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Abstract
This paper proposes an analysis of the effect of vertical position of the pivot point of the inverted pendulum
during humanoid walking. We introduce a new feature of the inverted pendulum by taking a pivot point under
the ground level allowing a natural trajectory for the center of pressure (CoP), like in human walking. The
influence of the vertical position of the pivot point on energy consumption is analyzed here. The evaluation of
a 3D Walking gait is based on the energy consumption. A sthenic criterion is used to depict this evaluation.
A consequent reduction of joint torques is shown with a pivot point under the ground.

1 Introduction
The linear inverted pendulum (LIP) was proposed by Kajita et al. to generate humanoid walking tra-
jectories [Kaj01, Kaj91]. This model was widely applied to various bipedal robots like HRP-2 [Ais98],
Asimo [Hon96], and UT-Theta [UT01]. The main advantage of this approach is the simplicity of the dynam-
ics and the analytical solution.

The inverted pendulum has also been used for the modeling of human walking. The first pendulum model
of human walking considers that the zero moment point (ZMP) within the simple support is a fixed point
in the foot center [Zij97]. However, biomechanical research shows that the human ZMP moves forward,
towards the big toe, during the single support [Har09]. To embed this feature of ZMP in the pendulum
model of human walking, Hayot et al. proposed a pendulum with a pivot point that moves during the single
support [Hay13]. This pendulum allows to reproduce the natural foot roll of human.

Rolling of feet in human walking consists in moving the supporting area during the support phase of each
foot, from the heel, through the middle of foot to the toe. While human is rolling its feet, the ZMP follows
the supporting area in order to keep the equilibrium.

However, in the model of Hayot et al. the advancement of the ZMP in the single support requires a strict
definition [Hay13]. Later, the Generalized Inverted Pendulum model (GIP) [Sak10] was suggested by Sakka
et al. for human walking modeling. The GIP has a pivot point under the ground level in opposition to all
other inverted pendulum models (for robot control or human motion) with a pivot point at ground level. It
describes human normal walking from the external forces point of view, taking into account the mechanism
of foot.

The contribution of this paper is to extend the GIP [Sak10] to generate a human inspired walking pattern
of humanoid robots. We analyze the influence of the pivot point depth on the geometric behavior of the
pendulum. We present the adopted constraints on the position of the pivot point, depending on the size of
the robot feet. We study also the influence of the pivot point depth on joint torques. Finally, we analyze
the energy consumption of Romeo humanoid robot during walking using two criteria: sthenic criterion and
energy criterion. The influence of the step length was also introduced.
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This paper is organized as follows: In section 2, we show that the dynamics equations system does not
change if the pivot point is located under the ground or at ground level. The calculations of joint angles and
joint torques are given in section 3. The evaluation criteria are presented in section 4. Simulation setting and
the Romeo robot description are given in section 5. Results demonstrating the efficiency of the method from
the joint torques viewpoint are displayed in section 6. Finally, we conclude and we show our perspectives in
section 7.

2 Dynamics equation for an inverted pendulum with a pivot point
under the ground

In this section, we will study the dynamics of the inverted pendulum in the general case: The CoM is not
constrained to maintain a constant height during the movement and whose pivot point is located under the
ground. Fig. 1 illustrates the inverted pendulum in the sagittal plane, where the mass M moves under the
force f and the gravity g. The mass is connected to the ground with a massless rod. The pivot point of the

Figure 1: Generalized inverted pendulum in the sagittal plane.

pendulum is a virtual revolute joint located under the ground, zp is its vertical component. θ is the angle
between the rod and the vertical axis. The global coordinates system is defined by the forward x-axis, the
up-ward vertical z -axis and the lateral axis y = z× x.
The force f and the gravity create an acceleration of the CoM [ẍ ÿ z̈]>.

Along the vertical z-axis : f cos θ −Mg = Mz̈ (1)

Along the forward x-axis : f sin θ = M ẍ (2)

By substituting (1) in (2), we obtain

(g + z̈)
sin θ

cos θ
= ẍ (3)

sin θ

cos θ
= tan θ =

x

z − zp
(4)

The minus sign of zp is justified by the fact that zp ≤ 0.

x =
z − zp
g + z̈

ẍ (5)
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In a similar manner, we obtain the motion equation in the frontal plane.

y =
z − zp
g + z̈

ÿ (6)

The motion of the CoM is characterized by the second order differential equations (5) and (6). These
equations are very similar to those in the case where the pivot point is located at ground level. The only
difference is that the term z is replaced by z−zp. In some previous works devoted to walking, the term zp was
used to express the vertical component of origin of the frame attached to the foot with respect to the global
coordinate system and the pivot point was always in the foot. But now, zp expresses the vertical distance
between the pivot point and the ground. The differential equations 5 and 6 can be solved analytically when
z = const. When z 6= const, these two equations are solved numerically.

3 Modeling
Let us consider a humanoid robot composed of nact actuators to control its body movements in 3D. Let q
and X denote the system generalized and operational coordinates vectors, respectively. We introduce the
following notations:

X (6× 1) Absolute position and orientation of the waist ;
Xfi (6× 1) Absolute position and orientation of foot i (i = 1, 2);
qlegi (nleg × 1) Actuated joints of legi (ankle, knee and hip joints);
q (n× 1) Vector grouping the controlled variables (n = nact + 6).

The vector q contains the joint variables and the 3D position and orientation of the frame R0 fixed in
the left foot. The reference frame is defined such that x0 denotes the horizontal advancement direction, z0

is the vertical bottom-up direction, and y0 = z0 × x0 is the lateral direction.

3.1 Walking cycle – Assumptions
The walking cycle is defined by two successive steps (right and left legs). One step is composed of a single
support phase (SS) on the stance leg, delimited by swinging foot takeoff and swinging foot strike, and a
double support phase (DS) where the body weight is distributed on both legs, delimited by swinging foot
strike and other foot takeoff. In what follows, the following assumptions will be considered for the complete
motion:

A1 There is no rotation of the swing foot and the pelvis of the biped with respect to the roll, pitch, and
yaw axes.

A2 The stance foot has a flat contact on the ground;

A3 Feet velocity and acceleration are equal to zero at foot strike. Thus no impact is considered.

A4 The CoM and the waist segment have the same linear velocity and acceleration profiles;

As humanoid systems are highly redundant, these assumptions allow setting the control schemes while re-
ducing the redundancy order by setting arbitrarily several parameters. The motion of the swinging foot is
defined as a polynomial function, where the polynomial coefficients were determined using initial and final
positions, velocities, and accelerations.

3.2 Kinematics
For given desired Cartesian trajectories of the waist X and the feet Xfi (i = 1, 2), the inverse kinematics
model leads to the values of the desired joint variables as follows[

Vfi

ωfi

]
=

[
I3×3 −L̂
03×3 I3×3

] [
V
ω

]
+ Jlegi q̇legi (i = 1, 2) (7)

where Ẋfi = [V>fi ω
>
fi

]>, Ẋ = [V> ω>]>, Jlegi (i = 1, 2) denotes the 6× nleg Jacobian matrix associated to
the i-th leg, L is the position vector between the waist and foot fi and L̂ is the skewsymetric matrix of L.
Due to assumption A1, ω = ωfi = 0, thus (7) becomes

q̇legi = J−1
legi

[
Ẋfi − Ẋ

03×1

]
(i = 1, 2) (8)
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The desired n× 1 controlled velocities vector q̇ can be rebuilt as follows.

q̇ =
[
q̇leg1 q̇leg2 q̇free Ẋ

]>
(9)

where q̇free denotes joint velocities of trunk and arms which can be set freely.
The rank of the Jacobian matrix of each leg was verified at each sampling period of motion to ensure that

there is no singularity.

3.3 Dynamics
The dynamics of the system may be described by the three following equations. Dq̈ + Cq̇ + G = BΓ + J>1 R1 if in single support on leg1

Dq̈ + Cq̇ + G = BΓ + J>2 R2 if in single support on leg2

Dq̈ + Cq̇ + G = BΓ + J>1 R1 + J>2 R2 if in double support
(10)

The matrices D(q), C(q, q̇), and G(q) describe respectively the inertia, Coriolis and gravity forces acting
on the system. Γ is the vector of the actuator torques Γi, i = 1, · · · , nact. Matrix B is the actuation matrix;
it expresses the contribution of each joint torque in the virtual work δw:

δw = Γ1δq1 + Γ2δq2 + . . .+ Γnact
δqnact

= δq>BΓ

where Γ =
[
Γ1 Γ2 . . . Γnact

]> and B =
[
0nact×6 Inact

]>. The vectors R1 and R2 are the ground reaction
forces exerted on foot1 and foot2 respectively.

R1 =
[
R1x R1y R1z M1x M1y M1z

]>
R2 =

[
R2x R2y R2z M2x M2y M2z

]>
In single support, there are n unknown variables which are the components of (Γ,R1) or (Γ,R2) depending
on which foot is in contact with the ground. So, the n independent equations in the two first lines of (10) are
sufficient for solving. On the other hand, in double support there are n+ 6 unknown variables in (Γ,R1,R2)
and only n equations available. In order to solve the problem in double support, six variables should be
chosen and set to completely describe the system dynamics. The variables we choose are the six components
of the ground reaction forces exerted on the foot that was supporting before the considered double support.
Similarly to Omran et al. [Omr14], these components are defined as third-order polynomial functions of time
ensuring the continuity of the ground reaction forces with the two single support phases around the considered
double support.

In our simulation, we have tested many polynomial functions for the components of the ground reaction
forces with different polynomial orders and we obtained almost the same behavior for the sthenic and the
energy criteria.

4 Energy consumption
Many criteria exist to evaluate energy consumption of a mechanical system, however to our best knowledge
there is no ideal criterion [Che08]. In this approach, we chose two criteria:

Sthenic criterion is defined by the integral of the quadratic actuators torques per unit of distance, as
shown in (11). Its physical meaning is to be an image of the Joule effects if the actuators are DC motors.
Furthermore, the torque amplitudes are decreased with the minimization of this criterion [Che01]. Then if
we design an optimal walking gait with this criterion we can limit the weight of the needed motors.

CΓ =
1

d

∫ tf

t0

Γ>Γdt (11)

where t0 and tf denote the beginning and ending instants of the total observed motion, d is the traveled
distance. The sthenic criterion is a quantity proportional to the energy consumed by actuators per unit of
distance, while the quadratic torque deals with the squared norm of motor torques: E0(t) = Γ>Γ.

Energy criterion relates to the work done by the motors during motion. Soechting et al. [Soe95]
proposed the minimization of work to predict the posture of the arm while moving the hand from one point
to another. They have shown that the movements performed by the arms are conducted so as to minimize
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the energy expended to move the hand from the initial position to the final position. The cost function is
given as follows

W =

∫ tf

t0

Γ Ω dt (12)

Where Ω = dθ/dt is joint velocities vector.
The minimization of work done by the joints is widely used in optimal trajectory generation [Ber08,

Che08, Haq12].

5 Simulation settings
For the validation of method, we use the model of the 33 degrees-of-freedom (DOF) humanoid robot
Romeo[Ald12, Ack12]. The robot total weight is 40.53 kg and its height is 1.43 m. Romeo DOF are
distributed as follows: 6 per leg, 1 for each toe, 7 per arm, 1 for the trunk, 2 for the neck and 2 for the head.
As we focus on the locomotion, only the 12 DOF of the legs were controlled in motion and the other DOF
were set to zero. The kinematic chain of the lower body of Romeo is shown in Fig. 2.

Figure 2: Lower body of humanoid robot Romeo.
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Figure 3: Feet placement for motion planing. The
projection of the pivot point in the horizontal plane
is represented by the black asterisk.

To show the effect of the vertical position of pivot point, the robot performs one step forward on a flat
surface. The step length is set to 0.4 m, the step width is set to 0.192 m and the step duration is 0.5 sec.
The height of the CoM is constant zc = 0.64 m. The horizontal position of the pivot point is set in the left
foot center, so the robot takes one step forward with its right foot, as shown in Fig. 3. This motion is done
many times, with different depth of the pivot point zp taken in the range [0,−1] m. After calculating the
CoM trajectory in the horizontal plane, we obtain joint angles using the inverse kinematic model, then we
calculate the joint torques using the dynamic model. In the end, we calculate the sthenic criterion for each
trajectory.

6 Results
The resulting trajectories for each zp are compared in terms of dynamic balance, joint torques and energy
consumption.

6.1 Horizontal trajectory of CoM
The motion described in Sec. 5 is realized by the robot Romeo in five cases corresponding to five values of
zp: [0, −0.25, −0.5, −0.75, −1] m. Fig. 4 shows the five resulting CoM trajectories in x and y directions
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as a function of time. We note that the x component of the CoM comes closer to a straight line when |zp|
increases. On the other hand, the oscillation amplitude of the y component decreases when the pivot point
goes farther under the ground.
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Figure 4: Horizontal trajectory of CoM as a function of time for five values of zp

6.2 Trajectory of CoP
Fig. 5 represents two inverted pendulums. The first one with a pivot point at ground level (zp = 0), its motion
in the sagittal and frontal planes is represented in Fig. 5(a) and Fig. 5(c) respectively. The second one with
a pivot point under ground level (zp =−1 m), its motion in the sagittal and frontal planes is represented in
Fig. 5(b) and Fig. 5(d) respectively.
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Figure 5: The inverted pendulum motion in sagittal and frontal planes in two cases: zp = 0 and zp = −1 m
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In Fig. 5, the CoM is represented by circles and the CoP is represented by triangle symbols. The ground
level (z = 0) is represented by a green line. We notice that the CoP coincides with the pivot point when
zp = 0. In this case, the CoP is a fixed point. But when the pivot point is under the ground level, the CoP
moves in x and y directions as we can see in Fig. 5(b) and Fig. 5(d) respectively. For this reason, we must
verify that the distances traveled by the CoP in x and y directions are smaller than the robot foot dimensions
before applying the trajectory to a humanoid robot.

To describe the relation between the CoP trajectory and the depth of the pivot point, we consider three
inverted pendulums having the same parameters of step length L, step width Lw, and the CoM height zc.
The pivot point depth for these pendulums are zp1 = 0, zp2 and zp3 such as 0 < |zp2| < |zp3|. These three
pendulums are illustrated in Fig. 6 in the sagittal and frontal planes. The foot is also represented in this
figure by a bold green line.

x 

z 

 

 

L
2

L
3

z
p3

z
p2

L/2

L
x

z
p
 = z

p1

z
p
 = z

p2

z
p
 = z

p3

a)

y 

z 

 

 

l
2 l

3

z
p3

z
p2l

y

L
w
 / 2

z
p
 = z

p1

z
p
 = z

p2

z
p
 = z

p3

b)

Figure 6: The inverted pendulum during one step for three different pivot points.

We notice that the traveled distance by the CoP in x direction, increases when the pivot point depth
increases (L2 < L3). Along the y direction, the CoP does not move when the pivot point is at ground level,
but it moves in a range when the pivot point is under the ground. The range of the CoP along the y axis is
increasingly far from the foot center when the |zp| increases. As we can see that l2 is closer to the foot center
than l3.

For the bigger values of |zp|, the CoP trajectory may leave the foot. For example, in Fig. 6, the CoP of
the pendulum corresponding to zp3 leaves the contact zone between the foot and the ground. Therefore, for
each foot size and step length and width, there is an upper limit of |zp| that keeps the CoP inside the foot.

For a robot with feet of length `x and width `y, performing a step of length L and width Lw, the upper
limit of |zp| respects the following relation:

In the sagittal plane:
2`x
L

=
|zp,max|

|zp,max|+ z0
if L > `x (13)

In the frontal plane:
`y
Lw

=
|zp,max|

|zp,max|+ z0
if Lw > `y (14)

From these two equations, we can deduce the limit of zp.

|zp,max,sagittal| =
2 `x z0

L− 2 `x
|zp,max,frontal| =

`y z0

Lw − `y
(15)
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The upper limit of |zp| is chosen as:

|zp,max| = min(|zp,max,sagittal|, |zp,max,frontal|) (16)

When we generate trajectories for experiments on a real robot, we should consider a security margin for
CoP before calculating |zp,max|. The security margin can be defined as a percentage of foot dimensions. In
simulation, the security margin may be not considered.

The humanoid robot Romeo feet are 0.289 m in length and 0.121 m in width. By applying (16), we
obtain: |zp,max| = 1.09 m. If we consider a margin of security of 50% of the foot, we obtain |zp,max| = 0.29 m.
The robot foot with the security margin is illustrated in Fig. 7.

Figure 7: The foot and the CoP area.

6.3 Joint torque
In this section, we consider three trajectories for humanoid robot Romeo. One was calculated using an
inverted pendulum with a pivot point at ground level (zp=0). Another was calculated using an inverted
pendulum with a pivot point under the ground (zp = −zp,max = −0.29 m). A third one with a pivot point
in the middle between zp,max and the ground, zp = −0.145 m).

The three inverted pendulums have the same parameters for step length, step width, step duration and
CoM height as given in Sec. 5. We compare joint torques for these three trajectories.

Fig. 8 shows the torques at the legs joints. The support leg contains six joints: ankle roll (Γ2), ankle pitch
(Γ3), knee pitch (Γ4), hip pitch (Γ5), hip roll (Γ6), and hip yaw (Γ7). The swing leg contains six joints also:
ankle roll (Γ13), ankle pitch (Γ12), knee pitch (Γ11), hip pitch (Γ10), hip roll (Γ9), and hip yaw (Γ8).

In global, the three trajectories show similar behavior. We can see that Γ5, Γ10, Γ11, and Γ12 are almost
the same. For these joints, the torque is a little reduced (between 1.8% and 5.2%) with zp = −0.29 m than
with a pivot point at ground level.

For Γ3, Γ4, Γ7, Γ8, and Γ9, we can observe two or three peaks for each torque. The torque amplitude
peak-to-peak is reduced for zp = −zp,max compared to the case zp = 0 by 20%, 10.8%, 1.3%, 20.2% and 26%
respectively.

The torque at the hip roll of the support leg Γ6 is the only one that increases when the pivot point is
under the ground level. The rate of increase when zp = −0.29 m with respect to the case zp = 0 is given at
three times within the motion: 6.22% at (t = 0sec), 1.97% at (t=0.31sec) and 6.39% at (t = 0.5sec).

We can notice that main differences happen at ankle roll for the two legs, Γ2 and Γ13.

When the pivot point depth increases, Γ2 decreases for small values of zp. For example, zp = −0.145 m
leads to a high reduction rate of Γ2 with respect to zp = 0. We give the reduction rate at three moment
within the motion: 87% at (t = 0 sec), 61% at the peak (t = 0.31 sec) and 86% at the end of the step
(t = 0.5 sec). After a certain value of the depth zp, |Γ2| starts to increases. When zp = −0.29 m, Γ2 is also
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Figure 8: Joint torques for legs joints for 3 values of the pivot point depth (red curves for zp = 0, purple
curves for zp = −0.145 m and blue curves for zp = −0.29 m).

reduced with respect to zp = 0, but the reduction rate is smaller than in the case zp = −0.145 m. We give
the reduction rate at three times within the motion: 9.8% at (t = 0 sec), 91% at the peak (t = 0.31 sec) and
58.8% at the end of the step (t = 0.5 sec). When the pivot point is under the ground level, the pendulum rod
gets longer, and the oscillation of the CoM along the lateral axis is reduced thereby (It can be seen in the left
graph of Fig. 4). This reduction of the lateral oscillation of the CoM results in a reduction of joint variables
for legs roll joint. For small depth of pivot point, the ankle-roll joint of the support leg, Γ2, is relaxed. But
for bigger values of zp, the ankle-roll joint must support the body which does not oscillate widely in the
lateral direction. So that, Γ2 is overloaded in order to keep the equilibrium. This behavior may indicate an
optimal value of the pivot point depth from the joint torques point of view.

The ankle roll of the swing leg, Γ13, decreases when the pivot point depth increases. When zp = −0.29 m,
Γ13 is reduced with respect to zp = 0. We give the reduction rate at the three peaks: 29.4% at (t = 0.1 sec),
21.6% at (t = 0.25 sec) and 29.5% at (t = 0.4 sec).

6.4 Energy evaluation
6.4.1 Sthenic criterion

The profile of the quadratic torque E0 = Γ>Γ during one step is shown in Fig. 9. The simulations were run
with two values of the pivot point depth: zp = 0 and zp = −0.29 m.
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Figure 10: Sthenic criterion as a function of zp.

Both graphs of Fig. 9 show a peak of value at the beginning of single supports followed by a valley at
midstance. Fig. 9 shows that E0 values at the beginning and at the end of the single support are lower with
a pivot point under the ground level that with a pivot point at ground level. The evolution of the sthenic
criterion as a function of the pivot point depth is shown in Fig. 10, for values of zp between [0 −1.09] m, which
is the maximum authorized in simulation. The situation zp = −0.718 m minimizes the sthenic criterion, with
the criterion value being reduced by 10.5% in comparison to the case zp = 0. When we consider a security
margin of 50% of foot dimensions, zp,max = −0.29 m corresponds to 9 % reduction of the sthenic criterion
compared to the case zp = 0.

6.4.2 Energy criterion

The energy consumption of the robot as a function of pivot point depth is also evaluated using the energy
criterion CE defined by equation (12). The energy criterion as a function of zp is shown in Fig. 11. Energy
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Figure 11: Energy criterion as a function of zp.

criterion decreases as the depth of the pivot point increases. When zp = −1.09 m, the energy criterion is
reduced by 12.6 % compared to the case of a pivot point at ground level. When we consider a security margin
of 50% of foot dimensions, zp,max = −0.29 m corresponds to 7 % reduction of the energy criterion compared
to the case zp = 0.

Contrary to the sthenic criterion, the energy criterion does not have a local minimum, but it decreases
monotonically as the pivot point depth increases.
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6.4.3 Step length consideration

The purpose of this section is to analyze the behavior of the system in other parameters sets. In other words,
we want to show that reducing the sthenic criterion for deeper pivot points, that we obtained for a set of
operating parameters, is not a special case. For this, we consider six values of step length, taken in the
interval [0.2 0.4] m. For each step length, we examine the behavior of the sthenic and the energy criteria as
a function of the pivot point depth.

Fig. 12 shows the evolution of the sthenic criterion for each considered step length. The overall behavior
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Figure 12: Sthenic criterion as a function of step size.
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Figure 13: Energy criterion as a function of step size.

is the same for all step lengths. The sthenic criterion decreases as the depth of the pivot point increases, it
reaches a local minimum at certain value of zp, then it starts to increase.

For longer steps, the maximal reduction rate of sthenic criterion when zp increases, is more important.
This rate is 10 %, 6 %, and 1 % for L = 0.4 m; 0.32 m; and 0.2 m respectively. Moreover, one can observe
that the zp value that minimizes sthenic criterion is smaller for smaller steps. We also notice that the sthenic
criterion is lower for the longest step of the same duration.

These findings concern the role of the step length without changing the step time, and may change in the
case where the step duration is adapted to the step length.

Fig. 13 shows the evolution of the energy criterion as a function of the pivot point depth for each considered
step length. The overall behavior of the energy criterion is similar for the six studied step lengths: It decreases
monotonically as the depth of the pivot point increases.

For longer steps, the reduction rate of the energy criterion when zp increases, is more important. This
rate is 12.6 %, 10.6 %, and 8.6 % for L = 0.4 m; 0.32 m; and 0.2 m respectively. We also notice that the
energy criterion is lower for the smallest step of the same duration. This is due to the definition of the energy
criterion which is proportional to the velocity.

7 Conclusion
This paper proposed an analysis of the effect of the vertical position of the pivot point on the energy
consumption for humanoid walking gait. A 3D simulation was carried out to compare the classical inverted
pendulum with a pivot point on the ground level and an inverted pendulums with a pivot point under the
ground level. The dynamics analysis showed that the use of a pivot point under the ground reduced reasonably
the joint torques, especially in the beginning of the single support. Moreover, the sthenic criterion can be
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minimized for an optimal pivot point depth. The results can be included in walking pattern generators in
order to reduce energy consumption during walking.

In addition, the presented method allows the CoP to travel along the supporting foot. The advancement
of the CoP from the heel to the foot tip, allows the robot to move the contact zone between the foot and the
ground within the single support to follow the CoP. In other words, this human-like trajectory of CoP can
be used in the future for the generation of rolling of feet.
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