
HAL Id: hal-01304085
https://hal.science/hal-01304085

Submitted on 19 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel solution of American option derivatives on GPU
clusters

Lilia Khodja, Ming Chau, Raphaël Couturier, Jacques Bahi, Pierre Spitéri

To cite this version:
Lilia Khodja, Ming Chau, Raphaël Couturier, Jacques Bahi, Pierre Spitéri. Parallel solution of Amer-
ican option derivatives on GPU clusters. Computers & Mathematics with Applications, 2013, 65 (11),
pp.1830-1848. �10.1016/j.camwa.2013.03.010�. �hal-01304085�

https://hal.science/hal-01304085
https://hal.archives-ouvertes.fr

Parallel solution of American option derivatives on GPU

clusters

Lilia Ziane Khodjaa, Ming Chaub, Raphaël Couturiera, Jacques Bahia,
Pierre Spiteric,∗

aFEMTO-ST Institute, University of Franche Comte, IUT Belfort-Montbéliard, Rue
Engel Gros, BP 527, 90016 Belfort CEDEX, France

bAdvanced Solutions Accelerator, 199 rue de l’Oppidum, 34170 Castelnau Le Lez, France
cENSEEIHT-IRIT, 2 rue Charles Camichel, 31071 Toulouse CEDEX, France

Abstract

This paper deals with the numerical solution of financial applications, more
specifically the computation of American option derivatives modelled by non-
linear boundary values problems. In such applications we have to solve large-
scale algebraic systems. We concentrate on synchronous and asynchronous
parallel iterative algorithms carried out on CPU and GPU networks. The
properties of the operators arising in the discretized problem ensure the con-
vergence of the parallel iterative synchronous and asynchronous algorithms.
Computational experiments performed on CPU and GPU networks are pre-
sented and analyzed.

Keywords: Parallel asynchronous algorithms, iterative parallel numerical
methods, subdomain method, sparse nonlinear systems, large scale obstacle
problems, finance, GPU clusters, CUDA

1. Introduction

For the past few years financial applications have undergone great de-
velopment. In particular, European and American options derivatives mod-

∗Corresponding author
Email addresses: lilia.ziane_khoja@univ-fcomte.fr (Lilia Ziane Khodja),

mchau@asa-sas.com (Ming Chau), raphael.couturier@univ-fcomte.fr (Raphaël
Couturier), jacques.bahi@univ-fcomte.fr (Jacques Bahi),
pierre.spiteri@enseeiht.fr (Pierre Spiteri)

Preprint submitted to Computers and Mathematics with applications January 23, 2013

elled by the classical evolutive Black and Scholes equation have been re-
ceived with a great interest [28]. One should remember that the Euro-
pean option derivative is modelled by a classical time dependent convection-
diffusion boundary value problem whereas the American option derivative is
modelled by an evolutive variational inequality defined from a time depen-
dent convection-diffusion operator. In what follows, since the solution of a
parabolic convection-diffusion boundary value problem is very classical, we
will not study the solution of European option derivative. We will rather
focus on the determination of American option derivative. The problem con-
sists also in solving a time dependent boundary value problem defined on
an unbounded domain generally included in the three dimensional space.
A classical artifice consists in solving the Black and Scholes equation on a
bounded domain and in increasing the size of the domain to ensure the con-
vergence to the exact solution [11]. Moreover the solution of such model
problems belongs to a convex closed set, and consequently the determination
of the solution needs a projection on this convex set. So, such boundary
value problems need to be solved numerically.

The temporal discretization leads to solving a sequence of stationary non-
linear boundary value problems; after spatial discretization we have then to
solve large-scale algebraic systems. Taking into account the size of the alge-
braic systems derived from the discretization process of the Black and Scholes
equation, parallel iterative algorithms are well adapted. Therefore in this pa-
per, we concentrate on asynchronous and synchronous iterative methods for
solving these algebraic systems. So we consider two kinds of such parallel
algorithms: on the one hand, the parallel projected Richardson algorithm
associated to a problem of optimization and, on the other hand, the paral-
lel block relaxation algorithm corresponding in fact to a subdomain method
without overlapping.

The obstacle problem has been studied in many contributions and by
many authors. The obstacle problem is more general than the problem of
American option derivative. It appears in many applications such as me-
chanics, free boundary value problem and finance. For example, in [15] se-
quential methods are considered for the Hamilton-Jacobi-Bellman problem,
this latter problem being related to the obstacle problem; in [26] a study con-
cerning the rate of convergence when multilevel domain decomposition and
multigrid methods is considered for sequential solution of the obstacle prob-
lem. In [1] the linear convergence is proved for a sequential multiplicative
Schwarz method, applied to the solution of variational inequalities and in [2]

2

a geometric convergence rate is established for sequential additive Schwarz
method for the same problem; in [24] the convergence rate analysis of do-
main decomposition methods is also studied in the case of obstacle problem
solution. In [13] the block relaxation methods for algebraic obstacle prob-
lems with M-matrices are considered while in [12] multiplicative and additive
Schwarz methods for obstacle problems with convection-diffusion operators,
when two (possibly overlapping) subdomains are considered, one, where the
solution equals to a given obstacle function, and the other, where the solu-
tion satisfies a linear equation. In [14] the sequential convergence analysis
of the generalized Schwarz method for solving the obstacle problems with
T-monotone operator are studied. In the previous contributions, note that,
mainly, the study of numerical solutions is considered by using sequential
subdomain methods. Furthermore, in the previous studies, when the parallel
solution is considered for the solution of the obstacle problem, it can be no-
ticed that only parallel synchronous subdomain methods is studied. In [25]
the rate of convergence of parallel asynchronous methods is studied in the
context of convex optimization; the considered work include as particular
cases parallel domain decomposition and multigrid methods for solving ellip-
tic partial differential equations and is closely related to relaxation methods
for non linear network flow.

In the present study, note that we consider only a subdomain method
with no overlapping between the subdomains. Moreover we consider also the
implementation of such algorithms on various architectures like CPU and
GPU architectures and we compare the performances of the studied compu-
tational methods on each architecture. It is one of the main contribution of
the presented study. Indeed, since the objective is to solve quickly large-scale
algebraic systems, the implementations of both iterative methods are better
suited on parallel architectures. Nowadays, the most attractive parallel com-
puters are those using the computing power of the GPU cards (Graphics
Processing Units). Their hardware and software architectures have rapidly
evolved, allowing them to become high performance accelerators for the data-
parallel tasks and intensive arithmetic computations of many applications.
Several works have proved the ability of the GPUs to provide better perfor-
mances than the CPUs for many applications using iterative solvers [29], [16]
and [8]. So, in the following we will compare the performances of the pro-
jected Richardson algorithm and the block relaxation algorithm, both imple-
mented, on these two kinds of architectures: CPU and GPU clusters. From
a practical point of view, note that the interest of the present study is to

3

provide financial analysts with fast and non-expensive computation facilities
in their work.

The paper is organized as follows: section 2 is devoted to the presentation
of the problem of American options derivatives; in particular using classical
mathematical background in applied analysis, then we present equivalent for-
mulations of the model problem. Section 3 presents the numerical solutions
of the model problem, in particular appropriate discretization ensuring the
convergence of parallel iterative algorithms and the general models of asyn-
chronous methods; the parallel subdomain method without overlapping and
the parallel projected Richardson algorithm are presented and analyzed in
details. Finally, the parallel experiments on CPU and GPU architectures are
presented with both synchronous and asynchronous versions.

In the sequel, the dot notation “.” always represents products between
two scalars, a scalar and a vector or a matrix and a vector. The inner product
is denoted with brackets: <,>.

2. The problem of American options derivative

2.1. The problem to solve

We consider the case of American options modeled by the Black-Scholes
equations [28]. The classical Black-Scholes equation is a boundary value
problem describing the evolution of call or put options in the field of math-
ematics of financial contracts. Let us note that American options may be
exercised at any time prior to expiration, i.e. when the time τ takes any
value between 0 and T, where T denotes the expiry date. The Black-Scholes
equation is classically written like the following retrograde time dependent
nonlinear convection-diffusion equation, called also obstacle problem:

∂v̄
∂τ

+ (r − σ2

2
)∇v̄ + σ2

2
∆v̄ − rv̄ ≥ 0, v̄ ≥ φ, e.w. in [0, T]× Rn

(∂v̄
∂τ

+ (r − σ2

2
)∇v̄ + σ2

2
∆v̄ − rv̄)(v̄ − φ) = 0, e.w. in [0, T]× Rn

v̄(T, S) = φ

(1)

where, e.w. means every where, φ = φ(S) = max(S − K, 0) in the case of
call option or φ = max(K − S, 0) in the case of put option; in the previous
equations v̄ denotes the value of the considered option at time τ , i.e. a call or
a put option; v̄ = v̄(τ, S) is a function of the current value of the underlying
asset S and of the time τ . Note also that the considered problem (1) also
depends on the following parameters:

4

- r the interest rate,
- σ the volatility of the underlying asset, σ being in fact the instantaneous
standard deviation of the price with respect to the exercise priceK, classically
called strike and fixed beforehand; in fact σ characterizes the uncertainty of
the option’s behavior. ∆ denotes the Laplacian operator and ∇ denotes the
gradient operator.

Note that the previous boundary value problem is not defined on a bounded
domain, but is defined on the unbounded domain Rn, n ≥ 1. This diffi-
culty is solved by considering the problem defined on a bounded domain
Ω ⊂ Rn and it can be proven that the solution of the retrograde time de-
pendent convection-diffusion equation, defined on the bounded domain Ω,
converges to the solution of problem (1) when the measure of Ω tends to
infinity (see [11]). This previous issue can be solved, by choosing Ω like
Ω = [−L,L]n, where L is a parameter which can be as large as possible
according to the use of the result of [11].

Another particularity of the problem to solve is that the value of the
option is not known at the initial time τ = 0; only the value v̄(T, S) is known
and the problem consists in computing v̄(0, S). Obviously, this feature can
be solved easily, by considering a change of variables concerning the time and
replacing the variable τ by a variable t = T − τ .

Thus, problem (1) is then replaced by a classical time dependent convection-
diffusion problem modeled as follows:

∂v̄
∂t
− (r − σ2

2
)∇v̄ − σ2

2
∆v̄ + rv̄ ≥ 0, v̄ ≥ φ, e.w. in [0, T]× Ω

(∂v̄
∂t
− (r − σ2

2
)∇v̄ − σ2

2
∆v̄ + rv̄)(v̄ − φ) = 0, e.w. in [0, T]× Ω

v̄(0, S) = φ
B.C. on v̄(t, S) defined on ∂Ω

(2)

where B.C. describes the boundary conditions on the boundary ∂Ω of the
domain Ω. Practically, the Dirichlet condition (where v̄ is fixed on ∂Ω) or
the Neumann condition (where the normal derivative of v̄ is fixed on ∂Ω) are
classically considered.

Thus, using an implicit or semi-implicit time marching scheme, the prob-
lem consists in solving numerically a sequence of stationary non linear convection-
diffusion problems written as follows:

−(r − σ2

2
)∇v − σ2

2
∆v + (r + c)v − g ≥ 0, v ≥ φ, e.w. in Ω,

(−(r − σ2

2
)∇v − σ2

2
∆v + (r + c)v − g)(v − φ) = 0, e.w. in Ω,

B.C. on v(t, S) defined on ∂Ω,

(3)

5

where v = v(S) denotes the value of v̄(t, S) at current time t, c is the inverse
of the time step k and g = 1

k
· vprec, where vprec is the solution obtained at

the previous time step.

Remark 1. Note that the convection-diffusion operator is not self-adjoint.
Nevertheless, in what follows, for the numerical solution of the discrete ob-
stacle problem, the fact that the operator, arising in the obstacle problem, is
self-adjoint or is not self-adjoint, plays a main role in the choice of the appro-
priate algorithm needed for the numerical solution of the resulting algebraic
systems to solve. So, since the coefficients arising in the operator are con-
stant, then by a classical change of variables, we can replace the stationary
convection-diffusion operator

bt∇v − ν∆v + (r + c)v = g, e.w. in Ω, c =
1

k
> 0,

where b is a constant coefficient of convection, ν is a constant coefficient of
diffusion and c is a positive coefficient, by a diffusion operator; indeed, the
change of variables

v = ea · u,
where a is defined by a = btS

2ν
, leads to the following expression of this operator

−ν∆u+ (
‖b‖2

2

4ν
+ c)u = e−a.g = f,

corresponding to a self adjoint operator. In this case, note that u ∈ K is
classically a solution of the following optimization problem{

Find u ∈ Ksuch that
J(u) ≤ J(w),∀w ∈ K (4)

where

J(w) =
1

2
a(w,w)− L(w),

where

a(u,w) =

∫
Ω

(
ν

2
.∇u.∇w + (

‖b‖2
2

4ν
+ c).u.w)dxdydz, c ≥ 0,

and

L(w) = (f, w) =

∫
Ω

f.wdxdydz,

and where K is a closed convex set which will be precised in what follows;
lastly the two problems are equivalent and then any solution of the problem
of optimization is also a solution of the diffusion problem and conversely.

6

2.2. Mathematical background

The notion of sub-differential mapping will play a major role in the fol-
lowing parts for taking into account the necessary projection on a closed
convex set K. So, we recall hereafter this notion and its main associated
properties (see [4]).

Definition 1. Given a convex function χ on a normed vectorial space E and
a point u ∈ E, we denote by ∂χ(u) the set of all u′ ∈ E ′ such that

χ(v) ≥ χ(u)+ < v − u, u′ >E×E′ , for every v ∈ E, (5)

where < , > denotes the pairing between E and E ′. Such element u′ is
called subgradient of χ at u and ∂χ(u) is called the subdifferential of χ at u.

Remark 2. Recall that the pairing between E and E ′ is a bilinear form, from
E × E ′ onto R (or possibly C). If E is an Hilbert space, then the pairing is
the inner product of E.

Remark 3. Let χ be a Gateaux differentiable (or Frechet differentiable) con-
vex mapping at u. Then ∂χ(u) consists of a single element, namely the
Gateaux (or Frechet) differential of χ at u (see [4]). From (5), it is obvious
that ∂χ(u) is a closed convex set (possibly empty, see [4]).

In what follows, we will use a possibly multivalued formulation of the
model problem of American options derivatives which play a major role for
the numerical solution of the studied nonlinear problems when relaxation
methods are used. Recall the following results:

Lemma 1. Let u ∈ E; u is such that χ(u) = min
v∈E

(χ(v)) if and only if

0 ∈ ∂χ(u). Moreover, the subdifferential ∂χ(u) is a monotone operator (in
general multivalued) from E to E ′.

Proof. Indeed, let u ∈ E such that χ(u) ≤ χ(v),∀v ∈ E; then we
have χ(v) ≥ χ(u)+ < v − u, 0 >E×E′ , and then 0 ∈ ∂χ(u). Besides, let
w′ ∈ ∂χ(w); then χ(v) ≥ χ(w)+ < v − w,w′ >E×E′ ,∀v ∈ E. Let also
u′ ∈ ∂χ(u); then χ(v) ≥ χ(u)+ < v−u, u′ >E×E′ , ∀y ∈ E. Consider the first
inequality for v = u and the second for v = w; then by adding, we obtain
< w − u,w′ − u′ >E×E′≥ 0, and the proof is achieved.

The indicator function of the convex set K will also be used in the sequel.
The indicator function of the convex subset K is defined as follows

7

Definition 2. Let K be a closed convex subset of E and let ψK be the indi-
cator function of the convex subset K, i.e.

ψK(u) =

{
0 if u ∈ K
+∞ otherwise

Clearly, ψK(u) is convex. By definition of the subdifferential we have (see [4])

∂ψK(v) = {v′ ∈ E ′| < v − w, v′ >E×E′≥ 0, for every w ∈ K}.

This shows that D(∂ψK) = D(ψK) = K and ∂ψK(v) = {0} for each
v ∈ int(K), where int(K) denotes the interior of the set K. Moreover,
if v lies on the boundary of K, then ∂ψK(v) coincides with the cone normal
to K at point v.

2.3. Equivalent formulations of the model problem

For each stationary obstacle problem (3) many equivalent formulations of
the obstacle problem exist and the reader is referred to [10] for complements.
In the present subsection, we concentrate now on the variational formula-
tion associated with problem (3); classically the corresponding variational
formulation is given as follows{

Find v ∈ Ksuch that
a(v, w − v) ≥ L(w − v),∀w ∈ K (6)

where, with the same notations as the ones used in remark 1:

a(v, w) =

∫
Ω

(
σ2

2
.∇v.∇w − (r − σ2

2
).∇v.w + (r + c).v.w)dxdydz,

L(w) = (f, w) =

∫
Ω

f.wdxdydz,

and

K = {w|w given in Ω, such that w(x, y, z) ≥ φ(x, y, z) everywhere on Ω}.

Consider the stationary variational inequality (6). Then, since classically

1. the space H1(Ω) normed by ‖w‖2
1,Ω =

∫
Ω

(∇w.∇w + w.w)dxdydz is
classically an Hilbert space and K is obviously a closed convex set,

8

2. the mapping (v, w) → a(v, w) is obviously a bilinear, continuous and
elliptic form,

3. the mapping w → L(w) is obviously a linear continuous form,

then, by applying the classical Stampacchia theorem, the variational inequal-
ity (6) has a unique solution.

We can also apply the Riesz representative theorem to the formulation of
the problem (6). Let us denote by E = H1(Ω) the real vectorial space and
by E ′ its dual space; in our case E ′ is identified with E, since H1(Ω) is an
Hilbert space. Then, there exists a unique element denoted Āv ∈ E ′, where
Ā is a continuous linear mapping from E → E ′, such that

a(v, w) =< w, Āv >E×E′ ,∀w ∈ H1(Ω);

similarly, there exists also an unique element, denoted ḡ ∈ E ′ such that

L(w) =< w, ḡ >E×E′ ,∀w ∈ H1(Ω);

then the stationary variational inequality (6) can be written as follows{
Find v ∈ Ksuch that
< w − v, Āv − ḡ >E×E′≥ 0,∀w ∈ K. (7)

Remark 4. From a practical point of view, note that for the studied station-
ary problem (6) Āv(x, y, z) = −σ2

2
.∆v(x, y, z) − (r − σ2

2
).∇v(x, y, z) + (r +

c).v(x, y, z) and ḡ = g(x, y, z).

Then the new formulation (7) of the stationary variational inequality (6)
is equivalent to the following multivalued problem{

Find v ∈ E such that
Āv − ḡ + ∂ψK(v) 3 0,

(8)

where ∂ψK(v) is the subdifferential of the indicator function of the convex
subset K. Note that in (8), the projection on the convex set K is formulated
by the perturbation of the continuous convection-diffusion operator by a mul-
tivalued increasing (or monotone) diagonal operator. Indeed, the definition
of the subdifferential of the indicator function implies

∂ψK(v) = {ω ∈ E ′|ψK(w)− ψK(v) ≥< w − v, ω >E×E′ , ∀w ∈ K};

9

assume that (7) holds and let us verify that the following inequality is true

ψK(w)− ψK(v) ≥< w − v, ḡ − Āv >E×E′ , ∀w ∈ K. (9)

If w ∈ K, then ψK(w) = 0 and since ψK(v) = 0, then we obtain

0 ≥< w − v, ḡ − Āv >E×E′ ,

inequality valid by considering (7). If w /∈ K, then ψK(w) = +∞; since
ψK(v) = 0, then we obtain

+∞− 0 ≥< w − v, ḡ − Āv >E×E′ ,

and the obtained inequality is always verified.
Conversely, if there exists v ∈ E such that ḡ− Āv ∈ ∂ψK(v) then we have

to verify that there exists v ∈ E such that (9) holds for all w ∈ K. If v ∈ K
then ψK(v) = 0 and (9) can be written as follows

ψK(w) ≥< w − v, ḡ − Āv >E×E′ , ∀w ∈ K.

Then since w ∈ K then ψK(w) = 0 and (9) can be written as follows

0 ≥< w − v, ḡ − Āv >E×E′ , ∀w ∈ K,

inequality well verified by (7).
Besides, let us show that the assertion v /∈ K is impossible. Indeed, in this
case ψK(v) = +∞, so that

ψK(w)−∞ ≥< w − v, ḡ − Āv >E×E′ , ∀w ∈ K,

which involves, since ψK(w) = 0, that

−∞ ≥< w − v, ḡ − Āv >E×E′ , ∀w ∈ K

inequality never verified. In conclusion, the problems (8) and (9) are equiv-
alent. So the numerical solution of the obstacle problem leads to solving the
multivalued problem (8) and conversely.

Remark 5. If in the formulation of problem (6), the term of convection is
zero, the previous multivalued formulation still holds, in which in conformity
with Remark 1, the associated operator is a diffusion operator, then of the

following form Āu(x, y, z) = −σ2

2
.∆u(x, y, z) + (

‖b‖22
4ν

+ c).u(x, y, z).

10

3. Numerical solution

For the numerical solution of the problem of American option pricing,
we will consider the use of two particular parallel iterative fixed point meth-
ods: the parallel projected subdomain relaxation method without overlap-
ping associated to the convection-diffusion problem or the parallel projected
Richardson method associated only to the diffusion problem, this last prob-
lem being related to the solution of an optimization problem in conformity
with Remark 1. Thanks to appropriate discretization of the spatial part of
these two previous problems, the discrete operator has a common property
ensuring the convergence of the two parallel iterative methods considered.

3.1. Discretization of the operators

After appropriate temporal discretization by an implicit time marching
scheme, the problem consists in solving numerically a sequence of stationary
non linear convection-diffusion problems in the case where we do not use the
change of variables presented in subsection 2.1 or a sequence of stationary
non linear diffusion problems otherwise.

In the parallel experiments, both problems are solved in a constant do-
main Ω in order to test the studied parallel methods. The parameters of
the convection-diffusion operator are: σ2

2
= 0.2 and r = 1.1. In addition, 3

time steps are computed with k = 0.0066. The initial function v̄(0, x, y, z) of
obstacle problem (2) is 0, with a constraint v̄ ≥ φ = 0. In order to obtain
significant data for performance analysis, so that the numbers of relaxations
required to solve the non linear systems at every time step are sufficiently
high, an additional source term

g′(x, y, z) = cos(2πx).cos(4πy).cos(6πz)

is added to the right hand side of the convection-diffusion equation. Then
equation (3) is slightly modified by:

g =
1

k
· vprec + g′. (10)

Note that, the initial guess for iterative algorithms is set to the solution found
at the previous time step. Without this additional source term, v̄(0, x, y, z)
should be nonzero, but convergence would occur too rapidly.

In the following, we will consider that Ω ⊂ R3 is discretized with an uni-
form Cartesian mesh constituted by M = m3 discretization points, where m

11

is related to the spatial discretization step h, so that the complete discretiza-
tion of the boundary value problem (2) leads to the solution of the following
large stationary discrete variational inequality at each time step{

Find V ∗ ∈ K such that
∀W ∈ K, 〈A.V ∗ ,W − V ∗〉 ≥ 〈G ,W − V ∗〉, (11)

where A = A+ 1
k
I, A is the block matrix obtained after spatial discretization

by finite difference method, k is the time step, K is the discrete convex set
defined by

K = {V | V ≥ Φ̄ everywhere in E}

in which Φ̄ is the discretized obstacle function, G is derived from the Euler
first order implicit time marching scheme, from the discretized right-hand
side of the obstacle problem and I is the identity matrix. More precisely,
note also that the spatial differential operators are discretized as follows:
- the Laplacian is discretized by using the classical seven points scheme when
Ω ⊂ R3,
- when the first derivatives are considered in the model problem (i.e. the
convection phenomenon is taken into account) they are discretized by using
decentered scheme; in fact, if the coefficient of the considered first derivative
is strictly positive, then the forward-difference formula is used, else backward
difference formula is considered.
Thus, in both cases A is an M-matrix (see [27]) and consequently the matrix
(A+ 1

k
I) is also an M-matrix.

Note that we have to solve a variational inequality indifferently when
the Dirichlet boundary condition or the Neumann boundary condition are
considered; nevertheless, in the sequel, we consider that the boundary condi-
tions are the Dirichlet ones, but, when appropriate assumptions are satisfied,
the present study is still valid if we consider the Neumann boundary condi-
tions. Moreover, since the global discretized matrix is an M-matrix, then we
will show in the following that this property ensures the convergence of the
studied parallel asynchronous or synchronous algorithms (see [18] to [20]).

3.2. Parallel iterative methods

In the following part, we will present the solution, at each new time
step, of the next discrete complementary problem (26) by various parallel
synchronous or asynchronous iterative algorithms(see [3, 5, 6, 7, 17]).

12

Let α be a positive integer. Assume that E = RM ; note that E is an

Hilbert space. Consider also that the space E =
α∏
i=1

Ei is a product of

α subspaces denoted Ei = Rmi , where
α∑
i=1

mi = M ; note that Ei is also

an Hilbert space in which 〈 . , . 〉i denotes the scalar product and | . |i the
associated norm, for all i ∈ {1, . . . , α}.

Let W ∈ E and consider the following block decomposition of W (see
figure 6) and the corresponding decomposition of F

W = (W1, . . . ,Wα)
F (W) = (F1(W), . . . , Fα(W))

Then for all U,W ∈ E let us denote by 〈U ,W 〉 =
α∑
i=1

〈Ui ,Wi〉i the scalar

product on E and ‖ . ‖ its associated norm.
In the sequel, we consider the general following fixed point problem{

Find W ∗ ∈ E such that
W ∗ = F (W ∗)

(12)

where W 7→ F (W) applies from E to E.
In order to solve the fixed point problem (12), let us consider now the

parallel asynchronous iterations defined as follows: let W 0 ∈ E be given,
then for all p ∈ N, W p+1 is recursively defined by

W p+1
i =

{
Fi(W

ρ1(p)
1 , . . . ,W

ρj(p)
j , . . . ,W

ρα(p)
α) if i ∈ s(p)

W p
i if i 6∈ s(p)

(13)

where {
∀p ∈ N, s(p) ⊂ {1, . . . , α} and s(p) 6= ∅
∀i ∈ {1, . . . , α}, {p | i ∈ s(p)} is countable

(14)

and ∀j ∈ {1, . . . , α},{
∀p ∈ N, ρj(p) ∈ N, 0 ≤ ρj(p) ≤ p and ρj(p) = p if j ∈ s(p)
lim
p→∞

ρj(p) = +∞. (15)

The previous asynchronous iterative scheme models computations that
are carried out in parallel without order nor synchronization and describes

13

a subdomain method without overlapping. It enables particularly, to con-
sider distributed computations whereby processors compute at their own
pace according to their intrinsic characteristics and computational load. The
parallelism between the processors is well described by the set s(p) which
contains at each step p the index of the components relaxed by each proces-
sor on a parallel way while the use of delayed components in (13) permits
one to model nondeterministic behavior and does not imply inefficiency of the
considered distributed scheme of computation. Note that, according to [17],
theoretically, each component of the vector must be relaxed an infinity of
time. The choice of the relaxed components may be guided by any criterion,
and, in particular, a natural criterion is to pick-up the most recently available
values of the components computed by the processors.

Remark 6. Such asynchronous iterations describe various classes of paral-
lel algorithms, such as parallel synchronous iterations if ∀j ∈ {1, . . . , α},
∀p ∈ N, ρj(p) = p. In the synchronous context, for particular choice of
s(p), then (13)-(15) describe classical sequential algorithms. Among them,
the Jacobi method (∀p ∈ N, s(p) = {1, . . . , α}), and the Gauss-Seidel method
(∀p ∈ N, s(p) = {1 + p mod α}) (see [17]).

Remark 7. In order to measure the amount of computation required to reach
convergence, we will use in the presented results of parallel experiments (see
subsection 4.3) the number of relaxations instead of the number of iterations.
A relaxation is the update (13) of a local iterate vector component according to
Fi. This definition holds in both sequential, synchronous and asynchronous
cases. An iteration is the update of at least all components with Fi in a
parallel-synchronous or sequential way. Since this definition of iteration can-
not be extended simply to the asynchronous case, we prefer using relaxation
count as an indicator of the amount of floating operations required to reach
convergence.

3.3. Projected parallel synchronous and asynchronous relaxation method

For solving the model problem, we can first consider a projected parallel
asynchronous block relaxation algorithm, related to the natural block decom-
position of the discretized convection-diffusion operator; note also that this
kind of method can be used for the solution of the discretized diffusion op-
erator. This method corresponds in fact to a parallel subdomain relaxation
method without overlapping.

14

In order to define the projected parallel asynchronous subdomain method,
we complete the formalism introduced in subsection 3.2; let us denote by
W ≡ V the iterate vector and let us proceed as follows. Assume that ∀i ∈

{1, . . . , α}, Ki ⊂ Ei where Ki is a closed convex set, and let K =
α∏
i=1

Ki. Let

also G = (G1, . . . , Gα) ∈ E. For any V ∈ E, let PK(V) be the projection of V
on K such that PK(V) = (PK1(V1), . . . , PKα(Vα)) where ∀i ∈ {1, . . . , α}, PKi
is the projector from Ei onto Ki.

Since we consider a block decomposition of the problem to solve, so, let
us denote by Ai,i the diagonal blocks of the matrix A = A+ 1

k
I, and by Ai,j

(j 6= i) the off-diagonal blocks; let us also denote by ‖Ai,j‖j the matrix norm
of Ai,j. Besides, thanks to the result presented in the previous subsection,
the model problem is also formulated like the multivalued problem (8), which
can be decomposed as follows

Ai,i.V ?
i −Gi +

∑
j 6=i

Ai,j.V ?
j + ∂(ψK)i(V

?
i) 3 0, ∀i ∈ {1, . . . , α}, (16)

or

Ai,i.V ?
i −Gi +

∑
j 6=i

Ai,j.V ?
j + ωi = 0, ωi ∈ ∂(ψK)i(V

?
i),∀i ∈ {1, . . . , α}; (17)

this last relation is associated to the following fixed point mapping

V ?
i = PKi(A−1

i,i (Gi −
∑
j 6=i

Ai,jV ?
j)) = FBi(V

?),∀i ∈ {1, . . . , α}. (18)

Then we can associate to this fixed point mapping FB a parallel asynchronous
block method defined by (13)-(15).

Then, in the sequel we will assume the following assumptions

∀Vi ∈ Ei, 〈Ai,i.Vi , Vi〉 ≥ ni,i|Vi|2i (19)

and
‖Ai,j‖j ≤ −ni,j , (ni,j ≤ 0), (20)

Note that (19) corresponds to the fact that the diagonal blocks are positive
definite and (20) means that the matrix norms of off-diagonal blocks are
bounded, these two latter properties being always true, on the one hand, by

15

considering the previous appropriate spatial discretization schemes (see [9]
and [23]) and, on the other hand, since the problem is formulated in finite
dimension. Assume also that

N = (ni,j)1≤i,j≤α is an α× α M-matrix. (21)

Then, we can state the following convergence result of the synchronous
and asynchronous parallel block relaxation method

Proposition 1. Assume that (19), (20) and (21) hold. Then the synchronous
and the asynchronous iterations defined by (13), (14) and (15), applied with
the fixed point mapping FBi defined by (18) and associated to the problem
(8), converge to the limit V ∗ for every initial guess V 0, V ∗ being the unique
solution of problem (26).

Proof. Indeed, let us decompose the problem (8) into α sub problems; let
us write the ith block equation (17) verified, on the one hand, for the exact
solution and, on the other hand, for a current value of the (p + 1)th relaxed
component; substracting and multiplying each of the α sub problems by
(V ?

i − V
p+1
i), leads to

< Ai,i.(V ?
i − V

p+1
i), V ?

i − V
p+1
i >i + < ω?i − ω

p+1
i , V ?

i − V
p+1
i >i

≤
∑
j 6=i

| < Ai,j.(V ?
j − Ṽj), V ?

i − V
p+1
i >i,∀i ∈ {1, . . . , α},

where ω?i ∈ ∂(ψK)i(V
?
i) and ωp+1

i ∈ ∂(ψK)i(V
p+1
i), and Ṽj are the available

current values produced by the other processors according to the algorithm
(13)-(15); then, the left hand-side of the previous inequality can be minored
by ni,i.|V ?

i − V
p+1
i |22,i, since the subdifferential mapping is monotone, on the

one hand, and using (19) on the other hand; while the right-hand side of the
inequality can be majored using (20). Finally, we obtain

|V ?
i − V

p+1
i |2,i ≤

∑
j 6=i

−ni,j
ni,i
|V ?
j − Ṽj|2,j,∀i ∈ {1, . . . , α}. (22)

Note that the matrix J

J =

{
Ji,i = 0
Ji,j = −ni,j

ni,i
, i 6= j.

16

which diagonal entries are null and off-diagonal entries are equal to −ni,j
ni,i

is

the Jacobi matrix of the matrix N . Since the matrix N is an M-matrix, then
J is a non negative matrix with all modulus of the eigenvalues inferior to
one. Let us denote by ν the spectral radius of J and by Θ the associated
eigenvector. Classically by the Perron-Frobenius theorem, we have

J.Θ = νΘ and Θ > 0, (23)

where all the components of Θ are strictly positive. Then, in a straightfor-
ward way, we obtain

‖V ? − V p+1‖ν,Θ ≤ ν‖V ? − Ṽ ‖ν,Θ,∀Ṽ ∈ E, 0 ≤ ν < 1, (24)

where ‖W‖ν,Θ, is a uniform weighted norm defined as follows

‖W‖ν,Θ = max
i=1,...,α

(
|Wi|2,i

Θi

); (25)

thus, (24) shows that FB is a contraction and according to [17] the block
parallel asynchronous, synchronous and sequential iterations described by
(13)-(15) and associated to the fixed point mapping FB, converge to V ?

whatever the initial guess V 0 is, and the proof is achieved

Remark 8. In the previous result, we have considered that all the spaces
are normed by the Euclidean norm. In fact, we can also use the norms
lk, 1 ≤ k ≤ ∞ to prove the convergence of the block parallel asynchronous,
synchronous and sequential iterations [23]. Nevertheless, in this case, the
norms are nonhilbertian norms and the theoretical context changes. In this
more general context, the scalar product is replaced by the usual bilinear form
associated to a pair of dual spaces Ei and E ′i, classically called the pairing
between Ei and E ′i; so, V ?

i −V
p+1
i is replaced by gi(V

?
i −V

p+1
i) ∈ Gi(V ?

i −V
p+1
i),

where G denotes the duality map of E and Gi(V ?
i − V

p+1
i) is accordingly the

duality map of Ei; in fact, according to the Hahn-Banach theorem, it can be
proved classically that Gi(V ?

i − V
p+1
i) is a closed nonempty set; furthermore

the subdifferential mapping of the nonhilbertian norm in Ei,
1
2
.|V ?

i − V
p+1
i |2i ,

coincides with Gi(V ?
i − V

p+1
i) (see [4]). The more practical norms to use are

the l1 norm and the l∞ norm; in these two cases, inequality (19), in which
V ?
i −V

p+1
i is replaced by gi(V

?
i −V

p+1
i), are still valid, but linked to properties

of strictly diagonal dominance of the block diagonal submatrices Ai,i. Note
that this context is easier to use, since neither computation is needed to obtain
the diagonal entries of the matrix N. For more details see [9] and [20].

17

Moreover, we have the following practical result:

Proposition 2. Assume that the algebraic system is split into q blocks, q ≤
α, corresponding to a coarser subdomain decomposition without overlapping.
Then, the parallel asynchronous block relaxation methods associated to this
coarser decomposition converge whatever the initial guess V 0 is.

Proof. The result follows from a direct application of [20].

Remark 9. As a consequence, it follows that, if the subdomain decomposi-
tion associated with α block is a point decomposition (i.e. α = M), then the
parallel asynchronous block relaxation methods converge for every subdomain
decomposition.

Remark 10. In the implementation of the algorithm, the number of proces-
sors is obviously smaller than the number of blocks in the previous model of
parallel iterations. Then several adjacent block components of the discretiza-
tion matrix, and iterate vectors are processed accordingly by each processor.
Such an implementation leads to a more multiplicative behavior of the con-
sidered subdomain methods without overlapping.

Remark 11. The convergence of synchronous or asynchronous methods can
also be established by partial ordering techniques (see [18, 19]). In all cases
the convergence follows from the fact that the spatial discretization matrix is
an M-matrix.

3.4. Asynchronous parallel Richardson method

In this subsection, we consider the solution of a problem of option pricing
defined by a diffusion operator and associated to an optimization problem
with constraints on the solution; then, we will denote by W ≡ U the solution
of such a problem. Let K be a closed convex set defined by an analogous
way as previously shown

K = {U | U ≥ Φ̄ everywhere in E}

where once again Φ̄ is the discretized obstacle function. In fact, after a change
of variables and when the formulation of the model problem is derived from

18

the diffusion operator, this problem is formulated as the following constrained
optimization problem {

Find U∗ ∈ K such that
∀W ∈ K, J(U∗) ≤ J(W)

where the cost function is given by

J(U) =
1

2
〈A.U , U〉 − 〈G ,U〉

and in which 〈. , .〉 denotes the scalar product in E and A = A + 1
k
I is

assumed to be symmetric positive definite, according to the properties of
the diffusion operator. Classically, it is proved (see [10]) that the discretized
solution U∗ of the constrained optimization problem is the solution of the
discrete complementary problem at each time step

Find U∗ ∈ RM such that
(A+ 1

k
I)U∗ −G ≥ 0, U∗ ≥ Φ̄,

((A+ 1
k
I)U∗ −G)T (U∗ − Φ̄) = 0,

(26)

problem equivalent to the discrete variational inequality (11) for every bound-
ary conditions considered on ∂Ω for the continuous problem.

Owing to the great size of such a system, in order to reduce computation
time, the former optimization problem can be solved in a numerical way by
using a projected parallel asynchronous method on the convex set. More
particularly we will consider next an asynchronous parallel adaptation of the
Richardson projected method [21].

For any δ ∈ R, δ > 0, let a fixed point mapping Fδ be defined by

∀W ∈ E,Fδ(W) = PK(W − δ(A.W −G)) (27)

which can also be written Fδ(W) = (F1,δ(W), . . . , Fα,δ(W)) in the following
way

∀W ∈ E,Fi,δ(W) = PKi(Wi − δ(Ai.W −Gi))

Then, we can state the following convergence result of the synchronous
and asynchronous parallel Richardson method.

Proposition 3. Assume that (19), (20) and (21) hold. Then there exists a
value δ0 > 0, such that ∀δ ∈]0, δ0[, the synchronous and the asynchronous
iterations defined by (13), (14) and (15), associated with the fixed point map-
ping Fδ defined by (27), converge to the limit U∗ for every initial guess U0,
U∗ being the unique solution of problem (26).

19

Proof. First of all, note that the projector PK is a contracting operator.
Thus, the problem is to find the set of real numbers δ such that the mapping
Fδ is contracting. According to the result of [17], assume that the space E
is normed by (25). Let U ∈ K and ε = Ũ − U∗, such that, according to the
previous notations, εi = Ũi − U∗i ; let

Bi =
1

ni,i

|εi − δAi.ε|2i
Θ2
i

=
1

ni,i

|εi|2i − 2δ〈Ai.ε , εi〉+ δ2|Ai.ε|2i
Θ2
i

.

Let Ai.ε = Ai,i.εi +
∑
j 6=i

Ai,j.εj. Since Ai ∈ L(E,Ei), ∃Mi ≥ 0, ∀ε ∈ E,

|Ai.ε|i ≤Mi‖ε‖. Moreover, according to (19) and (20) the above relation can
be overestimated by

Bi ≤
1

ni,i

|εi|2i − 2δ
α∑
j=1

ni,j|εi|i|εj|j + δ2M2‖ε‖2

Θ2
i

,

where M = max
1≤i≤α

Mi. Then

Bi ≤
(

1

ni,i
− 2δ

)
|εi|2i
Θ2
i

− 2δ

(∑
j 6=i

ni,j
ni,i

Θj
|εj|j
Θj

)
|εi|i
Θ2
i

+
δ2M2

ni,i

‖ε‖2

Θ2
i

.

So according to (23),

Bi ≤
(

1− 2δ ni,i
ni,i

)
|εi|2i
Θ2
i

+ 2δ ν

(
max

1≤j≤α

|εj|j
Θj

)
|εi|i
Θi

+
δ2M2

ni,i

‖ε‖2

Θ2
i

.

Then

Bi ≤
1

ni,i

(
(1− 2δ ni,i(1− ν)) ‖ε‖2

ν,Θ +
δ2M2

Θ2
i

‖ε‖2

)
.

Let
Θ = min

1≤i≤α
Θi, and n = min

1≤i≤α
ni,i.

As ‖ε‖2 =
α∑
i=1

Θ2
i

|εi|2i
Θ2
i

≤ |Θ|22‖ε‖2
ν,Θ, where | . |2 denotes the Euclidean norm

in Rα, we finally have

‖ε− δA.ε‖2
ν,Θ ≤

(
1− 2n(1− ν)δ +M2 |Θ|22

Θ2 δ
2

)
‖ε‖2

ν,Θ.

20

A suitable value for δ is obtained when

(1− 2n(1− ν)δ +M2 |Θ|22
Θ2 δ

2) < 1.

Then, δ being a positive real number, the considered algorithm converges if
δ ∈]0, δ0[, where

δ0 =
2n(1− ν)Θ2

M2|Θ|22
.

Remark 12. When the convergence is analyzed by contraction techniques,
then according to [9, 17, 20] the convergence is purely linear for both Richard-
son and block relaxation asynchronous algorithms; indeed, in these previous
works such results are obtained by using weighted uniform norms and are still
valid for all equivalent norms in a finite dimensional space.

4. Parallel experiments

In the following, we describe the parallel implementation on GPU clusters
of the solutions presented in the previous sections for solving the American
option derivatives. First, the hardware and software of the GPUs are pre-
sented. Then, some experiments are discussed and analyzed.

4.1. GPU architecture

A GPU is viewed as an accelerator for the data-parallel and intensive
arithmetic computations. It draws its computing power from the parallel
nature of its hardware and software architectures. A GPU is composed of
hundreds of Streaming Processors (SPs) organized in several blocks called
Streaming Multiprocessors (SMs). It also has a memory hierarchy. It has a
private read-write local memory per SP, fast shared memory and read-only
constant and texture caches per SM and a read-write global memory shared
by all its SPs [22].

On a CPU equipped with a GPU, all the data-parallel and intensive
functions of an application running on the CPU are off-loaded onto the GPU
in order to accelerate their computations. A similar data-parallel function
is executed on a GPU as a kernel by thousands or even millions of parallel
threads, grouped together as a grid of thread blocks. Therefore, each SM
of the GPU executes one or more thread blocks in SIMD fashion (Single

21

Instruction, Multiple Data) and in turn each SP of a GPU SM runs one or
more threads within a block in SIMT fashion (Single Instruction, Multiple
threads). Indeed at any given clock cycle, the threads execute the same
instruction of a kernel, but each of them operates on different data.

GPUs only work on data filled in their global memories and the final re-
sults of their kernel executions must be communicated to their CPUs. Hence,
the data must be transferred in and out of the GPU. However, the speed
of memory copy between the GPU and the CPU is slower than the memory
bandwidths of the GPU memories and, thus, it dramatically affects the per-
formances of GPU computations. Accordingly, it is necessary to limit data
transfers between the GPU and its CPU during the computations.

4.2. GPU implementations

Algorithm 1 defines the main key points for solving non linear systems de-
rived from the discretization of the obstacle problems in a three-dimensional
domain, where A, G and U are, respectively, the discretization matrix, the
right-hand side and the vector solution.

Algorithm 1: Algorithm for solving non linear systems of the obstacle
problem on GPUs

Input: A (matrix), G (right-hand side), ε (error tolerance threshold),
MaxRelax (maximum number of relaxations), NbSteps
(number of time steps)

Output: U (solution vector)

Initialization of the parameters of the obstacle problem;1

Allocate and fill the data in the global memory GPU;2

for (i = 1) to NbSteps do3

G← 1
k
U + F ;4

Solve(A,U,G, ε,MaxRelax);5

end6

Copy results back from GPU memory;7

After the initialization step, all data of the obstacle problem to be solved
must be copied from the CPU memory to the GPU global memory, because
the GPUs only work on the data filled in their memories. Next, the algo-
rithm uses NbSteps time steps for solving the obstacle problem, by using
an iterative method defined in the function Solve() in line 5. The iterative

22

methods used in this algorithm are the projected Richardson method or the
projected block relaxation method, that are both adapted to GPUs. At every
time step, the initial guess for the iterative solver is set to the solution found
at the previous time step. Moreover, the right-hand side, G, is computed as
follows (formula (10)):

G =
1

k
· Uprec + F,

where k is the time step, Uprec is the solution computed in the previous time
step and each element, f(x, y, z), of the vector F is computed as follows:

f(x, y, z) = cos(2πx) · cos(4πy) · cos(6πz).

The iterative solver terminates its computations when the error tolerance
threshold, ε, and/or the maximum number of relaxations, MaxRelax, have
been achieved. Finally, the solution of the obstacle problem is copied back
from the GPU global memory to the CPU memory. We use the communica-
tion functions of the CUBLAS library (CUDA Basic Linear Algebra Subrou-
tines) for the memory allocations in the GPU (cublasAlloc()) and the data
transfers from the CPU memory to the GPU memory (cublasSetVector())
or from the GPU memory to the CPU memory (cublasGetVector()).

The projected Richardson solver and the projected block relaxation solver
are iterative methods for solving algebraic systems. They are based on arith-
metic vector operations that are easy to implement on parallel computers
and, thus, on GPUs. Indeed, the GPU executes the vector operations as ker-
nels and the CPU executes the sequential operations, launches the kernels
and supplies the GPU with data. Algorithm 2 shows the main key points of
both iterative solvers. All the data-parallel arithmetic operations inside the
main loop (repeat ... until(...)) are executed as kernels by the GPU.
We exploit the functions of the CUBLAS library to implement some vector
operations on the GPU. We use the following functions:

• cublasDcopy() for the data copy of a vector to another vector in the
GPU memory (line 3 in Algorithm 2),
• cublasDaxpy() to compute the error vector (line 5) and,
• cublasDnrm2() to compute the Euclidean norm of the error vector

(line 6).

The main kernels of the function Computation_New_Vector_Components()

(line 4 in Algorithm 2) are those of the matrix-vector multiplication, AU , and

23

Algorithm 2: A global algorithm of the iterative solvers

Input: A (matrix), G (right-hand side), ε (error tolerance threshold),
MaxRelax (maximum number of relaxations)

Output: U (solution vector)

p← 0;1

repeat2

tmp← U ;3

Computation New V ector Components(A,G,U);4

tmp← tmp− U ;5

ρ← ‖tmp‖2;6

p← p+ 1;7

until (ρ < ε) or (p ≥MaxRelax) ;8

the vector components updates of U . However, their implementations on a
GPU for the projected Richardson solver and the projected block relaxation
solver differ in the computing methodology of the iterate solution vector U ,
such that:

• The projected Richardson method is implemented as a point-based it-
eration and uses the vector updates of the Jacobi’s method.
• The projected block relaxation method is implemented as a block-based

iteration and uses the vector block component updates of the Gauss-
Seidel’s method.

The matrix A is a block matrix defined in a three-dimensional domain.
It is composed of seven constant coefficients that are called in this paper:
Center, West, East, South, North, Rear and Front. Figure 1 shows the po-
sitions of these constant coefficients of the matrix A in the three-dimensional
domain. The iterations of the projected Richardson method, based on the
Jacobi’s method, in a three-dimensional domain are defined as follows:

up+1(x, y, z) = 1
Center

(g(x, y, z)− (Center · up(x, y, z)+
West · up(x− h, y, z) + East · up(x+ h, y, z)+
South · up(x, y − h, z) +North · up(x, y + h, z)+
Rear · up(x, y, z − h) + Front · up(x, y, z + h))),

(28)

where up(x, y, z) is an element of the solution vector U computed at the
relaxation p and g(x, y, z) is a vector element of the right-hand side G.

24

West

South

Rear

North

Front

East

Center

y

x

z

Figure 1: Matrix constant coefficients in a three-dimensional domain.

Figure 2 shows the GPU implementations of both kernels: the matrix-
vector multiplication (MV_Multiplication()) and the vector components
updates (Vector_Updates()) of the projected Richardson solver. First, since
this method is implemented as a point iteration, each kernel is executed
by a large number of GPU threads such that each thread is in charge of
the computation of one component of the iterate vector U (see Figure 3).
Second, this method uses the vector updates of the Jacobi’s method, which
means that each thread computes the new value of its component, up+1

i ,
independently from the new values, up+1

j for j 6= i, of those computed in
parallel by other threads at the same relaxation p + 1. This methodology
allows the maximization of the parallel execution between the GPU streaming
processors and, thus, gives good performances for a kernel execution on a
GPU. We set the size of a thread block, Threads, to 512 threads and the
number of thread blocks of a kernel, Blocks, is computed so as each GPU
thread is in charge of one vector element:

Blocks =
NX ·NY ·NZ + Threads− 1

Threads
,

where NX, NY and NZ are the numbers of the vector elements on the
coordinate axes x, y and z, respectively.

We can notice from the formula (28) that the computation of a vector
element up+1(x, y, z), by a thread at relaxation p + 1, requires seven vector
elements computed at the previous relaxation p: two vector elements in each
dimension plus the vector element at the intersection of the three axises x,

25

/* Kernel of the matrix-vector multiplication */

__global__ void MV_Multiplication (int n, double* U, double* Y)

{ int tid = blockIdx.x * blockDim.x + threadIdx.x; //thread ID

double sum;

if(tid < n){

int x = tid % NX; //x-coordinate

int y = (tid / NX) % NY; //y-coordinate

int z = tid / (NX * NY); //z-coordinate

sum = Center * fetch_double(U, tid);

if(x != 0) sum += West * fetch_double(U, tid-1);

if(x != (NX-1)) sum += East * fetch_double(U, tid+1);

if(y != 0) sum += South * fetch_double(U, tid-NX);

if(y != (NY-1)) sum += North * fetch_double(U, tid+NX);

if(z != 0) sum += Rear * fetch_double(U, tid-NX*NY);

if(z != (NZ-1)) sum += Front * fetch_double(U, tid+NX*NY);

Y[tid] = sum;

}

}

/* Kernel of the vector components updates */

__global__ void Vector_Updates(int n, double* G, double* Y, double* U)

{ int tid = blockIdx.x * blockDim.x + threadIdx.x; //thread ID

double var;

if(tid < n){

var = (G[tid] - Y[tid]) / Center + fetch_double(U, tid);

if(var < 0) var = 0; //projection

U[tid] = var;

}

}

/* Function to be executed by the CPU */

void Computation_New_Vector_Components(double* A, double* G, double* U)

{ int nnn = NX * NY * NZ; //number of vector elements

int Threads = 512; //size of a thread block

int Blocks = (nnn + Threads - 1) / Threads; //number of thread blocks

double* Y;

//Matrix coefficients filled in the constant memory:

//Center, West, East, South, North, Rear, Front

//vector Elements of U are filled in the texture memory

//Allocate a GPU memory space for the vector Y

MV_Multiplication<<<Blocks,Threads>>>(nnn, U, Y);

Vector_Updates<<<Blocks,Threads>>>(nnn, G, Y, U);

}

Figure 2: GPU kernels of the projected Richardson solver

26

z

x

y

A thread is in charge of one vector component

Old value

Rear

North

South

Front

West

East

Figure 3: Computation of a vector component with the projected Richardson method.

y and z (see Figure 3). In order to reduce the memory accesses to the high-
latency global memory, the element of the vector iterate U are filled in the
cached texture memory (see [31]). Obviously, the vector elements of U could
be stored in the low-latency shared memories of thread blocks, as is described
in [30]. Nevertheless, the fact that the computation of a vector element
requires only two elements in each dimension does not allow to maximize
the data reuse from the shared memories. Moreover, the computation of
the bordering vector elements in each thread block involves more conditional
statements in the kernels, in order to fill the required vector elements in the
shared memory. The conditional statements inside the kernels may result in
performance degradation of GPU based algorithms. So, in the kernel codes
(Figure 2), we use the function fetch_double(vect,i) to read from the
texture memory the ith double-precision element of the vector vect. Finally,
the seven constant coefficients of matrix A are filled in the cache constant
memory.

In contrast, the methodology used by the projected block relaxation solver
to compute the iterate vector U does not allow the maximization of the paral-
lel execution on a GPU. First, the block-based methods require the triangular
solving of the matrix blocks, for example, along the x axis according to the

27

/* Kernel of the forward matrix-vector multiplication */

__global__ void Forwrd_MV(int n, double* U, double* Y)

{ int tid = blockIdx.x * blockDim.x + threadIdx.x; // thread ID

if(tid < n){

int y = (tid / NX) % NY; //y-coordinate

int z = tid / (NX * NY); //z-coordinate

double sum = 0;

if(y != (NY-1)) sum += North * fetch_double(U, tid+NX);

if(z != (NZ-1)) sum += Front * fetch_double(U, tid+NX*NY);

Y[tid] = sum;

}

}

/* Kernel of the backward matrix-vector multiplication */

__global__ void Backwrd_MV(int n, int y, int z, double* U, double* Y)

{ int tid = blockIdx.x * blockDim.x + threadIdx.x; // thread ID

if(tid < n){

double sum = 0;

if(y != 0) sum += South * fetch_double(U, tid-NX);

if(z != 0) sum += Rear * fetch_double(U, tid-NX*NY);

Y[tid] += sum;

}

}

/* Function to be executed by the CPU */

void Computation_New_Vector_Components(double* B, double* A, double* G, double* U)

{ int i, y, z;

int nnn = NX * NY * NZ; //number of vector elements

int Threads = 512; //size of a thread block

int Blocks = (nnn + Threads - 1) / Threads; //number of thread blocks

double* Y;

//B is a the triangularization of A (triangular matrix)

//Matrix coefficients of A and B filled in the constant memory

//vector Elements of U are filled in the texture memory

//Allocate a GPU memory space for the vector Y

Forwrd_MV<<<Blocks,Threads>>>(nnn, U, Y);

Blocks = (NX + Threads - 1) / Threads;

for(i=0; i<NY*NZ; i++){

y = i % NY; //y-coordinate

z = i / NY; //z-coordinate

Backwrd_MV<<<Blocks,Threads>>>(NX, y, z, &U[i*NX], &Y[i*NX]);

Back_Solves<<<1,1>>>(B, &G[i*NX], &Y[i*NX], &U[i*NX]);

}

}

Figure 4: GPU kernels of the projected block relaxation solver

28

z

x

y

Old value

New value

A thread is in charge of a block−component

North

South

Rear

Front

Figure 5: Computation of a vector component with the projected block relaxation method.

numbering of the grid points. Therefore, at the initialization step in Algo-
rithm 1, a triangularization of the largest block of the tridiagonal matrix
Ai,i, is performed along the x axis. Figure 4 shows the GPU implemen-
tations of the kernels of the projected block relaxation solver. So at each
relaxation, this solver performs triangular solving by the back substitution
method in each block-component (Back_Solves()). In this case, each GPU
thread is in charge of a block of vector components (see Figure 5) instead of
only one component as the projected Richardson method. Moreover, since
this solver is based on the Gauss-Seidel’s method, the computation of the
new value of a block-component Up+1

i involves the old values Up
j for j > i

(Forwrd_MV()) and the new values Up+1
k for k < i (Backwrd_MV()) of other

block-components of the iterate vector U . Consequently, each GPU thread
must wait for the computing of the new values of other block-components by
other threads before computing the new values of the components of its own
block. However, the fact that a thread has to wait for other threads to com-
plete their computations dramatically affects the computation performances
of the GPUs. Therefore, the projected block relaxation method performs the
triangular solving and the vector updates on the CPU, which involves in each
relaxation data transfers between the CPU and the GPU.

29

x

z

y

GPU0

GPU1

GPU2

GPU3

GPU4

GPU5

GPU6

GPU7

GPU8

GPU9

GPU10

GPU11

NX

NY

NZ

Figure 6: Data partitioning of an obstacle problem among n = 3× 4 GPUs.

To solve large scale algebraic systems derived from the discretization of
the obstacle problems, the algorithms of both methods must be parallelized
between several GPUs in order to reduce the elapsed computation time. We
develop parallel synchronous and asynchronous algorithms for each method.
Let n be the number of GPUs in the parallel architecture, for example a
cluster of GPUs. First, the obstacle problem to be solved must be split in n
subproblems, such that each subproblem is affected to one GPU. Indeed, the
y and z axes of the three-dimensional domain of the problem are respectively
split into ny and nz parts, such that n = ny×nz. Figure 6 shows an example
of the data partitioning of an obstacle problem of size NX×NY ×NZ among
twelve GPUs. This parallelepipedic data partitioning of the problem reduces
the data exchanges at subdomain boundaries compared to a naive z-axis-wise
partitioning. After the decomposition of the problem, all the data of each
subproblem are copied from the CPU memory to the GPU global memory,
in order to be processed on the GPU.

Then, the same algorithm adapted to GPUs for each method described
above is executed in parallel by each GPU on its local data and synchro-
nizations of all computations are performed between neighboring GPUs. For
every relaxation p of the method, each computing node (a CPU and its GPU)

30

performs this following algorithm:

1. Repeat until convergence,
2. Compute the values associated to bordering points shared with neigh-

bors,
3. Copy the shared values associated to bordering points from the GPU

memory to the CPU memory,
4. Exchange the values associated to bordering points between the neigh-

boring CPUs,
5. Copy the received values associated to bordering points from the CPU

memory to the GPU memory,
6. Compute the local new components.

For the data communications between a CPU and its GPU, we use the syn-
chronous communication routines of the CUBLAS library: cublasGetVector()
and cublasSetVector(). These routines allow the overlap of the data trans-
fer and the kernel execution. However, the data exchanges of the values asso-
ciated to the bordering points are performed between the neighboring CPUs
via MPI communication routines. For the parallel synchronous algorithms,
we use the MPI subroutine MPI_sendrecv() which has a good throughput.
In contrast, for the parallel asynchronous algorithms, we use the MPI non-
blocking communications: MPI_Issend(), MPI_Irecv() and MPI_Test().

4.3. Experiments

In this section, we discuss the performance behaviors of the projected
block relaxation method and the projected Richardson method implemented
on CPUs and on GPUs.

We performed a set of experiments on the sequential and the parallel
algorithms, for both methods and different sizes. We took into account the
execution times and the number of relaxations performed by each method
on CPUs and on GPUs.

All experimental results obtained from the simulations are made in double
precision data, for a convergence tolerance of the methods set to 10−4 and
a maximum number of relaxations limited to 106 relaxations. Since we were
more interested in the comparison of the performance behaviors of these
methods on CPUs versus on GPUs, we have limited our experiments to the
first three time steps. The numerical values of the obstacle problems input
data are those given in Section 3.1 for the numerical solutions.

31

Pb. size Method Timecpu Timegpu Nb. relax. τrel τmax

323 Block relaxation 0.09 0.07 54 1.28
1.5

Richardson 0.16 0.06 184 2.67

643 Block relaxation 3.82 1.15 161 3.32
8.88

Richardson 10.68 0.43 649 24.84

1283 Block relaxation 138.10 29.23 556 4.72
17.30

Richardson 440.05 7.98 2,418 55.14

2563 Block relaxation 5,760.65 834.80 2,015 6.90
24.45

Richardson 22,551.48 235.61 9,166 95.71

Table 1: Execution times in seconds of the projected block relaxation method and the
projected Richardson method on a CPU core vs. on a Tesla GPU

In Table 1, we report the performances of the sequential algorithm of
the projected block relaxation method and that of the projected Richard-
son method for solving algebraic systems derived from the discretization of
the obstacle problems of sizes 323, 643, 1283 and 2563. In the third and
fourth columns, we report respectively the execution times of the methods
implemented on one core of the Quad-Core Xeon E5530 CPU and those of
the same methods implemented on one Nvidia Tesla C1060 GPU. The fifth
column shows the total number of relaxations performed by each method to
converge. In the sixth and seventh columns are reported the real numbers
τrel and τmax as the ratios between the execution times obtained on the CPU
and that obtained on the GPU. Indeed, the ratios τrel define the relative
gains of a method implemented on the GPU compared to the same method
implemented on the CPU. In contrast, the ratios τmax define the performance
gains obtained in solving the non linear systems with the best method on
the GPU (projected Richardson method) compared to solving them with the
best method on the CPU (projected block relaxation method).

From the ratios (τrel and τmax) shown in Table 1, we can see that the
methods implemented on the GPU are faster than those implemented on the
CPU. This is due to the GPU ability to compute the data-parallel functions
faster than its CPU counterpart. However for the different problem sizes
of our simulations, the ratios τrel of the projected block relaxation method
are largely inferior to those of the projected Richardson method. We can
also notice that the projected block relaxation method is almost 3 times
faster than the projected Richardson method on the CPU, while it is 3 times

32

slower than this method on the GPU even if it converges 4 times faster
than the projected Richardson method (see number of relaxations). So this
means that a relaxation of the projected block relaxation method runs on the
GPU more slowly than that of the projected Richardson method. In fact,
the fixed point-based nature and the vector updates of the Jacobi method
allow a straightforward and efficient thread-parallelization of the projected
Richardson method on the GPU, such that each component of the iterate
vector is computed in parallel and independently from other components.
Unfortunately this is not the case in the projected block relaxation method.
At every relaxation, the triangular solves and the Gauss-Seidel vector updates
are performed by the CPU, which is slower than the GPU, and they involve
slow data transfers between the GPU and its CPU. In order to improve the
performances of the projected block relaxation method in GPUs, we can
replace the Gauss-Seidel method by the Jacobi one. Indeed, this last method
allows each thread to compute its block-component independently from the
block-components of other threads. Nevertheless, the block-based method
uses a triangular solving to compute the vector components in each block,
which is not easy to parallelize on GPUs. Then, we focus our test experiments
on the projected block relaxation solver based on the Gauss-Seidel method,
since it is more efficient on the CPUs than the one based on the Jacobi
method. Finally, we can see from the ratios τmax of our simulations that
solving non linear systems with the best method on the GPU (projected
Richardson method) is from twice to 24 times faster than solving them with
the best method on the CPU (projected block relaxation method).

In Table 2 and Table 3, we report the execution times and the total
number of relaxations performed by the parallel projected block relaxation
method and the parallel projected Richardson method for solving large-scale
non linear systems derived from the discretization of the obstacle problems
of sizes 2563 and 5123. We implemented the parallel synchronous and asyn-
chronous versions of each method on a cluster of six Quad-Core Xeon E5530
CPUs (24 CPU cores) and on a cluster of 12 Nvidia Tesla C1060 GPUs. In
Table 4 we show the ratios τrel and τmax between the execution times ob-
tained on the CPU cluster and those obtained on the GPU cluster for both
versions of each method.

Table 4 shows that both parallel versions (synchronous and asynchronous)
of each method are faster on the GPU cluster than on the CPU cluster.
However, as we noticed previously, the performance improvements of the
projected fixed point Richardson method on the GPU cluster are better

33

Pb. size Method
Synchronous Asynchronous

Timecpu Nb. relax. Timecpu Nb. relax.

2563 Block relaxation 137.50 37,080 131.71 38,348
Richardson 575.225 198,288 539.25 198,613

5123 Block relaxation 4,814.71 132,600 4,371.59 141,067
Richardson 19,250.25 750,912 18,160.42 768,186

Table 2: Execution times in seconds of the parallel projected block relaxation method and
the parallel Richardson method implemented on a cluster of 24 CPU cores

Pb. size Method
Synchronous Asynchronous

Timegpu Nb. relax. Timegpu Nb. relax.

2563 Block relaxation 66.28 19,548 63.53 20,277
Richardson 29.69 100,692 20.73 95,265

5123 Block relaxation 1,825.83 69,960 1,764.79 70,984
Richardson 602.17 381,300 516.18 348,305

Table 3: Execution times in seconds of the parallel projected block relaxation method and
the parallel Richardson method implemented on a cluster of 12 Tesla GPUs

Pb. size Method
Synchronous Asynchronous
τrel τmax τrel τmax

2563 Block relaxation 2.07
4.63

2.07
6.35

Richardson 19.37 29.01

5123 Block relaxation 2.64
7.99

2.48
8.47

Richardson 31.97 35.18

Table 4: Ratios between the elapsed times obtained on a cluster of 24 CPUs cores and
those obtained on a cluster of 12 Tesla GPUs

than that of the projected block relaxation method, because this last one
involves CPU computations and more data transfers between the GPUs and
the CPUs. So, as we can see from tables 2 and 3, the projected block relax-
ation method remains the fastest solver on the CPU cluster and the projected
fixed point Richardson method the fastest one on the GPU cluster. We can
also notice that the parallel asynchronous version of each method is as fast
as the parallel synchronous one in both GPU and CPU clusters.

34

5. Conclusion and perspectives

In this paper we have presented the parallel synchronous and asynchronous
relaxation methods for the American options derivative problem. Moreover,
we have proved the convergence of the parallel subdomain method without
overlapping and of the parallel projected Richardson algorithm.

Then, we have described the parallel implementation of these algorithms
on GPU clusters. We have performed some experiments comparing the par-
allel CPU and GPU versions. These experiments lead us to conclude that
the iterative methods using data-parallel operations are more efficient on the
GPUs than on the CPUs, due to the parallel nature of the hardware and
software architectures of the GPUs. Moreover, the best solutions for solving
algebraic systems on the CPUs are not necessary well-suited to the GPUs.
The block-based iteration and the Gauss-Seidel vector updates, that allow
the solvers to achieve fast convergence on the CPUs, are less efficient on the
GPUs. In contrast, the point-based iteration and the Jacobi vector updates
allow a good thread-parallelization, and thus, provide good performances for
the iterative methods on the GPUs even if they do not allow them a fast
convergence.

In future work, we plan to perform some experiments on larger GPU clus-
ters. This would probably highlight a better efficiency of the asynchronous
version. Moreover it would be interesting to study other parallel synchronous
and asynchronous numerical methods like two stages methods and more gen-
erally the multisplitting method in geographically distant GPU clusters, and
red-black ordering method to speed up the convergence of the Richardson
method on the GPU cluster.

Acknowledgment

This paper is based upon work partially supported by the Région de
Franche-Comté. We thank the reviewers whose insightful and constructive
comments have helped improve this paper significantly.

[1] L. Badea, X.C. Tai and J. Wang, Convergence Rate Analysis of a Mul-
tiplicative Schwarz Method for Variational Inequalities, SIAM Journal
on Numerical Analysis, 41(3): 1052-1073, 2004.

[2] L. Badea and J. Wang, An Additive Schwarz Method for Variational
Inequalities, Mathematics of Computation, 69(232): 1341-1354, 2000.

35

[3] J.M. Bahi, S. Contassot-Vivier and R. Couturier, Parallel Iterative Al-
gorithms: From Sequential to Grid Computing, Chapman & Hall/CRC,
Numerical Analysis & Scientific Computating, 1, 2007.

[4] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach
Spaces, Noordhoff International Publishing, 1976.

[5] G. Baudet, Asynchronous Iterative Methods for Multiprocessors, Jour-
nal of Association for Computing Machinery (JACM), 25(2): 226-244,
1978.

[6] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation,
Numerical Methods, Prentice Hall Englewood Cliffs N.J., 1989.

[7] D. Chazan and W. Miranker, Chaotic Relaxation, Linear Algebra and
its Applications, 2(2): 199-222, 1969.

[8] A. Gaikwad and I.M. Toke, Parallel Iterative Linear Solvers on GPU: A
Financial Engineering Case, Parallel, Distributed, and Network-Based
Processing, Euromicro Conference, 0: 607-614, 2010.

[9] L. Giraud and P. Spiteri, Résolution Parallèle de Problèmes aux Limites
Non Linéaires, M2 AN, 25: 579-606, 1991.

[10] R. Glowinski, J.L. Lionsa and R. Tremolieres, Analyse Numérique des
Inéquations Variationnelles, DUNOD, tome 1 and 2, 1976.

[11] P. Jaillet, D. Lamberton and B. Lapeyre, Variational Inequalities and
the Pricing of American Option, Acta Applicandae Mathematicae,
21(3): 263-289, 1990.

[12] Y.A. Kuznetsov, P. Neittaanmaki and P. Tarvainem, Schwarz Methods
for Obstacle Problems with Convection-Diffusion Operators, In Proceed-
ings of Domain Decomposition Methods in Scientifical and Engineering
Computing, Edited by D.E. Keyes and J.C. Xu, AMS, 251-256, 1995.

[13] Y.A. Kuznetsov, P. Neittaanmaki and P. Tarvainen, Block Relaxation
Methods for Algebraic Obstacle Problems with M-matrices, East-West
J. Numer. Math., 2(1):75-89, 1994.

36

[14] C. Li, J. Zeng and S. Zhou, Convergence Analysis of Generalized Schwarz
Algorithms for Solving Obstacle Problems with T-monotone Operator,
Computers & Mathematics with Applications, 48(3-4): 373-386, 2004.

[15] P.L. Lions and B. Mercier, Approximation Numérique des Equations de
Hamilton-Jacobi-Bellman, R.A.I.R.O. Analyse Numérique, 14: 369-393,
1980.

[16] A. Maringanti, V. Athavale and S.B. Patkar, Acceleration of Conju-
gate Gradient Method for Circuit Simulation using CUDA, 16th In-
ternational Conference on High Performance Computing (HiPC 2009),
438-444, 2009.

[17] J.C. Miellou, Algorithmes de Relaxation Chaotique à Retards, RAIRO
Analyse Numérique, R1: 55-82, 1975.

[18] J.C. Miellou, Asynchronous Iterations and Order Intervals, Parallel Al-
gorithms, M. Cosnard and al. eds.: North-Holland-Amsterdam, 85-96,
1986.

[19] J.C. Miellou, D. El Baz and P. Spiteri, A New Class of Asynchronous
Iterative Algorithms with Order Interval, Mathematics of Computation,
67(221): 237-255, 1998.

[20] J.C. Miellou and P. Spiteri, Un Critère de Convergence pour des
Méthodes Générales de Point Fixe, M2AN, 19: 645-669, 1985.

[21] J.C. Miellou and P. Spiteri, Two Criteria for the Convergence of Asyn-
chronous Iterations, Computers and Computing, P. Chenin and al. ed.,
Wiley Masson, Paris, 91-95, 1985.

[22] Nvidia Corporation, NVIDIA CUDA C Programming Guide, Version
3.2, 2010.

[23] P. Spiteri, A New Characterization of M-matrices and H-matrices, BIT
Numerical Mathematics, Springer, 43(5): 1019-1032, 2003.

[24] X.C. Tai, Convergence Rate Analysis of Domain Decomposition Meth-
ods for Obstacle Problems, East-West J. Numer. Anal., 9(3): 233-252,
2001.

37

[25] X.C. Tai and P. Tseng, Convergence Rate Analysis of an Asynchronous
Space Decomposition Method for Convex Minimization, Mathematics
of Computation, 71(239): 1105-1135, 2001.

[26] X.C. Tai, Rate of Convergence for Some Constraint Decomposition
Methods for Nonlinear Variational Inequalities, Numerische Mathe-
matik, 93(4): 755-786, 2003.

[27] R. Varga, Matrix Iterative Analysis, Prentice Hall, 1962.

[28] P. Wilmott, J. Dewyne and S. Howison, Option Pricing-Mathematical
Models and Computation, Oxford financial press, 1993.

[29] Y. Zhao, Lattice Boltzmann Based PDE Solver on the GPU, The Visual
Computer: International Journal of Computer Graphics, 24(5): 323-333,
2008.

[30] P. Micikevicius, 3D Finite Difference Computation on GPUs using
CUDA, Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units, 79–84, 2009.

[31] A. Leist, D. P. Playne and K. A. Hawick, Exploiting Graphical Pro-
cessing Units for Data-parallel Scientific Applications, Concurrency and
Computation: Practice and Experience, 21(18): 2400–2437, 2009.

38

