Frank Vega
email: vega.frank@gmail.com

UP versus NP

Keywords: 2012 ACM Subject Classification Theory of computation → Complexity classes, Theory of computation → Problems, reductions and completeness, Mathematics Polynomial Time, NP, UP, NP-complete, Quadratic Congruences 1

Introduction

P versus N P is a major unsolved problem in computer science [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF]. It is considered by many to be the most important open problem in the field [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF].

In 1936, Turing developed his theoretical computational model [START_REF] Papadimitriou | Computational Complexity[END_REF]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Papadimitriou | Computational Complexity[END_REF]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [START_REF] Papadimitriou | Computational Complexity[END_REF].

Another huge advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Thomas | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Thomas | Introduction to Algorithms[END_REF].

In the computational complexity theory, the class P contains those languages that can be decided in polynomial time by a deterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF]. The class N P consists in those languages that can be decided in polynomial time by a nondeterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF].

Another major complexity class is U P . The class U P has all the languages that are decided in polynomial time by a nondeterministic Turing machines with at most one accepting computation for each input [START_REF] Valiant | Relative Complexity of Checking and Evaluating[END_REF]. It is obvious that P ⊆ U P ⊆ N P [START_REF] Papadimitriou | Computational Complexity[END_REF]. Whether P = U P is a fundamental question that it is as important as it is unresolved [START_REF] Papadimitriou | Computational Complexity[END_REF]. All efforts to solve the P versus U P problem have failed [START_REF] Papadimitriou | Computational Complexity[END_REF]. Nevertheless, we prove U P = N P .

Motivation

The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to N P ? In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5%) said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [START_REF] William | Guest column: The second P ? NP poll[END_REF]. It is fully expected that P = N P [START_REF] Papadimitriou | Computational Complexity[END_REF]. Indeed, if P = N P then there are stunning practical consequences [START_REF] Papadimitriou | Computational Complexity[END_REF]. For that reason, P = N P is considered as a very unlikely event [START_REF] Papadimitriou | Computational Complexity[END_REF]. Certainly, P versus N P is one of the greatest open problems in science and a correct solution for this incognita will have a great impact not only for computer science, but for many other fields as well [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF]. In this way, a proof of U P = N P is a huge step forward in the direction of solving definitely this outstanding problem [START_REF] Papadimitriou | Computational Complexity[END_REF]. Indeed, this would solve many mathematical and computational problems that remain unsolved [START_REF] Papadimitriou | Computational Complexity[END_REF].

Summary

We prove the problem Quadratic Congruences is in U P . We deduce this from itself definition of a polynomial verifier for the class U P that complies the language Quadratic Congruences.

We guarantee this since we define the uniqueness of the certificate based on the statement when there is a finite set of positive integers, then there must be only one minimum [START_REF] Nagell | Introduction to Number Theory[END_REF].

In addition, we define this finite set of positive integers as the set of certificates from an instance of Quadratic Congruences. Moreover, we show that this verifier can decide its inputs in polynomial time. In this way, we guarantee the problem Quadratic Congruences can be considered as a U P language. Since Quadratic Congruences is a well-known NPcomplete and U P is closed under reductions, then we demonstrate that U P is equal to N P [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [START_REF] Papadimitriou | Computational Complexity[END_REF]. A Turing machine M has an associated input alphabet Σ [START_REF] Papadimitriou | Computational Complexity[END_REF]. For each string w in Σ * there is a computation associated with M on input w [START_REF] Papadimitriou | Computational Complexity[END_REF]. We say that M accepts w if this computation terminates in the accepting state, that is, M (w) = "yes" [START_REF] Papadimitriou | Computational Complexity[END_REF]. Note that M fails to accept w either if this computation ends in the rejecting state, or if the computation fails to terminate [START_REF] Papadimitriou | Computational Complexity[END_REF].

The language accepted by a Turing machine M , denoted L(M), has an associated alphabet Σ and is defined by

L(M) = {w ∈ Σ * : M (w) = "yes"}.
We denote by t M (w) the number of steps in the computation of M on input w [START_REF] Papadimitriou | Computational Complexity[END_REF]. For n ∈ N we denote by T M (n) the worst case run time of M ; that is

T M (n) = max{t M (w) : w ∈ Σ n }
where Σ n is the set of all strings over Σ of length n [START_REF] Papadimitriou | Computational Complexity[END_REF]. We say that M runs in polynomial time if there exists k such that for all n, T M (n) ≤ n k + k [START_REF] Papadimitriou | Computational Complexity[END_REF].

Frank Vega XX:3 Definition 1. A language L is in class P when L = L(M) for some deterministic Turing machine M which runs in polynomial time [START_REF] Papadimitriou | Computational Complexity[END_REF].

We state the complexity class N P using the following definition. Definition 2. A verifier for a language L is a deterministic Turing machine M , where L = {w : M (w, c) = "yes" for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [START_REF] Goldreich | Np-Completeness[END_REF]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate.

Observe that, for polynomial time verifiers, the certificate is polynomially bounded by the length of w, because that is all the verifier can access in its time bound [START_REF] Goldreich | Np-Completeness[END_REF]. Definition 3. N P is the class of languages that have polynomial time verifiers [START_REF] Goldreich | Np-Completeness[END_REF].

In addition, we can define another complexity class called U P . Definition 4. A language L is in U P if every instance of L with a given certificate can be verified by a polynomial time verifier, and this verifier machine only accepts at most one certificate for each problem instance [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF]. More formally, a language L belongs to U P if there exists a polynomial time verifier M and a constant c such that if x ∈ L, then there exists a unique certificate

y with |y| = O(|x| c) such that M (x, y) = "yes", if x / ∈ L, there is no certificate y with |y| = O(|x| c
) such that M (x, y) = "yes" [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF].

A function f : Σ * → Σ * is a polynomial time computable function if some deterministic Turing machine M , on every input w, halts in polynomial time with just f (w) on its tape [START_REF] Goldreich | Np-Completeness[END_REF]. Let {0, 1} * be the infinite set of binary strings, we say that a language L 1 ⊆ {0, 1} * is polynomial time reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ p L 2 , if there exists a polynomial time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 if and only if f (x) ∈ L 2 .
An important complexity class is NP-complete [START_REF] Goldreich | Np-Completeness[END_REF]. A language L ⊆ {0, 1} * is NP-complete if 1. L ∈ N P , and 2. L ≤ p L for every L ∈ N P .

If any single NP-complete problem can be solved in polynomial time, then every N P problem has a polynomial time algorithm [START_REF] Thomas | Introduction to Algorithms[END_REF]. No polynomial time algorithm has yet been discovered for any NP-complete problem [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF]. We denote this problem as QC. QC ∈ NP-complete [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

Theorem 6. QC ∈ U P .

Proof. We will show QC can be verified by a polynomial time verifier M , and this verifier machine only accepts at most one certificate for each problem instance [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF]. Given a certificate x for the instance a, b, c of the problem QC, our polynomial time verifier M will verify whether x is the minimum positive integer such that x complies with x < c and c | d) such that M (a, b, c , x) = "yes". Actually, this will be true due to when a, b, c / ∈ QC then there is no possible positive integer x, which is the minimum or not, such that x < c and x 2 ≡ a(mod b). Finally, we will only need to prove the verifier M decides in polynomial time. Given a certificate x for the instance a, b, c of the problem QC, we can check in polynomial time whether x < c and x 2 ≡ a(mod b) because QC is in N P . Now, how M can verify when x is the minimum positive integer such that x < c and x 2 ≡ a(mod b)?

Suppose that x is not the minimum. Therefore, there must be a positive integer i such that 0 ≤ i < x and i 2 ≡ a(mod b). However, this will also imply x 2 -i 2 ≡ (x -i) × (x + i) ≡ 0(mod b) by the properties of congruences [START_REF] Nagell | Introduction to Number Theory[END_REF]. Hence, this will imply x -i or x + i is multiple of b or only the multiplication of the two numbers is a multiple of b. Indeed, if we want to check whether a positive integer x is the minimum such that x < c and x 2 ≡ a(mod b), then we will need to verify whether there is no possible positive integer i such that 0 ≤ i < x and x -i or x + i is multiple of b or only the multiplication of the two numbers is a multiple of b. Nevertheless, we cannot verify this if 2 × x -1 ≥ b. Certainly, in the case of 2 × x -1 ≥ b: If x = b, we can take the positive integer i = 0 as a disqualification or if x = b, then we can take some candidate i such that x -i = b when x > b or some candidate i such that x + i = b when x < b. In addition, this positive integer i that we can take as a disqualification will always comply with 0 ≤ i < x. In this way, when 2 × x -1 < b then there is no possible positive integer i such that 0 ≤ i < x and x -i or x + i is multiple of b.

Therefore, if 2 × x -1 < b, then the unique chance to find a disqualification is only when the multiplication of the two numbers x -i and x + i is a multiple of b where 0 ≤ i < x. However, this can be checked in polynomial time because we have the prime factorization of b. We already know the sum of both numbers x -i and x + i is equal to 2 × x. We could split the number b within two factors a 1 > 1 and a 2 > 1 such that a 1 × a 2 = b and a 1 × x 1 + a 2 × x 2 = 2 × x where x 1 and x 2 are positive integers greater than 0. We can find the possible values of x 1 and x 2 in a feasible way, because these kind of Diophantine equations can be solved in polynomial time [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Certainly, if there is a solution of some positive integers x 1 > 0 and x 2 > 0 which satisfies the equation a 1 × x 1 + a 2 × x 2 = 2 × x such that a 1 > 1 and a 2 > 1 comply with a 1 × a 2 = b, then x will not be the minimum certificate since there will exist another positive integer 0 ≤ i < x where x -i = a 1 × x 1 and

x + i = a 2 × x 2 because a 1 × x 1 × a 2 × x 2 is multiple of b.
The number of distinct divisors a 1 and a 2 of b that we must check with that equation is polynomially bounded by the logarithm of b [START_REF] Wells | Prime numbers: the most mysterious figures in math[END_REF]. In general, if b is written as the product of prime factors: b = p np × q nq × r nr . . . then the number of distinct divisors is equal to (n p + 1) × (n q + 1) × (n r + 1) . . . [START_REF] Wells | Prime numbers: the most mysterious figures in math[END_REF]. In fact, Hardy proved that a "typical" number b has about log log b distinct divisors [START_REF] Wells | Prime numbers: the most mysterious figures in math[END_REF]. Only a tiny proportion has many more divisors than this [START_REF] Wells | Prime numbers: the most mysterious figures in math[END_REF]. Since we can check in polynomial time when x is not the minimum, then our verifier M will be polynomial and has the properties that guarantee the problem QC can be considered as a U P language.

Theorem 7. U P = N P .

Proof. Since QC is complete for N P , thus all language in N P will reduce to U P [START_REF] Papadimitriou | Computational Complexity[END_REF]. Since U P is closed under reductions, it follows that U P = N P [START_REF] Papadimitriou | Computational Complexity[END_REF].

Conclusions

There is a previous known result which states that P = U P if and only if there are no oneway functions [START_REF] Papadimitriou | Computational Complexity[END_REF]. Indeed, for many years it has been accepted the P versus U P question as the correct complexity context for the discussion of the cryptography and one-way functions [START_REF] Papadimitriou | Computational Complexity[END_REF]. For that reason, the proof of Theorem 7 negates this current idea and also the belief that U P = N P is a very unlikely event. In addition, this demonstration might be a shortcut to prove P = N P , because if anybody proves that P = U P , then this person would be proving the difficult P versus N P problem at the same time [START_REF] Scott Aaronson | Electronic Colloquium on Computational Complexity[END_REF]. Furthermore, if we obtain a possible proof of P = N P , then this work would also contribute to show P = U P .

 QUADRATIC CONGRUENCES INSTANCE: Positive integers a, b and c, such that we have the prime factorization of b. QUESTION: Is there a positive integer x such that x < c and x 2 ≡ a(mod b)?

x 2 ≡

 2 a(mod b). Certainly, if a, b, c ∈ QC, then there exists a unique certificate x with |x| = O(| a, b, c | d) such that M (a, b, c , x) = "yes" where d is a constant and | . . . | is the bitlength function. The uniqueness of the certificate is valid since there must be only one minimum positive integer x which complies with x < c and x 2 ≡ a(mod b). Moreover, x is polynomially bounded by a, b, c , because of the itself definition of the problem QC as an N P language. Furthermore, if a, b, c / ∈ QC, there is no certificate x with |x| = O(| a, b,