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WEAK-MIXING POLYGONAL BILLIARDS

ALBA MÁLAGA SABOGAL AND SERGE TROUBETZKOY

Abstract. We consider the set of polygons all of whose sides are
vertical or horizontal with fixed combinatorics (for example all the
figure "L"s). We show that there is a dense Gδ subset of such
polygons such that for each polygon in this Gδ set the billiard flow
is weakly-mixing in almost every direction.

1. Introduction

A polygon is called rational if all the angles between pairs of sides
are rational multiples of π. The billiard flow in a rational polygon is
quasi-intergrable. Namely if we fix the initial direction of the flow, then
the billiard orbit is contained in a finite set of directions, this set of
directions is the integral. it has a natural first integral, the direction of
the flow. A major achievement in the theory of polygonal billiards is
the Kerchoff, Masur, Smillie theorem: the billiard flow in any rational
polygon is ergodic, in fact uniquely ergodic, for almost every value of
the first integral [KMS]. One of the major unsolved questions about
rational polygonal billiards is to understand if for almost all values of
the integral the billiard flow is in fact weakly mixing.

There is a well known construction, known as unfolding, which asso-
ciates a translation surface to each rational polygon. Ávila and Forni
have shown that the typical translation flow on a typical surface is
weakly mixing [AF], but this result tells us nothing about the behavior
of polygonal billiards since the translation surface formed by unfold-
ing are a set of measure zero in the space of all translation surfaces.
Recently Ávila and Delecroix have shown that the same holds for the
billiard in a regular polygon (except for the lattice cases: the equilat-
eral triangle, the square, or the regular hexagon) [AD]. Other tham
this, to our knowledge, there is only one result about weak-mixing for
the billiard flow in a rational polygon. Consider polygons for which all
sides are vertical or horizontal (VH-tables). Fix the combinatorics of
such a polygon (see the next section for an exact definition) and fix
an angle θ ∈ S

1, then Gutkin and Katok have shown that there is a
dense Gδ set of VH-pollygons with this combinatorics, such that for
each polygon in this dense Gδ set the billiard flow in the direction θ is
weakly mining [GK]. Their result also holds for tables of fixed combi-
natorics for which all sides are parallel to the sides of a fixed equilateral
triangle.
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In this article we strengthen this last result. We show that for
any fixed combinatorics of VH-tables, there is a dense Gδ set of VH-
pollygons with this combinatorics, such that for each polygon in this
dense Gδ set the billiard flow is weakly mining is weakly-mixing in al-
most every direction. The method of proof is the same as in [GK], their
article contains several of the necessary ingredients for our proof.

2. Definitions and main results

For details on polygonal billiards see [MT]. A VH-polygon is a simply
connected polygon all of whose sides are either vertical or horizontal.
The smallest rectangle congaing a VH-polygon is called is called its
bounding box. We orient the border of B in such a way that the interior
of the table is always to the left of the border, thus we associate a
finite word in four letters W , S, E, N to the VH-polygon P . This
word is assumed to start at the side of the table on the lower side of
the bounding box, if there are several we take the left most segment.
This word is called the combinatorics of P .

ℓ1

ℓ6

ℓ8

Figure 1. A VH-polygon and its bounding rectangle.

The location (x, y) of the lower left corner of the bounding box,
the combinatorics, and the lengths (ℓ1, . . . , ℓn) of sides of P naturally
parametrize the set of all VH-polygons. The set of VH-polygons with a
fixed combinatorics is naturally parametrized by an open subset of Rn.
To see this let B be a table with a given combinatorics. Let ℓ1, . . . , ℓn be
the lengths of the sides of B. The total displacement to the right must
be equal to the total displacement to the left, and the same for up and
down. So there are two dependent length parameters for each word,
but we need to also specify the coordinates (x, y) which compensate
for this.

A VH-table is a VH-polygon from whose interior we remove a finite
number of disjoint VH-polygons. The combinatorics of a VH-table is
the collection of these words, with the word associated to the exterior
component distinguished. We want to parametrized the set of VH-
tables with fixed combinatorics and fixed area for which the outer most
bounding box has lower left corner at the point (1, 1). As before we
consider the lengths (ℓ1, . . . , ℓn) of all the sides of the table, the the set
of VH-tables with a fixed combinatorics and fixed area is then naturally
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parametrized by an open subset O of Rn−3 since we additionally fixed
the area and the point (1, 1). Some coordinates of points in this space
are lengths, others are positions of corners of bounding boxes, thus we
will use the letters ~a or ~b to denote points in O. We will often confound
the parameter ~a with the table B~a which it determines.

If all the entries of ~a are rational, the table can be tiled by rectangles
of size (1

p
, 1
q
) with p, q positive integers. The number of rectangles

N(p, q) in the tiling is pq times the area of the table. We call a table
in O a (p, q)-VH table if it is tiled with rectangles of size (1

p
, 1
q
) with

p, q minimal.
Fix a VH-table ~a ∈ O and a direction θ ∈ S

1. The billiard flow φ~a,θt

on B~a in the direction θ or simply φθ
t is the free motion on the interior

of B~a with elastic collision from the boundary of B~a. Once launched in
the direction θ, the billiard direction can only achieve four directions
[θ] := {±θ,±(π − θ)}; thus the phase space X~a,θ of the billiard flow
in the direction θ is a subset of the cartesian product of B~a with these
four directions. Note that in this notation φθ

t , φ
−θ
t , φπ−θ

t and φθ−π
t are

all the same.
For each direction θ, the billiard flow φθ

t preserves the area measure µ
on B~a times a discrete measure on [θ], we will also call this measure µ.
The billiard flow on the full phase space preserves the volume measure
µ× λ with λ the length measure on S

1.
A flow ψt :M → M preserving a measure m is called weakly-mixing

if for any f ∈ L2(M,m) the function t → 〈U tf, f〉 strongly converges
in the sense of Cesaro to |〈f, 1〉|2 as |t| → ∞, where 1 is the constant
function taking the value 1 on M and U tf = f ◦ ψt [P].

Theorem 1. The set of VH-tables with a fixed area and fixed combi-
natorics (with at least 6 sides) contains a dense Gδ set of tables G such
that for each table ~a ∈ G there exists a full measure Gδ-dense set Θ~a

of directions such that the billiard flow on the table ~a ∈ G is weakly
mixing in every direction θ ∈ Θ~a.

In fact, the conclusion holds if we restrict ourselves to any closed
subset of the set of VH-tables with fixed combinatorics which for each
Q ≥ 1 contains a dense set of (p, q)-VH tables with min(p, q) ≥ Q.

3. Proof of generic weak mixing

Proof of Theorem 1. Let us consider ~a ∈ O. The table B~a can be
unfolded [MT] to a translation surface which in fact will be obtained as
a gluing of four copies of B~a along corresponding pairs of parallel sides.
Without loss of generality we assume that the area of the table is 1

4
,

and thus the area of the unfolded surface is 1. For our proof we look
at these copies as embedded disjointly in R

2 in such a way that this
embedding varies continuously with f . The bounding box of one copy
of the table is always placed with the inferior left corner to be (1, 1)
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and the other copies to be the images under reflections with respect to
the axis, thus their respective bounding boxes having a corner placed
at (±1,±1).

Thus, modulo the boundary of B~a which is a set of zero-measure,
the phase space of the billiard on the table B~a is a cartesian product of
a compact subset of R2 with S

1. Thus any function in L2(R2 × S
1) is

projected to a function in L2(B~a × S
1) by restriction and reciprocally,

any function in L2(B~a × S
1) can be seen as a function in L2(R2 × S

1).
We extend the flow φ~at to all of R2 by setting φ~at (~z, ~θ) = (~z, ~θ) on the

exterior of B~a. For each t let U~a
t be the unitary operator on L2(R2×S

1)

defined by U~a
t h(~z,

~θ) = h(φ~a,θt (~z, ~θ)).
Suppose additionally that ~a is a (p, q)-VH table. Let χ~a be the

characteristic function of B~a × S
1, and for any h : R2 × S

1 → R let
h~a := χ~a ·h be the restriction of h to B~a × S

1. Let hd : R2× S
1 → R be

the function defined by

1

N(p, q)

∑

i,j

h~a(s+ (i, j), θ).

It follows from definition that

(1)
∫

B~a×S1

hd d(µ× λ) =

∫

B~a×S1

h d(µ× λ).

Note that
(

h~a)~a = h~a, and thus h~a
d = hd. Furthermore hd~a 6= h~a

d

however hd~a =
(

h~a
d
)

~a
. Note that hd is (1

p
, 1
q
)-periodic on R

2 × {θ},
for any θ. Thus we can think of hd as descending to a function in
L2([0, 1

p
]×[0, 1

q
]×S

1), we will use the same symbol hd for both functions,

but will differentiate by noting the variable (~z, ~θ) ∈ R
2×S

1, and (u, θ) ∈
[0, 1

p
] × [0, 1

q
] × S

1. By Theorem 3 of [GK], if θ is irrational, i.e. non
commensurable with π, then the function hd~a is the projection of h~a
on the discrete spectrum of the flow φt. Let

hc := h− hd.

Then

h~a = hd~a + hc~a,

thus hc~a is the projection of h~a on the continuous spectrum of φt.
For any h1, h2 in L2(R2 × S

1), let

〈h1, h2〉θ =

∫

R2

h1(~z, ~θ)h2(~z, ~θ) dµ

and

||h1|| =
√

〈h1, h1〉θ.
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For any h ∈ L2(R2), and any fixed direction θ,
(2)

〈U~a
t h~a, h~a〉θ −

∣

∣〈h~a, χ
~a〉θ

∣

∣

2
=

〈U~a
t

[

(hd~a − 〈h~a, χ
~a〉θχ

~a) + 〈h~a, χ
~a〉θχ

~a + hc~a
]

, h~a〉θ −
∣

∣〈h~a, χ
~a〉θ

∣

∣

2
=

〈U~a
t

[

hd~a − 〈h~a, χ
~a〉θχ

~a
]

, h~a〉θ + 〈U~a
t h

c
~a, h~a〉θ =

〈U~a
t

[

hd~a − 〈h~a, χ
~a〉θχ

~a
]

, h~a〉θ + 〈U~a
t h

c
~a, h

c
~a〉θ.

By the definition of the continuous spectrum for any ε > 0 there is
a set T ⊂ R of density one such that if t ∈ T then

(3) 〈U~a
t h

c
~a, h

c
~a〉θ < ε.

Suppose that h is additionally continuous; thus for any ε > 0 there
is a δ(ε, h) > 0 such that |h(~z, ~θ)−h(s′, θ)| < ε/||h|| if |s−s′| < δ(ε, h).
Suppose that max(1

p
, 1
q
) < δ(ε, h). Then

(4)
|hd(~z, ~θ)− hd(s′, θ)| = |hd(u, θ)− hd(u′, θ)|

≤ 1
pq

∑

i,j |h(u+ (i, j), θ)− h(u′ + (i, j), θ)|

< ε
||h||pq

× the number of rectangular tiles
≤ ε

||h||
.

Using the Cauchy-Schwartz inequality, and then applying Formulas
(1) and (4) for any t ∈ R we have
(5)

∣

∣〈U~a
t

[

hd~a − 〈h~a, χ
~a〉θχ

~a
]

, h~a〉θ
∣

∣ ≤
∣

∣

∣

∣U~a
t [h

d
~a − 〈h~a, χ

~a〉θχ
~a]
∣

∣

∣

∣ · ||h~a||
= ||hd~a − 〈h~a, χ

~a〉θχ
~a|| · ||h~a||

= ||hd~a − 〈hd~a, χ
~a〉θχ

~a|| · ||h~a||
< ε

||h||
· ||h~a||

≤ ε.

Combining Equations (2),(3) and (5) we conclude that for any t ∈ T

〈U~a
t h~a, h~a〉θ −

∣

∣〈h~a, χ
~a〉θ

∣

∣

2
< 2ε.

For a given VH-table ~b in O and every τ > N , we consider the set
of directions

Θ(~b, τ, h,N) :=
{

θ : ∃t ∈ (N, τ),
∣

∣〈U
~b
t h~b, h~b〉θ − |〈h~b, χ

~b〉θ|
2
∣

∣ < 1
N

}

.

From Formula (3) it follows that for any any (p, q)-VH-table ~a and
any θ irrational there exists τ0 > 0 such that θ is in Θ(~a, τ0, h, N).
Moreover, θ is in Θ(~a, τ, h,N) for any τ ≥ τ0 as these sets are increasing
in τ . Thus, the measure of Θ(~a, τ, h,N) tends to 1 as τ goes to infinity.

For any θ ∈ Θ(~a, τ, h,N), let ηθ > 0 be as large as possible such that
the ηθ-neighborhood U(~a, ηθ) is included in

{

~b ∈ O : ∃t < τ,
∣

∣〈U
~b
t h~b, h~b〉θ − |〈h~b, χ

~b〉θ|
2
∣

∣ ≤ 1
2N

}
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So, for any N we can choose τ(~a, h,N) and η(~a, h,N) > 0 such that
Θ(~a, h,N) := Θ(~a, τ(~a, h,N), h, N)∩{θ : ηθ > η(~a, h,N)} has measure
at least 1− 1

N2 .

Thus, any ~b in η-neighborhood U(~a, η(~a, h,N)) satisfies

∣

∣〈U
~b
t h~b, h~b〉θ − |〈h~b, χ

~b〉θ|
2
∣

∣ <
1

N

for any θ in Θ(~a, h,N) and some N < t < τ(~a, h,N).
Let {hj} be a countable basis of continuous functions in L2(R2).

Under the identification hj(~z, ~θ) = hj(s), this is a countable basis of
L2(R2×{θ}) for all θ. Let {~ai} be a dense collection of (p, q)-VH-tables.
Let us consider the following dense Gδ-set

G :=
∞
⋂

N=1

∞
⋃

i=N

N
⋂

j=1

U
(

~ai, η(~ai, hj , N)
)

.

Let ~b ∈ G. Then for each N there is iN ≥ N such that ~b and ~aiN are
ηN -close, where ηN := min

{

η(~aiN , hj, N) : 1 ≤ j ≤ N
}

.
The set

⋂N

j=1Θ(~aiN , hj, N) is of measure at least 1− 1
N

and for every
direction θ in this set, and every j ≤ N , there exists tN(j) ≥ N such
that

∣

∣〈U
~b
tN (j)h~b, h~b〉θ − |〈h~b, χ

~b〉θ|
2
∣

∣ <
1

N
,

where h = hj .

Let Θ̂~b :=

∞
⋂

n=1

∞
⋃

N=n

N
⋂

j=1

Θ(~aiN , hj , N). This is a dense Gδ-set of full

measure. For every θ ∈ Θ̂~b and any j ≥ 1 there exist sequences Nk =
Nk(j, θ, g) → ∞ and tk = tk(j, θ, g) ≥ Nk, such that

(6)
∣

∣〈U
~b
tk
h~b, h~b〉θ − |〈h~b, χ

~b〉θ|
2
∣

∣ <
1

Nk

where h = hj .
We will now show that for every θ ∈ Θ̂~b

the flow φθ
t on B

~b is weak-

mixing. Fix θ ∈ Θ̂~b
. Since θ is fixed, we will denote by U~b

t the operator

U
~b
t restricted to the direction θ.
Suppose φθ

t is not weak-mixing, then there exists an eigenfunction
h ∈ L2(B

~b × {θ}) with an eigenvalue eia; thus, U~b
t h = eiath. We can

assume that : ||h||θ = 1 and
∫

B~b h dµ = 0.
Let ε > 0, and let hj be such that ||h−hj ||θ < ε. Then for any t ∈ R

we have

U
~b
t hj = U

~b
t (hj − h) + U

~b
t h

= U
~b
t (hj − h) + eiath.



WEAK-MIXING POLYGONAL BILLIARDS 7

Therefore

〈U
~b
t hj , (hj)~b〉θ = 〈U

~b
t (hj − h) + U

~b
t h, (hj)~b〉θ

= 〈U
~b
t (hj − h) + eiath,

(

(hj)~b − h
)

+ h〉θ
= 〈U

~b
t (hj − h), (hj)~b − h〉θ + 2ℜ〈h, (hj)~b − h〉θ + eiat

which implies the estimate
∣

∣

∣
〈U

~b
t hj, (hj)~b〉θ − eiat

∣

∣

∣
< ε2 + 2ε.

Since
∣

∣

∫

B~b (hj)~b dµ
∣

∣ =
∣

∣

∫

B~b ((hj)~b − h) dµ
∣

∣

≤ ||(hj)~b − h||θ||χ
~b||θ (by Cauchy-Schwartz inequality)

= ||(hj)~b − h||θ µ(B
~b) = ||(hj)~b − h||θ

< ε,

we have for any t (by the triangular inequality):

∣

∣

∣
〈U

~b
t hj , (hj)~b〉θ − |〈hj, χ

~b〉θ|
2
∣

∣

∣
≥ |〈U

~b
t hj , (hj)~b〉θ| − |〈hj, χ

~b〉θ|
2

> (|eiat| − ε2 − 2ε)− ε2

> 1− 2ε− 2ε2.

Thus, for ε small enough, hj will satisfy
∣

∣

∣
〈U

~b
t hj , (hj)~b〉θ − |〈hj, χ

~b〉θ|
2
∣

∣

∣
> 1

2

for all t. This contradicts Equation (6). Thus such an h does not exist
and the direction θ is weak-mixing. �

4. Generalizations

Figure 2

The theorem also holds for billiards in polygons with fixed combi-
natorics (and at least 4 sides) all of whose sides are parallel to a fixed
equilateral triangle. In Figure 2 we give two examples of fixed combi-
natoric: there is a dense Gδ of trapezoids with angles π/3 and 2π/3 (of
fixed area) for which the billiard flow is weakly mixing in almost ev-
ery direction, and the same for parallelograms of fixed area with these
angles.

Our method also proves topological genericity of the set of translation
surfaces within a given stratum for which the translation flow is weakly
mixing in almost every direction; the result in [AF] only showed the
measure theoretic genericity of such translation surfaces. Indeed, it
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is sufficient to check that in each stratum the set of rectangle tiled
surfaces which are (p, q)-tiled with min(p, q) ≥ Q is dense for each Q.

There are two well known coordinate systems on the set of of trans-
lation surfaces: local coordinates for the ablian differential or the zip-
pered rectangle representation; the density holds for both.

Consider first local coordinates for Abelian differentials, they are
given by the relative periods of the holomorpic one form, i.e. a col-
lection of planar vectors corresponding to certain saddle connections
(see [Z] section 6.4). Lemma 18 and Remark 7 of [KZ] show that the
set of compact surfaces with single-cylinder directions is dense in each
stratum. The constructed surfaces have the vertical direction as single-
cylinder. By making arbitrarily small changes to the vectors of the
vertical saddle connections, we ensure that the lengths of all vertical
saddle connections are rational multiples of the width of the cylinder
without changing the fact that the vertical flow is a single-cylinder di-
rection. By rescaling the width by an arbitrarily small amount, we
may ensure all such lengths are in fact rational. We then need only
translate all the charts of M by an arbitrarily small amount to ensure
that all singularities project to rational coordinates; the surface is now
square-tiled with a vertical single-cylinder direction. If additionally we
require that all these rational number have a fixed prime denominator
q, then the surface is (q, q) tiled by squares, and is not square tiled
by larger squares. For any Q ≥ 1 the set of surfaces of this type with
q ≥ Q is dense.

Next we describe the density in the zippered rectangle representation
of translation surfaces (see [Z] sections 5.5 and 5.7 for a description of
this representation). The zippered rectangle coordinates are given by
an interval exchange, thus a permutation and some lengths of intervals,
the heights of the rectangles, as well as the heights of the singularities.
If each of the length and height parameters is rational with common
prime denominator q then the surface is (q, q)- tiled by square and is
not square tiled by larger squares. For any Q ≥ 1 the set of surfaces of
this type with q ≥ Q is dense.
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