;

- if G ∈ G−, its restriction to ∂−Mp reads (φ, r, ψ) 7→
(
k−(φ, r), r, ψ

)
with k−(φ, 0) = φ.

Proposition 2.18. The action of the groups G+ and G− on the space of pseudo-gradients of α
preserves the strata Sg, S0

g and S0,0
g .

Proof. We do it for G+. Let G ∈ G+ and X0 ∈ Sg. Since G fixes the homoclinic orbit `
pointwise, the carried vector field G∗(X0) has the same homoclinic orbit. According to the form
of the restriction of G to the upper boundary ofMp, the projection of D1(0) to the meridian
disc is unchanged. Therefore, the φ-equator is preserved. Looking in the lower boundary, one
derives that the φ-latitude of a−(X0) = Σ− ∩ ` is preserved.

Consider the disc D′1(0) := H−1
X0

(Σ+). Recall from Lemma 2.14 that G|∂−Mp is tangent to Id
at every point of Σ−. Therefore, the tangent space Ta−D′1(0) remains invariant by G. It follows
that the ψ-equator is not changed, and hence, the ψ-latitude of a+ is preserved. Thus we have
the invariance of the spherical axes and of their intersection S0,0

g .
It remains to show that the character function is invariant. We already have seen the invari-

ance of the latitudes. The last term to control is the holonomic factor η(X0) – resp. η(G∗(X0))
– defined in (2.27), which remains unchanged by the action of G thanks to the invariance of:

- ∂1
v by invariance of the φ-latitude,

- ∂0
v since DGa− = Id,

- the framing in which ∂0
v decomposes (this framing is preserved by invariance of the

ψ-latitude).
�

3. Change in the Morse-Novikov complex

3.1. A groupoid approach. A groupoid G is a small category where every arrow is invertible.
The set of objects in G is noted G 0 and the set of arrows (or morphisms) is noted G 1. For every
object p ∈ G 0, we denote by 1p ∈ Hom(p, p) ⊂ G 1 its identity arrow. The maps source and
target, s, t : G 1 → G 0 are defined by s(g) = p and t(g) = q for every morphism g ∈ Hom(p, q).

Remark 3.1. We denote by Z[[G ]] the set of formal series of the arrows of G . An element
λ ∈ Z[[G ]] is usually written as λ =

∑
g∈G 1 ng(λ)g, where ng(λ) ∈ Z. Define the support of λ

as the set supp(λ) := {g ∈ G 1 | ng(λ) 6= 0}. Consider the set
(3.1) Z[G ] := {λ ∈ Z[[G ]] | supp(λ) is finite} .
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Given two arrows g, h – seen as elements of Z[G ] – the product gh ∈ Z[G ] is defined by
their composition in G 1 when t(g) = s(h) and by 0 otherwise. Extending the previous rule
distributively with respect to the sum, we obtain a ring structure for Z[G ]. Moreover, when G 0

is finite, the element 1 :=
∑

p∈G 0 1p ∈ Z[G ] gives an identity element for this product. We call
Z[G ] the groupoid ring associated with G . The next definition is classical.

Definition 3.2. The fundamental groupoid Π of the manifold M is defined as follows: its
objects are the points of M and, if (p, q) is a pair of points, Hom(p, q) is the set of homotopy
classes of paths from p to q. If γ is a such a path, its homotopy class [γ] will be called the
Π-value of γ.

Given any representative α of the fixed cohomology class u, we obtain a groupoid morphism

(3.2) uα : Π→ R, g 7→
∫
γ

α,

where g is the Π-value of a path γ in M and R is seen as a groupoid with a single object. The
restriction of any such uα to the fundamental group π1(M, p) clearly coincides with the group
morphism associated with u. The subgroupoid Πloop ⊂ Π is formed with the homotopy classes
of based loops in M .

We denote by Πα the full subcategory of Π whose set of objects is the set Z(α) of the zeroes
of α. By Remark 3.1, when α is Morse and Z(α) is non-empty, we may consider the groupoid
ring Z[Πα].

A formal series λ ∈ Z[[Πα]] fulfills the Novikov condition if

(3.3) for every L ∈ R, the set supp(λ) ∩ u−1
α (L,+∞) is finite.

Denote by Λα ⊂ Z[[Πα]] the subset of formal series satisfying the Novikov condition. It can
be easily checked that the product rule given in Remark 3.1 also gives a ring structure to Λα,
having the same identity element. We call Λα the Novikov ring associated with α.

Example 3.3. Let g ∈ Πloop with u(g) < 0 – for instance, the Π-value of a self slide. The
following formal series are elements of the Novikov ring:

(3.4)
∞∑
j=1

gj and
∞∑
j=1

(−1)jgj

Indeed, the Novikov condition (3.3) is fulfilled since uα(gj) = j.uα(g) which goes to −∞ when
j → +∞. Thus, they belong to the Novikov ring Λα. In particular 1 + g + g2 + . . . is a unit
whose inverse is 1− g.

We are going to deduce a chain complex
(
C∗(α), ∂X

)
when (α,X) is a Morse-Smale pair.

For a given index i, the left Λα-module freely generated by Zi(α) is denoted by Ci(α). The
map ∂X∗ : C∗(α)→ C∗−1(α) is then defined by:

(3.5) ∂X∗ (p) =
∑

q∈Z∗−1(α)

〈p, q〉Xq,
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where the incidence 〈p, q〉X is the algebraic count in Λα which we are going to define, associated
with the set OrbX(p, q) of connecting orbits from p to q. First, we define the sign of a connecting
orbit ` ∈ OrbX(p, q). Given a point x ∈ `, the sign ε` is defined by the following equation:

(3.6) ε`X(x) ∧ co-or (W s(q,X)) = or (W u(p,X)) .

This definition is clearly indepedent of x ∈ `.
Definition 3.4. Given a Morse-Smale pair (α,X), the Morse-Novikov incidence associated
with the data (p, q,X), p ∈ Zi(α), q ∈ Zi−1(α), is defined by:

(3.7) 〈p, q〉X :=
∑

`∈OrbX(p,q)

ε` g` ∈ Λα,

where g` denotes the Π-value of the connecting orbit `.

The map ∂X as in (3.5) is indeed a differential; this can be found in [4]. The resulting(
C∗(α), ∂X

)
is known as the Morse-Novikov complex (see [11], [13]).

We denote by OrbXL (p, q) the set of connecting orbits from p to q whose α-length L(`) is less
than a fixed L > 0. Since these orbits verify the inequality uα(g`) > −L, we are led to define a
L-truncation map TL : Λα → Z[Πα] by:

(3.8) TL(λ) :=
∑

uα(g)>−L
ng(λ)g.

Two elements λ, µ ∈ Λα are said to be L-equal if TL(λ−µ) = 0, which is denoted by λ ≡L µ.

Finally, the L-incidence is defined as follows:

(3.9) 〈p, q〉XL :=
∑

`∈OrbXL (p,q)

ε` g` ∈ Z[Πα].

Of course we have TL
(
〈p, q〉X

)
= 〈p, q〉XL .

3.2. Effect of self-slides on the incidence. Consider a generic one-parameter family
of pseudo-gradients (Xs)s adapted to the fixed Morse closed 1-form α such that X0 ∈ Sg. By
definition, X0 has a unique homoclinic orbit ` connecting p ∈ Z(α) to itself whose Π-value is
g. Since S0

g has codimension one in Sg (Proposition 2.12), generically the character of X0 is
defined. Denote the index of p by i.

The next definition specifies some genericity conditions that will be needed to prove the
theorem below. The remainder of this section is devoted to its proof and consequences.

Definition 3.5. Let L > 0.
1) The pair (α,X) is said to be Morse-Smale up to L if, for every pair of zeroes p, q ∈ Z(α)
and every X-orbit ` from p to q with

∫
`
α > −L, the unstable and stable manifolds, W u(p,X)

and W s(q,X), are transverse along `.
2) When X ∈ Sg and uα(g) > −L (see (3.2)), then (α,X) is said to be almost Morse-Smale up
to L, if the preceding transversality condition is fulfilled except for the unique homoclinic orbit
whose Π-value is g.
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If (Xs)s is a path which intersects Sg transversely in X0 and if (α,X0) is almost Morse-Smale
up to L, then (α,Xs) is easily checked to be Morse-Smale up to L for every s 6= 0 close enough
to 0.

Theorem 3.6. Let (Xs)s be a path intersecting Sg transversely in X0 and let L > −uα(g).
Assume (α,X0) to be almost Morse-Smale up to L, assume that its character is defined and the
φ-latitude is non-zero. Let q ∈ Zi−1(α). The L-incidence 〈p, q〉XsL is defined when s = 0+ and
s = 0−; it is denoted by 〈p, q〉±L respectively. Then, we have the following.
When (Xs)s intersects the stratum Sg positively, the next relations hold in Λα:

(1) if X0 ∈ S+
g , then 〈p, q〉+L ≡L

(
1 + g + g2 + g3 + . . .

)
· 〈p, q〉−L ,

(2) if X0 ∈ S−g , then 〈p, q〉+L ≡L
(
1 + g

)
· 〈p, q〉−L .

When (Xs)s intersects the stratum Sg negatively, we have:
(1’) if X0 ∈ S+

g , then 〈p, q〉+L ≡L
(
1− g

)
· 〈p, q〉−L ,

(2’) if X0 ∈ S−g , then 〈p, q〉+L ≡L
(
1− g + g2 − g3 + . . .

)
· 〈p, q〉−L .

It is worth noticing the reason for the truncation: in general, the bifurcation at s = 0 is not
isolated in the path (Xs)s. When it is isolated, the truncation is not needed any more; this will
be the case in [6].

Proof of (1) ⇐⇒ (1′) ⇐⇒ (2) ⇐⇒ (2′). The first equivalence is obvious since 1− g is the
inverse of 1 + Σ∞j=1g

j; and similarly for the last equivalence.
We are left with the middle equivalence. It is obtained by changing the vector ∂v into its

opposite in the coordinates of the tube around the homoclinic orbit of X0. This amounts to
put a sign − in Formula (2.2). The latter change has three effects:

i) It reverses the co-orientation of Sg. Hence, positive and negative crossings are ex-
changed.

ii) The character is changed into its opposite since the φ- and ψ-latitudes are. Thus, both
sides of S0

g are exchanged.
iii) The homoclinic orbit becomes negative in the following sense: if the φ-sphere is seen as

the boundary of the meridian disc of a+, the new positive hemisphere projects to the
preferred hyperplane ∆φ by reversing the orientation. This implies that in the algebraic
counting of connecting orbits from p to q (where i(p) = i(q) + 1) the coefficient g has
to be changed to −g (see the orientation claim in Lemma 3.8).

We are left to prove the Theorem 3.6 in case (1). This will be done in Subsection 3.4. �

According to Proposition 2.18, the statement of Theorem 3.6 is invariant by the groups G±
introduced in Notation 2.17. After Corollary 2.15, it is sufficient to consider the case where
the crossing path in question is normalized in the sense of Definition 2.13. This assumption is
done in what follows. We need some more notations and lemmas. The setting of Theorem 3.6
is still assumed.

Notation 3.7.
1) The symbol O− stands for an open interval (−ε, 0) whose size is not specified and which is
understood as small as needed by the statement; and similarly for O+. If A is a closed subset
of B, Op(A) stands for an open neighborhood of A in B which is not specified.
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2) Recall from Subsection 2.3 that Hs stands for the local holonomy diffeomorphism along the
homoclinic orbit ` from Op({z = 0}) ⊂ ∂−Mp to Op({z = 1}) ⊂ ∂+Mp.
3) For s ∈ Op(0), let D1(s) denote the image Hs(Σ

−) ∩ {z = 1}. Consider its projection
πψ0(D1(s)) onto the meridian disc {ψ = ψ0} and define

(3.10) a+(s) := πψ0(D1(s)) ∩ R∂1
v .

The crossing velocity of the crossing path is

(3.11) V1 :=
d

ds
a+(s)|s=0.

Up to a reparametrization in s, it can be assumed to be equal to 1.
4) For s ∈ O±, by definition of a crossing path D1(s) avoids Σ+. Therefore we are allowed to
define C1(s) := Desc(D1(s)) ⊂ ∂−Mp. It is still an (i− 1)-disc.

Lemma 3.8. Recall the natural projection π− : ∂−Mp → Σ−. Let K be any compact disc in the
open hemisphere H−(Σ−) (as in Subsection 2.4). Then, for s ∈ O−, the disc C1(s)∩(π−)−1(K)
is a graph over K of a section of π− which goes to the zero-section 0K of π− in the C1-topology
as s goes to 0. Moreover, π− : C1(s)→ Σ− is orientation reversing.

A similar statement holds when K ⊂ H+(Σ−) and s ∈ O+, except that π− : C1(s) → Σ− is
orientation preserving in that case.

Proof. The statement about orientation is clear after the claim about the C1-convergence.
Consider the case s ∈ O−, the other case being similar. Recall the normalization assumption:
the disc D1(0) is contained in the meridian disc {ψ = ψ0}. Recall the projection πψ0 of ∂+Mp

to the meridian disc. The normalization implies that the projected discs πψ0(D1(s)) tend to
D1(0) in the C1-topology.

Recall the identification ∂({ψ = ψ0}) ∼= Σ− of (2.20) and think of K as a compact subset of
the South hemisphere in the boundary of the meridian disc {ψ = ψ0}. For every such K, the
next property holds:

For every s close enough to 0 and for every φ ∈ K, the disc πψ0(D1(s)) intersects the
ray directed by ∂φr in one point only and transversely.

This point is denoted by ms(φ); it is the image of some m̃s(φ) ∈ D1(s) through πψ0 . We
have m0(φ) = m̃0(φ) = a+, but when s 6= 0, the point m̃s(φ) has well-defined multi-spherical
coordinates (φ, rs(φ), ψs(φ)) where rs and ψs depend smoothly on s.

Going back to ∂−Mp by the map Desc, we see that C1(s) is the image of a section of the
projection π− over K. When s ∈ O− goes to 0, then D1(s) ∩ {(φ, r, ψ) ∈ ∂+Mp | φ ∈ K} goes
to a+ in the metric sense. In particular, maxφ∈K{r | (φ, r, ψ) ∈ D1(s)} goes to 0. Therefore,
C1(s) ∩ (π−)−1(K) goes to 0K in the C0-topology when s goes to 0 negatively.

For the C1-convergence, we use that K is far from the φ-equator. Therefore, the angle in the
meridian disc {ψ = ψ0} between the ray R∂φr and the tangent plane to πψ0(D1(s)) at ms(φ) is
bounded from below. Including the fact that s→ 0− implies r → 0, it follows that the smooth
functions rs(φ) and ψs(φ) satisfy {

|dr| = Os(r)|dφ|,
|dψ| = Os(r)|dφ|,
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where Os(r) stands for a quantity which is uniformly bounded with respect to r when s goes to
0. This yields the claimed C1-convergence of the part of C1(s) over K ⊂ H−(Σ−) to 0K = K. �

3.3. Geometric interpretation of the character function. We still consider a germ
of normalized positive crossing path (Xs)s. Let D

′
1(0) be the connected componentW s(p,X0)∩

{z = 0} which contains a−. This is an (n − i − 1)-disc which is the image of Σ+ by the
inverse holonomy diffeomorphism H−1

0 along `. For every s ∈ Op(0), consider now D′1(s) :=
H−1
s (Σ+) ∩ {z = 0}.
Recall from Subsection 2.2 that Σ− ∩ {z = 0} is identified with the x-axis whereas D′1(0)

is identified with the y-axis. Let also pv : {z = 0} → {v = 0, z = 0} denote the projection
parallel to ∂v onto the (x, y)-space. When s ∈ Op(0) goes to 0, the family D′1(s) accumulates
to the y-axis in the C1-topology. And, according to Lemma 3.8, the family C1(s) ∩ {z = 0}
accumulates to the x-axis in the C1-topology if and only if s ωφ(a−) goes to 0+. In particular,
when s ωφ(a−) > 0 the projections pv(C1(s)) and pv(D

′
1(s)) intersect in a unique point b1(s)

and transversely. If s ωφ(a−) is negative, then C1(s) ∩ {z = 0} is empty.

Denote by c1(s) and d′1(s) the only points in C1(s) ∩ {z = 0} and in D′1(s) respectively such
that pv(c1(s)) = b1(s) = pv(d

′
1(s)). Consider the real number

(3.12) v1(s) := v(c1(s))− v(d′1(s)) for every s such that s ωφ(a−) ∈ O+.

This function v1(s) depends smoothly on s. Its derivative with respect to s is denoted by v̇1(s).

Remark 3.9. By construction, v1(s) = 0 implies c1(s) = d′1(s) which in turn implies the
existence of an orbit `s ∈ OrbXs(p, p) passing through c1(s) such that [`s] = g2.

Lemma 3.10 will show the geometrical meaning of the character function χ at X = X0. For
simplicity, in what follows a±(X0) will be denoted by a±.

Lemma 3.10. Given a normalized positive crossing path (Xs)s whose crossing velocity defined
in (3.11) equals +1, the following relation holds:

(3.13) ωφ(a−) v̇1(0) = χ(X0).

Proof. Let us study the v-coordinate of c1(s) first. We notice that, if c̄1(s) is another point
of C1(s) depending smoothly on s and such that c̄1(0) = a− = (φ0, 0,−), we have the same
velocity in s = 0:

(3.14)
d

ds
v (c̄1(s))|s=0 =

d

ds
v (c1(s))|s=0 .

Indeed, C1(s) accumulates C1 to Σ− (Lemma 3.8), then the difference ċ1(0)− ˙̄c1(0) is a vector
in Ta−Σ−. We apply this remark to the point c̄1(s) := C1(s)∩{φ = φ0}. We now lift that point
to d1(s) ∈ D1(s) by Desc−1.

Since Desc preserves the (φ, r, ψ)-coordinates, both paths s 7→ c̄1(s) and s 7→ d1(s) have the
same coordinates (φ(s) = φ0, r(s), ψ(s)) when s 6= 0. Since c̄1(s) ∈ {φ = φ0}, the vector ḋ1(0)

belongs to the (n − i)-plane which is span of {∂φ0r , Ta+Σ+}. Let d̂1(0) be its projection to the
line R∂φ0r in the meridian disc {ψ = ψ0}. Then,

(3.15) d̂1(0) = ρ ∂φ0r , where ρ =
d

ds
r(s)|s=0.
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By definition of the φ-latitude (Proposition 2.8 and (2.14)) we have:

(3.16) p∆φ(d̂1(0)) = ρ p∆φ

(
∂φ0r
)

= ρωφ(a−)∂
νφ
r .

By definition, the hyperplane ∆φ is tangent in a+ to the projection py(D1(0)). Therefore, some
calculus of Taylor expansion allows us to deduce that

(3.17) p∆φ(d̂1(0)) =
d

ds
a+(s)|s=0 = +1 .

We derive:

(3.18) ρ =
1

ωφ(a−)
.

Since d1(s) goes to a+ = (−, 0, ψ0) when s goes to 0 and since the radial velocity is preserved
by Desc, then we have:

(3.19) ˙̄c1(0) = ρ ∂ψ0
r ∈ Ta−{φ = φ0}.

Using again (2.14), but relatively to the hyperplane ∆ψ which defines the ψ-latitude we
obtain

(3.20) p∆ψ( ˙̄c1(0)) = ρωψ(a+)∂
νψ
r .

This together with the decomposition of Ta−{z = 0} of (2.25) says that there are wx ∈ Ta−Σ−

and wy ∈ ∆ψ such that

(3.21) ˙̄c1(0) = wx + ρωψ(a+)∂
νψ
r + wy.

Consider the projection pxy : Ta− {z = 0} → R∂0
v parallel to the hyperplane Ta−Σ− ⊕ ∆ψ.

Thanks to (3.21), we have v( ˙̄c1(0)) ∂0
v = pxy( ˙̄c1(0)) = ρωψ(a+)pxy(∂

νψ
r ). On the other hand,

(2.27) tells us that:

(3.22) v(∂
νψ
r ) =

1

η̄
= η .

Putting together (3.14), (3.18), (3.21) and (3.22) we obtain:

(3.23) v(ċ1(0)) = v( ˙̄c1(0)) = ρωψ(a+) v(∂
νψ
r ) =

ωψ(a+)

ωφ(a−)
η .

We come now to estimate the term v(ḋ′1(0)). We apply Lemma 2.7 for comparing velocities
associated with the holonomy Hs and its inverse. From the formula (3.11) we derive that
d
ds

(v ◦Hs)(a
−)|s=0 = +1. Then, the inverse holonomy satisfies

(3.24)
d

ds
(v ◦H−1

s )(a+)|s=0 = −1

from which it is easily derived that v(ḋ′1(0)) = −1. Therefore:

(3.25) v̇1(0) = η
ωψ(a+)

ωφ(a−)
+ 1

which is a reformulation of the desired formula. �
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Lemma 3.11 right below is the last tool that we need for proving Theorem 3.6. It extracts
the geometrical information contained in Equation (3.13). The setting is the same as in the
previous lemma. We are only looking at normalized paths (Xs)s which cross Sg positively in a
point X0 whose character is positive. A similar statement holds for paths crossing at a point
whose character is negative.

Lemma 3.11.
1) Suppose v̇1(0) and the φ-latitude ωφ(a−) are positive. Then, for s ∈ O+ there are sequences of
non-empty (i− 1)-discs (Dk(s))k>1 and (Ck(s))k>1 inductively defined from the previous D1(s)
and C1(s) by

(3.26)
{
Dk(s) := Hs (Ck−1(s)) ∩ {z = 1}
Ck(s) := Desc (Dk(s)) ⊂ ∂−Mp

Moreover, when s goes to 0, the discs Ck(s) tend to the North hemisphere H+(Σ−) in the C1-
topology, uniformly over every compact set of H+(Σ−). When s ∈ O−, both previous sequences
are empty when k > 1.
2) If v̇1(0) and ωφ(a−) are negative, then for s ∈ O− the disc C2(s) is well defined as in (3.26)
and the next ones are empty. Moreover, C2(s) tends to H+(Σ−) in the C1-topology with the
reversed orientation. When s ∈ O+, every disc in (3.26) is empty when k > 1.

Notice that, according to Lemma 3.10 the assumption of 1) reads also: the character and
ωφ(a−) are positive; and the assumption of 2) reads: the character is positive and ωφ(a−) < 0.

Proof. 1) When s ∈ O−, the disc C1(s) does not meet the tube T around the homoclinic orbit
`. Then D2(s) is empty and, hence, all the further discs are so.

Assume now that s ∈ O+. In that case, C1(s) goes to H+(Σ−) (Lemma 3.8) and therefore
meets the set {z = 0}. Then, the discs D2(s) and C2(s) defined in (3.26) are non empty. We
are going to compute the position of C2(s) with respect to D′1(s) measured by some v2(s) in
the direction of the v-coordinate. We shall check the positivity of v̇2(0) which will allow us to
pursue the induction.

Recall the projection πψ0 : ∂+Mp → {ψ = ψ0} and define the spherical annulus A :=
(πψ0)−1(R∂v). Consider the point c̃1(s) which is the transverse intersection C1(s) ∩ H−1

s (A).
By projecting to the v-axis we find a function v(c̃1(s)) which satisfies

(3.27)
d

ds
v(c̃1(s))|s=0 =

d

ds
v(c1(s))|s=0

Recall the definition of d′1(s) ∈ D′1(s) from (3.12). Compute the derivative V2 at s = 0 of
v [Hs(c̃1(s))]− v [Hs(d

′
1(s))], which is nothing but the velocity of the projection of Hs(c̃1(s)) ∈

D2(s) onto the v-axis of {z = 1} at s = 0. Using c̃1(0) = d′1(0) = a− and dH0(a−) = Id in the
coordinates of the tube T , we find:

(3.28) V2 = v̇1(0)

which is positive by assumption. This V2 will play the same rôle as the crossing velocity.
Since V2 > 0, Lemma 3.8 tells us that C2(s) meets {z = 0} when s ∈ O+. Therefore, we

choose points c2(s) ∈ C2(s) = Desc(D2(s)) and d′2(s) ∈ D′1(s) which forms the unique pair of
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points of the respective subsets which have the same pv-projection. We define

(3.29) v2(s) := v(c2(s))− v(d′2(s))

The computation of v̇2(0) is exactly the same except we have to replace V1 = 1 with V2. The
result is:

(3.30) v̇2(0) = η
ωψ(a+)

ωφ(a−)
V2 + 1.

Here, it is appearing some discussion according to the sign of ωψ(a+):
(i) if ωψ(a+) is positive, then v̇2(0) is larger than V1 = +1. In that case the induction goes

on with Vk > Vk−1 > . . . > 1.
(ii) if ωψ(a+) is negative, then 0 < V2 = v̇1(0) < 1, where the last inequality comes from

(3.25). Therefore, v̇2(0)− 1 is the product of two numbers4 of opposite signs and whose
absolute values are smaller than 1. Thus, v̇2(0) belongs to (0, 1). Such a fact is preserved
at each step of the induction.

The induction can be carried on.
2) Take s ∈ O−. The calculation yielding the equality (3.28) still holds and tells us that V2 is
negative. Remark that Hs(d

′
1(s)) ∈ Σ+. As s < 0, one derives:

v [Hs(c̃1(s))] = v [Hs(c̃1(s))]− v [Hs(d
′
1(s))] > 0.

Thus, Lemma 3.8 says that C2(s) tends to H+(Σ+) in the C1-topology. As ωφ(a−) < 0, C2(s)
does not meet {z = 0} and the next discs are empty. Concerning the orientation, we check
that D2(s) tends to −D1(0) in ∂+Mp. Then, C2(s) tends to −H+(Σ−). Finally, the statement
when s ∈ O+ is clear. �

3.4. Proof of Theorem 3.6 continued. We continue the proof which begins just after the
statement of that theorem. After a series of equivalences, we are left to prove the case (1) of
a positive crossing of the stratum Sg at a point (α,X0) where the character is positive. We
recall that the statement of Theorem 3.6 is preserved under the action of the groups G± (see
Notation 2.17). Therefore, we may assume that X0 ∈ Sg is normalized.

The element g ∈ Πα is thought of as an arrow from the set of zeroes Z(α) into itself. Then
g determines its origin p which is also its end point. Recall that the Morse index of p is i. We
look at any zero q ∈ Z(α) of Morse index i − 1. We have to compute the change of 〈p, q〉X
when X changes from X0− to X0+ in a crossing path (Xs)s. Taking into account that we search
for an isomorphism of complexes over the Novikov ring Λα, it is useful to make some partition,
adapted to g, of the set of connecting orbits.

Partition of the connecting orbits. We may assume that each connecting orbit is the
unique one in its homotopy class. In general, one would take the multiplicity into account. The
equivalence relation defining the partition is the following: Γ0 ∼ Γ1 if and only if the homotopy
class of Γ1 reads [Γ1] = gk[Γ0] with k ∈ Z.

Consider [Γ]∼, the ∼-class of a fixed connecting orbit Γ. Since the α-lengths of connecting
orbits are positive, we have uα([Γ′]) < 0 for every Γ′ ∈ [Γ]∼. Therefore, as u(g) < 0, there

4One of them being V2.
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are only finitely many connecting orbits Γ′ ∈ [Γ]∼ verifying uα([Γ′]) ≥ uα([Γ]). Let Γ0 be a
connecting orbit in [Γ]∼ such that uα([Γ0]) is maximal. Then, any element of [Γ]∼ reads gk[Γ0]
with k ≥ 0.

End of the proof. Now, without loss of generality we may assume that the above partition
has one ∼-class only and that the maximal element Γ is a positive connecting orbit (with
respect to the chosen orientations). Let b := Γ ∩ Σ− and ∆s be the connected component of
W s(q,Xs) ∩ ∂−Mp containing b, which is an (n− i)-disc intersecting transversely Σ−, only at
b. Since, we are looking at the change formula up to lenght L > 0, we may assume that the
crossing path (Xs)s is defined for s ∈ [−1, 1] and for every s 6= 0 the pair (α,Xs) is Morse-Smale
up to L. Therefore, as the property of being Morse-Smale up to L is open, we are allowed to
slightly move this path (in particular, X0) keeping the end points fixed. Thus, generically b
does not lie on the equator Eφ, and ∆s may be supposed to coincide with ∆0 for every s. There
are still four cases to consider where a− stands for a−(X0) and H± stand for H±(Σ−):
(a.1) The φ-latitude ωφ(a−) is positive and b belongs to H+.
(a.2) The φ-latitude ωφ(a−) is positive and b belongs to H−.
(b.1) The φ-latitude ωφ(a−) is negative and b belongs to H+.
(b.2) The φ-latitude ωφ(a−) is negative and b belongs to H−.
The proof consists of applying Lemma 3.11. It is convenient to use the following definiton.

Definitions.

1) The positive (resp. negative) part of W u(p,X0) is the union of the X0-orbits passing through
the positive (resp. negative) hemisphere H+(Σ−). It will be denoted by W u(p,X0)±.
2) For a given k > 0, we say that the unstable manifoldsW u(p,Xs) accumulate to gk·W u(p,X0)±

when s goes to 0− or 0+ if it is true when lifting to the universal cover, that is: if p̃ (resp. X̃s)
is a lift of p (resp. Xs), the unstable manifolds W u(p̃, X̃s) accumulate to W u(gkp̃, X̃0)±.

Here, it is worth noticing that when a point lies in the accumulation set its whole X0-orbit
is accumulated. As a consequence, Lemma 3.8 tells us that W u(p,Xs) accumulate to
g · W u(p,X0)± in the C1-topology when s goes to 0±. Thanks to this topology, it makes
sense to compare the orientations. The result is the following: when s → 0±, then W u(p,Xs)
accumulate to ±g ·W u(p,X0)±. Accumulation to gk ·W u(p,X0)± for some k > 1 is dictated
by Lemma 3.11 depending on the sign of the character and the φ-latitude. We are now ready
for proving Theorem 3.6 in each case.

Let λ−(Γ) (resp. λ+(Γ)) denote the element of the Novikov ring Λα which is the contribution
of [Γ]∼ (up to the given L > 0) in 〈p, q〉Xs when s < 0 (resp. s > 0). We have to check the next
formula in each case (a.1) ... (b.2).

(3.31) λ+(Γ) = (1 + g + g2 + . . .) · λ−(Γ)

Case (a.1). When s → 0−, the oriented unstable manifolds W u(p,Xs) accumulate
to −g ·W u(p,Xs)

− and nothing else. Therefore, as b ∈ H+, we have λ−(Γ) = [Γ].
When s → 0+, then W u(p,Xs) accumulate to +gk ·W u(p,X0)+ for every k > 0 and will

intersect gk ·∆0 transversely at a single point. Thus, we have λ+(Γ) = (1 + g + g2 + . . .) · [Γ].
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The change of λ±(Γ) from s < 0 to s > 0 is well given by Formula (3.31).

Case (a.2). As b ∈ H− and taking into account the accumulation described right above, we
have: λ−(Γ) = (1− g) · [Γ] and λ+(Γ) = [Γ]. Formula (3.31) is still fulfilled.

Case (b.1). Here, the accumulation ofW u(p,Xs) is dictated by part 2) of Lemma 3.11 and the
reason why formula (3.31) holds is more surprising than in the previous cases. When s→ 0−,
the manifolds W u(p,Xs) accumulate to −g · W u(p,X0)− and to −g2 · W u(p,X0)+ and then
nothing else. When s → 0+, the manifolds W u(p,Xs) accumulate to +g · W u(p,X0)+ and
nothing else.

As b ∈ H+, we have λ−(Γ) = (1− g2) · [Γ] and λ+(Γ) = (1 + g) · [Γ]. Formula (3.31) is right
since the identity (1 + g + g2 + . . .)(1− g2) = 1 + g holds in the Novikov ring.

Case (b.2). Accumulation is as right above. One derives that λ−(Γ) = (1 − g) · [Γ] and
λ+(Γ) = [Γ]. The desired formula is still satisfied.

The proof of Theorem 3.6 is now complete. �

4. Proof of Theorem 1.3

4.1. Notations and statement. In this section, we state and prove the refined version of
Theorem 1.3 which is given right below after specifying some definition and notations. In the
whole section X0 is an element in the codimension-one stratum S0

g ⊂ Sg, the co-oriented locus
where the character function χ vanishes. It is assumed that (α,X0) does not belong to S0,0

g ,
the locus where both of the φ-latitude and ψ-latitude vanish.
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Definition 4.1.
1) Let R+ (resp. R−) be the set of positive (resp. negative) real numbers. The open set S0,±

g ⊂ S0
g

is defined by the sign of the φ-latitude, that is, ωφ(X0) ∈ R±.
2) Let X0 ∈ S0

g . Let
(
D(s, t) := Xs,t

)
be a germ in X0 of a two-parameter family of vector fields

of pseudo-gradients of α. It is assumed that D passes through X0 when (s, t) = (0, 0). This
germ is said to be adapted to the pair (Sg,S0

g ) if the following conditions are fulfilled:

(1) The one-parameter family
(
D(0, t)

)
t
is contained in Sg, transverse to S0

g and
∂D
∂t

(0, 0)

points towards S+
g .

(2) The partial derivative
∂D
∂s

(0, 0) is transverse to Sg and points towards its positive side.

In particular, D is transverse to S0
g .

Theorem 4.2. Let D be a germ of 2-disc transverse to S0
g r S0,0

g and adapted to the pair
(Sg,S0

g ). Then D intersects Sg2 transversely along an arc of S+
g2. The trace on D of the strata(

Fα , Sg ∪ S+
g2 , S0,±

g

)
is C1-diffeomorphic to(

R2, R× {0} ∪ {0} × R± , {(0, 0)}
)
.

Moreover, the natural co-orientation of Sg2 restricts to the natural co-orientation of S0
g in Sg

or to its opposite depending upon Sg2 approaches S0,+
g or S0,−

g respectively (see Definition 4.1
and Figure 2).

We first prove Theorem 4.2 for particular germs D which we call elementary. These germs
consist of one-parameter family of positive normalized crossing paths of Sg in the sense of
Definition 2.13.

4.2. Elementary crossing path.5 Let (Xs)s be a normalized positive crossing path of Sg.
After the normalization we are allowed to prescribe more special dynamics of Xs; the perturbed
holonomy will be specified near the respective homoclinic orbit. This is the flavor of what
elementary means.

Consider the spherical annulus Aψ0 := Σ−× (0,
√
δ)×{ψ0} ⊆ ∂−Mp. Assume the ψ-latitude

of a+ different from zero. Therefore, the preimage D′1(s) of Σ+ by the holonomy diffeomorphism
Hs is transverse to Aψ0 . Call b(s) the intersection point D′1(s) ∩ Aψ0 when the intersection is
non-empty; it is the case either when s < 0 or s > 0 but not in both cases.

Definition 4.3. The path (Xs)s is said to be elementary if the next conditions are fulfilled.
(1) The disc D1(s) moves in the meridian disc {ψ = ψ0} parallely to the the hyperplane ∆φ.

(2) We have
da+(s)

ds
= 1 for every s.

(3) Denoting by φ0 the spherical coordinate of a−(X0), the point b(s) runs on the ray
{(φ0, r, ψ0) | r ≥ 0} for s close to 0 positively or negatively as the ψ-latitude ωψ(a+(X0))
is negative or positive.

5This terminology is inspired by that which J. Cerf used in his study of the stratification of smooth functions
[1].
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(4) The velocity of b(s) is

(4.1)
db(s)

ds
= − 1

η ωψ(a+)
.

Here, η stands for the holonomic factor of X0 (Definition 2.9).

This definition makes sense only when the ψ-latitude of a+(X0) is not 0, that is, when X0

does not lie on the φ-axis Sφg , (see (2.29)). This is always the case when X0 belongs to S0
grS0,0

g .

Lemma 4.4. Let X0 ∈ Sg r Sφg be a pseudo-gradient of α in normal form. Then there exists
a germ of elementary path (Xs) passing through X0 and depending smoothly on s in the C1-
topology.

Proof. Recall the tube T with coordinates (x, y, v, z) around the restricted homoclinic orbit
` of X0. The holonomy H0 is defined on a neighborhood of {z = 0} in ∂−Mp and valued in
a neighborhood of {z = 1} in ∂+Mp. Up to an isotopy of M fixing Mp, a one-parameter
perturbation Xs of X0 is determined by its perturbed holonomy Hs. This holonomy can be
decomposed as Hs = H0 ◦Ks where Ks is a diffeomorphism of ∂−Mp supported in the interior
of this manifold with boundary and C1-close to Id.

In order to satisfy conditions (1) and (2) of Definition 4.3, we first choose a+(s) and D1(s)
before constructing Hs. Denote a+(s) the point in {ψ = ψ0} moving on the oriented pole axis
with velocity +1 and such that a+(0) = a+. Let D1(s) be the paralell disc to D1(0) passing
through a+(s). Take Ks, smooth with respect to s, such that:

(4.2) Ks(Σ
− ∩ {z = 0}) = H−1

0 (D1(s))

Apart from equality (4.2), the restriction Ks|Σ− is not imposed. For instance, we may choose
Ks(0, 0, 0, 0) = (0, 0, s, 0) = H−1

0 (a+(s)). This implies the next constraint on K−1
s , namely:

(4.3)
∂

∂s
(v ◦K−1

s )(0, 0, 0, 0)|s=0 = −1

Apart from this velocity constraint in s = 0, we are free for defining K−1
s |H−1

0 (Σ+)∩{z=0}, that is
the value of K−1

s (0, y, 0, 0). In particular, we can move b(s) with the radial velocity which is
prescribed in Definition 4.3. Indeed, according to the formula (2.27) relating the v-coordinates
of the unit vectors ∂ψ0

r and ∂νψr and using (2.14), we get v(ḃ(0)) = −1.
�

Clearly, this lemma holds with parameters, for instance when the data is a one-parameter
family in Sg r Sφg . Then, the next corollary follows.

Corollary 4.5. Let X0,0 ∈ S0
g r S0,0

g and let γ(t) = (X0,t)t be a germ of path in Sg passing
through X0,0 and crossing S0

g transversely, such that ∂γ
∂t

(0) points towards S+
g . Then, there ex-

ists a two-parameter family D = (Xs,t) of pseudo-gradients of α adapted to (Sg,S0
g ) such that,

for every t close to 0, the path s 7→ Xs,t is elementary. Moreover, there are such Xs,t which are
smooth with respect to the parameters in the C1-topology.
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Definition 4.6. Let D be a 2-disc transverse to S0
g rS0,0

g and adapted to the pair (Sg,S0
g ). We

say that D is elementary if it is made of a one-parameter family of elementary crossing paths
as in Corollary 4.5.

Proof of Theorem 4.2.
First, we prove the theorem in the particular case where the transverse disc D is elementary.

Even in this particular case the proof is slightly different depending on where the base point
X0,0 lies either in S0,−

g or S0,+
g . In each case, the proof has three items:

(1) What is the trace on D of Sg2? Is there a non-empty trace of Sgk for k 6= 1 or 2?
(2) Is D transverse to Sg2? How is the positive co-orientation of Sg2?
(3) Which part S+

g2 or S−g2 is intersected by D?

Case X0,0 ∈ S0,−
g . In other words, a−(X0,0) has a negative φ-latitude.

(1) The pseudo-gradient X0,t has a homoclinic orbit `t based in p and the φ-latitude of a−(X0,t)
lies in [−1, 0) for every t ∈ Op(0). Denote by φt the spherical coordinate of a−(X0,t). We use
the tube T around `0 and its extremities: {z = 0} ⊂ ∂−Mp and {z = 1} ⊂ ∂+Mp.

For simplicity, we specify even more the path (X0,t)t by adding some assumptions (the dis-
cussion is similar with the other cases of latitudes by using other specifications 6):

(i) The φ-latitude ωφ(a−(X0,0)) is not equal to −1 and the φ-equator of X0,t is fixed.
(ii) The point a+(X0,t) = Σ+ ∩ `t and the ψ-equator of X0,t are fixed.
(iii) The holonomic factor η(X0,t) remains constant and is denoted by η.

Notice that (i) allows one to take (X0,t)t positively transverse to S0
g satisfying (ii) and (iii). More

precisely, one makes the φ-coordinate φt of a−(X0,t) vary on t by increasing the φ-latitude.
Denote the spherical coordinate of a+(X0,t) by ψ0, independent of t. In this setting, as the

paths s 7→ Xs,t are elementary the discs D1(s, t) ⊂ {z = 1} depend only on s and are denoted
by D1(s). For every s 6= 0, their images by the descent map are discs C1(s) contained in the
spherical annulus Aψ0 := {(φ, r, ψ0)}. When s goes to 0−, according to Lemma 3.8 the discs
C1(s) accumulate to the negative hemisphere H−(Σ−).

Since s 7→ Xs,t is elementary and ωψ(ψ0) > 0, the disc D′1(s, t), preimage in {z = 0} of
Σ+ by the respective perturbed holonomy, intersects Aψ0 in one point b(s, t) when s ≤ 0 and
nowhere when s > 0, according to Definition 4.3. When t is constant, b(s, t) moves on the ray
{(φt, r, ψ0) | r ≥ 0} and its velocity is given by the formula in Definition 4.3. According to
Remark 3.9, we have:

(4.4) Xs,t ∈ Sg2 if and only if b(s, t) ∈ C1(s).

Denote by c1(s, t) the intersection point of C1(s) with the meridian disc {φ = φt}. When t is
constant, c1(s, t) also moves on the ray {(φt, r, ψ0) | r ≥ 0} and its radial velocity is the same
as the one of its lift through Desc in D1(s) ⊂ ∂M+

p . Therefore,

(4.5)
∂c1(s, t)

∂s
=

1

ωφ(φt)

6If ωφ(a−(X0,0)) = −1, one makes η(X0,t) vary increasingly with t. Since ωψ(a+(X0,0)) must be positve,
∂χ
∂t (X0,t) > 0.
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As X0,0 belongs to S0
g , that is χ(X0,0) = 0, the curves b(s, 0) and c1(s, 0), defined for s < 0,

have the same radial velocities. Since both tend to a−(X0,0) on the same ray when s goes to
0−, we have b(s, 0) = c1(s, 0) for every s. Then, Equation (4.4) tells us that Xs,0 ∈ Sg2 for every
s close to 0 negatively.

For t 6= 0 and s < 0, the radial velocities of c1(s, t) and b(s, t) are distinct while their limits
when s goes to 0 coincide. Therefore, Equation (4.4) is never satisfied. When s > 0, the discs
C1(s) accumulate to the positive hemisphere H+(Σ−). There is no chance for C1(s) to intersect
D′1(s, t) which is far from any point in H+(Σ−).

What about Sgk? If k ≤ 0, we have u(gk) ≥ 0 and there is no homoclinic orbit in the
homotopy class gk. When k > 2, we have to discuss the successive passages of the unstable
manifold W u(p,Xs,t) in ∂+Mp, more precisely in {z = 0}.

According to Lemma 3.11, if t > 0, that is χ(X0,t) > 0, only the discs C2(s, t) of the second
passage are non-empty, but they accumulate to the positive hemisphere H+(Σ−). Therefore,
no further passage could give rise to a homoclinic orbit.

If t < 0, one is able to see that there are infinitely many passages in {z = 0}. But, by
velocity considerations Ck(s, t) never meet D′1(s, t). We do not give more details here because
this is similar to the symmetric case X0,0 ∈ S0,+

g and t > 0 where the analysis of velocities will
be completely performed. Thus, the first item of case X0,0 ∈ S0,−

g is proved.

(2) The reason for transversality to Sg2 relies again on some computations of velocity. Define
for s ≤ 0:

δ(s, t) := v (c1(s, t))− v (b1(s, t)) and V (t) :=
∂δ(s, t)

∂s
|s=0 .

Although points are not the same, this velocity V (t) at s = 0 is easily checked to be the same
as the velocity computed in Lemma 3.10. Then, for every t close to 0 we have:

(4.6) V (t) = η
ωψ(ψ0)

ωφ(φt)
+ 1 which implies

dV (t)

dt
< 0 .

By definition of the character function, we have V (0) = 0 which implies V (t) < 0 for t > 0.
Define V (s, t) := ∂sδ(s, t). By construction of (Xs,t), we have V (s, 0) = 0 for every s < 0
close to 0. According to (4.6), the second partial derivative ∂2

tsδ(s, t) is negative for every (s, t)
close to (0, 0) with s ≤ 0 (here we use the smoothness with respect to the parameters7). By
integrating in the variable s from s0 < 0 to 0 and noticing that δ(0, t) = 0, we get:

(4.7)
∂δ

∂t
(s0, t) = − ∂

∂t

(∫ 0

s0

∂δ

∂s
(s, t) ds

)
= −

(∫ 0

s0

∂2
stδ(s, t) ds

)
> 0.

For t = 0, this is exactly the transversality of D to Sg2 at Xs0,0.

We are now looking at orientation. Take s0 < 0 such that b(s0, 0) lies in {z = 0}. It
belongs to a homoclinic orbit `′ in the homotopy class g2. There is a tube T ′ around `′ with
coordinates (x′, y′, v′, z′). The y′-axis is contained in D′1(s0, 0) and is given a co-orientation

7The vector fields in a normalized crossing path are not smooth with respect to the space variable. Their
holonomy is C1 only. Nevertheless, as the C1-maps (of degree zero) ∂−Mp → ∂+Mp form a Banach manifold
it makes sense to consider a smooth family of such holonomies.
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which follows from the co-orientation of D′1(0, 0) by continuity. The x′-axis is contained in
C1(s0). Its projection to the x-axis is orientation reversing (Lemma 3.8). Therefore:

(4.8) v(∂v′) < 0.

By (4.7) we have:
∂

∂t
[v (c1(s0, t))− v (b1(s0, t))]|t=0 =

∂δ

∂t
(s0, 0) > 0. By replacing v with v′ in

the last inequality, we get:
∂

∂t
[v′ (c1(s, t))− v′ (b1(s, t))]|t=0 < 0 .

This translates the fact that ∂t points to the negative side of Sg2 for s < 0 while for s = 0, ∂t
defines the positive co-orientation of S0

g in Sg.

(3) Let L > 0 be a lenght. Consider a small circle γ ⊂ D centered at the origin of the coordinates
(s, t) and turning positively with respect to the orientation given by these coordinates. If the
radius of γ is small enough8 and if X0,0 is generic, γ avoids all codimension-one strata in Fα
except:

- Sg which is crossed once in S−g positively, and once in S+
g negatively,

- Sg2 which is crossed once positively according to the above discussion.
The product of the self-slide factors should equal 1 up to L in the Novikov ring. The self-slide
factor of the a small arc of γ crossing Sg2 is for now unknown; call it m(g). This (commutative)
product is

(1 + g) · (1 + g + g2 + ...)−1 ·m(g) ≡L 1.

Then, m(g) ≡L (1− g2)−1, that can only happen if the crossing of Sg2 takes place in S+
g2 . The

proof of Theorem 4.2 is complete in the case X0,0 ∈ S0,−
g .

Case X0,0 ∈ S0,+
g . In other words, a−(X0,0) has a positive φ-latitude.

(1) The discussion is led in the same manner as in the previous case, with same notation and
simplified setting. We only mention the main differences. Here, a−(X0,0) belongs to the positive
hemisphere of Σ− while ψ0 belongs to the negative hemisphere of Σ+. The discs C1(s) intersect
{z = 0} only when s > 0. Therefore, for s < 0 there is no chance for meeting Sgk , for any
k 6= 0.

According to Lemma 3.11 there are infinitely many passages Ck(s), k ≥ 1, s > 0 ofW u(p,Xs,t)
in ∂−Mp meeting {z = 0}. Recall that the (i − 1)-discs Ck(s) do not depend on t. The fact
that Xs,t belongs to Sg2 if and only if s > 0, t = 0 is proved exactly as in the previous case.

Then, we are left to show that for every k > 2, Sgk does not intersect D. Here it is important
to think of D as a germ because for a given representative this result is not true; when k
increases, the domain of the representative has to be restricted. Let Ck(s, t) denote the (i− 1)-
disc in ∂−Mp corresponding to the k-th passage of the unstable manifold W u(p,Xs,t) (see
Lemma 3.11); let D′1(s, t) denote the (n− i− 1)-disc corresponding to the first passage of the
stable manifold W s(p,Xs,t). Observe that D intersects Sgk+1 if and only if, for (s, t) close to
(0, 0), Ck(s, t) intersects D′1(s, t). This translates in the next equation:

(4.9) ck(s, t) = d′k(s, t)

8More L is large, more this radius has to be small.
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where ck(s, t) and d′k(s, t) are the only two points of {z = 0} lying respectively on Ck(s, t) and
D′1(s, t) which have the same (x, y)-coordinates. Then, the above equation becomes:

(4.10) v
(
ck(s, t)

)
= v
(
d′k(s, t)

)
.

When s goes to 0, these two points go to the same point a−(Xs,t) ∈ Σ−. By computations done
in the proof of Lemma 3.11, we know that:

(4.11)
∂

∂s

[
v
(
ck(s, t)

)
− v
(
d′k(s, t)

)]
|s=0
6= 0 .

It follows that, for s close to 0 (closeness depending on t), the equation (4.10) cannot be ful-
filled. Theorem 4.2 is now proved for elementary 2-discs as in Definition 4.6.

Let D be an elementary 2-disc centered atX0,0. LetX0,0 run in a neighborhood U ⊂ S0
grS0,0

g .
This move extends to a move of D among elementary discs. Limit ourselves to the C1-topology
in order that the space of vector fields is a Banach manifold. Then, we have a C1-map

F : U × [−1,+1]2 → Fα, (X, s, t) 7→ F (X, s, t),

such that F (X, 0, 0) = X, F (X, 0, t) belongs to Sg and span{∂sF, ∂tF} is transverse to SgrS0,0
g .

Here, we notice that the perturbed holonomy HF (X,s,t) depends linearly on (s, t) near a−(X0,0) ∈
∂−Mp and the extension by partition of unity makes F depend smoothly on (s, t) for the C1-
topology of vector fields.

The Inverse Function Theorem is available and states that after a suitable restriction (that
we do not denote) F is a diffeomorphism onto its image N which is an open set in Fα (C1-
completed). Therefore N has a product structure and a projection P : N → [−1,+1]2 such
that, for every X ∈ N , the next equivalences hold:

(4.12)

 X ∈ Sg ⇐⇒
(
s ◦ P

)
(X) = 0

X ∈ S0
g ⇐⇒ P (X) = (0, 0)

X ∈ Sg2 ⇐⇒
(
t ◦ P

)
(X) = 0 and

(
s ◦ P

)
(X) ∈ R± depending on X0,0 ∈ S0,±

g .

Let D′ be any germ of two-parameter family centered in X0,0 transverse to S0
g r S0,0

g and
contained in N . Its projection P ◦ D′ is submersive. The equivalences (4.12) finish the proof
of Theorem 4.2.

�
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