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UP VERSUS NP

FRANK VEGA

Abstract. We define a problem that we call General Quadratic Congruences.
We show General Quadratic Congruences is an NP-complete problem. More-

over, we prove General Quadratic Congruences is also in UP. In this way, we

demonstrate that UP = NP.

Introduction

P versus NP is a major unsolved problem in computer science [3]. This problem
was introduced in 1971 by Stephen Cook [1]. It is considered by many to be the
most important open problem in the field [3]. It is one of the seven Millennium
Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000
prize for the first correct solution [3].

In 1936, Turing developed his theoretical computational model [1]. The deter-
ministic and nondeterministic Turing machines have become in two of the most
important definitions related to this theoretical model for computation. A de-
terministic Turing machine has only one next action for each step defined in its
program or transition function [10]. A nondeterministic Turing machine could con-
tain more than one action defined for each step of its program, where this one is
no longer a function, but a relation [10].

Another huge advance in the last century has been the definition of a complexity
class. A language over an alphabet is any set of strings made up of symbols from
that alphabet [2]. A complexity class is a set of problems, which are represented as
a language, grouped by measures such as the running time, memory, etc [2].

In the computational complexity theory, the class P contains those languages
that can be decided in polynomial time by a deterministic Turing machine [6]. The
class NP consists in those languages that can be decided in polynomial time by a
nondeterministic Turing machine [6].

The biggest open question in theoretical computer science concerns the relation-
ship between these classes: Is P equal to NP? In 2002, a poll of 100 researchers
showed that 61 believed that the answer was not, 9 believed that the answer was yes,
and 22 were unsure; 8 believed the question may be independent of the currently
accepted axioms and so impossible to prove or disprove [5].

Another major complexity class is UP . The class UP has all the languages that
are decided in polynomial time by a nondeterministic Turing machines with at most
one accepting computation for each input [12]. It is obvious that P ⊆ UP ⊆ NP
[10]. Whether P = UP is another fundamental question that it is as important as
it is unresolved [10]. All efforts to solve the P versus UP problem have failed [10].
Nevertheless, we prove UP = NP .
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1. Theoretical notions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of
finite strings over Σ [1]. A Turing machine M has an associated input alphabet Σ
[1]. For each string w in Σ∗ there is a computation associated with M on input w
[1]. We say that M accepts w if this computation terminates in the accepting state,
that is, M(w) = “yes” [1]. Note that M fails to accept w either if this computation
ends in the rejecting state, or if the computation fails to terminate [1].

The language accepted by a Turing machine M , denoted L(M), has an associated
alphabet Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.
We denote by tM (w) the number of steps in the computation of M on input w [1].
For n ∈ N we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}
where Σn is the set of all strings over Σ of length n [1]. We say that M runs in
polynomial time if there exists k such that for all n, TM (n) ≤ nk + k [1].

Definition 1.1. A language L is in class P if L = L(M) for some deterministic
Turing machine M which runs in polynomial time [1].

We state the complexity class NP using the following definition.

Definition 1.2. A verifier for a language L is a deterministic Turing machine M ,
where

L = {w : M(w, c) = “yes” for some string c}.
We measure the time of a verifier only in terms of the length of w, so a polyno-
mial time verifier runs in polynomial time in the length of w [11]. A verifier uses
additional information, represented by the symbol c, to verify that a string w is a
member of L. This information is called certificate.

Observe that, for polynomial time verifiers, the certificate is polynomially bounded
by the length of w, because that is all the verifier can access in its time bound [11].

Definition 1.3. NP is the class of languages that have polynomial time verifiers
[11].

In addition, we can define another complexity class called UP .

Definition 1.4. A language L is in UP if every instance of L with a given cer-
tificate can be verified by a polynomial time verifier, and this verifier machine only
accepts at most one certificate for each problem instance [8]. More formally, a lan-
guage L belongs to UP if there exists a polynomial time verifier M and a constant
c such that

if x ∈ L, then there exists a unique certificate y with |y| = O(|x|c) such that
M(x, y) = “yes”,

if x /∈ L, there is no certificate y with |y| = O(|x|c) such that M(x, y) = “yes”
[8].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some
deterministic Turing machine M , on every input w, halts in polynomial time with
just f(w) on its tape [11]. Let {0, 1}∗ be the infinite set of binary strings, we say
that a language L1 ⊆ {0, 1}∗ is polynomial time reducible to a language L2 ⊆
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{0, 1}∗, written L1 ≤p L2, if there exists a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 iff f(x) ∈ L2

where iff means “if and only if”. An important complexity class is NP–complete
[6]. A language L ⊆ {0, 1}∗ is NP–complete if

(1) L ∈ NP , and
(2) L′ ≤p L for every L′ ∈ NP .

Furthermore, if L is a language such that L′ ≤p L for some L′ ∈ NP–complete,
then L is in NP–hard [2]. Moreover, if L ∈ NP , then L ∈ NP–complete [2]. If
any single NP–complete problem can be solved in polynomial time, then every NP
problem has a polynomial time algorithm [2]. No polynomial time algorithm has
yet been discovered for any NP–complete problem [3].

2. Results

Definition 2.1. Given five positive integers a, b ,c, d and x, the boolean function
Q(a, b, c, d, x) is true if and only if x < c and d× x2 ≡ a( mod b) [9].

Definition 2.2. QUADRATIC CONGRUENCES
INSTANCE: Positive integers a, b and c, such that we have the prime factoriza-

tion of b.
QUESTION: Is there a positive integer x such that Q(a, b, c, 1, x) = true?
We denote this problem as QC. QC ∈ NP–complete [4].

Let’s define another problem.

Definition 2.3. GENERAL QUADRATIC CONGRUENCES
INSTANCE: Positive integers a, b, c and d, such that we have the prime factor-

ization of b.
QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true?
We denote this problem as GQC.

Theorem 2.4. GQC ∈ NP–complete.

Proof. Since we can check Q(a, b, c, d, x) = true in polynomial time, then GQC ∈
NP . Indeed, the certificate x will be polynomially bounded by any instance
(a, b, c, d) when Q(a, b, c, d, x) = true because x < c. In addition, we can reduce
every instance (a, b, c) of QC into an instance (a, b, c, 1) of GQC in polynomial time
where

(a, b, c) ∈ QC iff (a, b, c, 1) ∈ GQC.
Since QC ∈ NP–complete then GQC ∈ NP–complete. �

The distinct prime factors of a positive integer n >= 2 are defined as the ω(n)
numbers p1, . . . , pω(n) in the prime factorization

n = pa11 × p
a2
2 × . . .× p

aω(n)

ω(n) .

Lemma 2.5. There will exist a constant α, such that there are infinite positive
integers n which complies with ω(n) ≤ α× ln lnn.

Proof. The average order of ω(n) is ω(n) ∼ ln lnn [7]. Consequently, it will exist
the constant α. �



4 FRANK VEGA

Theorem 2.6. Given four positive integers a, b, c and d, such that we have the
prime factorization of b and ω(b) ≤ α× ln ln b, then we can check whether a positive

integer x is the minimum that complies Q(a, b, c, d, x) = true in order O(lnk b) for
a constant k.

Proof. Suppose we have a positive integer i such that 0 < i < x and Q(a, b, c, d, i) =
true. Hence, we will obtain d × x2 ≡ d × i2( mod b). Moreover, by a property of
congruences we have x2 ≡ i2( mod b′) where b′ = b

(d,b) and (d, b) is the greatest

common divisor of d and b [9]. We can find (d, b) in polynomial time in relation
to ln b just multiplying into a single number each maximum prime power peii that
divides b when also peii divides d. This is possible because we have the prime
factorization of b. We are going to assume b′ 6= 1, because in case of (d, b) = b then
x should be necessarily equal to 1.

If the congruence x2 ≡ i2( mod b′) has a solution, that solution is necessarily
a solution to each of the prime power congruences x2 ≡ i2( mod peii ) when peii
divides b′ [9]. For any prime pr, a necessary condition for x2 ≡ i2( mod perr ) to
have a solution is for x2 ≡ i2( mod pr) to have a solution (to see this, note that if
x2 − i2 is divisible by perr then it is certainly divisible by pr).

Now, suppose x2 ≡ i2( mod perr ) where perr is a prime power which divides b′.
Then x2 − i2 ≡ (x − i) × (x + i) ≡ 0( mod perr ). Thus perr divides the product
(x − i) × (x + i) and so pr divides the product as well. If pr = 2 and pr divides
(x − i) × (x + i), then this is because x ≡ i( mod pr) since the sum and the
subtraction of two integers is even when both are even or odd at the same time. If
pr is an odd prime and divides both (x− i) and (x+ i), then pr would divide both
their sum and their difference, 2× x and −2× i. Since pr is an odd prime, pr does
not divide 2 and so pr would divide both x and i which can be translated to x ≡ i(
mod pr). It follows that pr either divides (x− i) or (x+ i) but not both. Since pr
divides (x− i)× (x+ i), it only divides one of (x− i) and (x+ i). Therefore, either
x ≡ i( mod pr) or x ≡ −i( mod pr).

In this way, we prove for every prime pr that divides b′ we will have either x ≡ i(
mod pr) or x ≡ −i( mod pr). Conversely, if we find all the possible solutions to
each of the prime congruences, then we can use the Chinese Remainder Theorem
to produce a solution to the original problem, that is to find the value of i [2].

Since the Chinese Remainder Theorem can be solved in polynomial time O(lnβ b),
then the remaining order will depend on the computation of all possible solutions.
Since we only have two possible choices for each prime factor, then the order will
depend on O(2ω(b

′)). Since ω(b′) ≤ ω(b) ≤ α × ln ln b, then the final order will be

of O(lnβ b× 2α×ln ln b) = O(lnβ b× lnα b) = O(lnk b) for a constant k = β + α. �

Definition 2.7. SIMPLE QUADRATIC CONGRUENCES
INSTANCE: Positive integers a, b, c and d, such that we have the prime factor-

ization of b and ω(b) ≤ α× ln ln b.
QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true?
We denote this problem as SQC.

Theorem 2.8. SQC ∈ UP .

Proof. We show a polynomial time verifier, and this verifier machine only accepts
at most one certificate for each problem instance of SQC [8]. Given five positive
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integers a, b, c, d and x, we define the verifier machine M for SQC as follows:

M(a, b, c, d, x) = “yes”iff x is the minimum such that Q(a, b, c, d, x) = true.

SQC belongs to UP because the verifier M can run in polynomial time as we
proved in Theorem 2.6 and there will be a constant e such that

if (a, b, c, d) ∈ SQC, then there is a unique certificate x with |x| = O(|(a, b, c, d)|e)
such that M(a, b, c, d, x) = “yes”,

if (a, b, c, d) /∈ SQC, there is no certificate x with |x| = O(|(a, b, c, d)|e) such that
M(a, b, c, d, x) = “yes” [8].

The constant e exists because SQC ∈ NP . �

Definition 2.9. COMPLEX QUADRATIC CONGRUENCES ON I
INSTANCE: Positive integers a, b, c and d, such that we have the prime factor-

ization of b and ω(b) ≤ i× α× ln ln b for a positive integer i.
QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true?
We denote this problem as CQCi.

Theorem 2.10. For every positive integer i we have that CQCi ∈ UP .

Proof. For i = 1, then CQC1 = SQC and thus CQC1 ∈ UP . Suppose for some
i = k, then CQCk ∈ UP . Let’s prove CQCk+1 ∈ UP . We will take an arbitrary
instance (a, b, c, d) and some prime number p > 2 which does not divide b. The
prime p can be taken in polynomial time in relation to log2 b. Certainly, this can
be done choosing a candidate from 3 to log2

2 b because ω(b) ≤ log2 b and the nth
prime number is approximately equal to n × lnn < n2 [9]. Let’s take the number

q = pdln
2 be. Since the congruence property

d× x2 ≡ a( mod b)

complies with

q × d× x2 ≡ q × a( mod q × b)
then Q(a, b, c, d, x) = true if and only if Q(q × a, q × b, c, q × d, x) = true.

However, if the instance (a, b, c, d) ∈ CQCk+1, then the instance (q×a, q×b, c, q×
d) ∈ CQCk because ω(q × b) = ω(b) + 1 ≤ (k + 1) × α × ln ln b + 1. Since p > 2

then q = pdln
2 be > bln b. Therefore k × α× ln ln(q × b) > k × α× ln ln bln b and this

complies for k > 1 with k×α× ln ln bln b = k×α× ln(ln b× ln b) = k×α× ln ln2 b =
2× k × α× ln ln b > (k + 1)× α× ln ln b+ 1 ≥ ω(q × b).

In this way, we can reduce in polynomial time CQCk+1 to CQCk, since the
calculation of q will be polynomial in relation to ln b if we use the exponentiating by
squaring [2]. Since UP is closed under reductions and CQCk ∈ UP , it follows that
CQCk+1 ∈ UP . Hence, by mathematical induction we have proved CQCi ∈ UP
for every positive integer i [9]. �

Definition 2.11. A Turing machine M has an infinite bit length, when M is
encoded by the binary alphabet of the Universal Turing machine, if the size of the
program of M is infinite.

Theorem 2.12. If a language L is not in UP , then it would have a polynomial
time verifier Mj of infinite bit length such that this verifier machine only accepts
at most one certificate for each problem instance of L.
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Proof. In this case, the certificate is not longer useful and thus we can always pass a
single constant string ε as certificate such that we will have Mj(x, ρ) = “yes” if and
only if x ∈ L and ρ = ε or Mj(x, ρ) = “no” if and only if x /∈ L or ρ 6= ε. Indeed,
Mj(x, ρ) can be decided in polynomial time because Mj could decide every x ∈ L
in polynomial time since it may store an infinite amount of program space for the
decision of elements in L and this will be a valid verification too. In addition, for
every string ρ, Mj can compute in polynomial time whether ρ = ε. Furthermore,
since ε is a constant string, then there exists a constant e such that |ε| = O(|x|e)
for every x ∈ L. Therefore, this kind of Turing machine Mj of infinite bit length
only accepts at most one certificate for each problem instance of L. �

Lemma 2.13. A language L is in UP if and only if it would have a polynomial
time verifier Mj of finite bit length such that this verifier machine only accepts at
most one certificate for each problem instance of L.

Proof. This is a consequence of the self definition of the class UP . �

Theorem 2.14. GQC ∈ UP .

Proof. For every positive integer i the set CQCi contains infinite elements. Indeed,
for some positive integer b there are infinite numbers n such that ω(b) = ω(n),
because there are infinite prime numbers [9]. Since for every positive integer i we
have that CQCi ∈ UP , then every language CQCi will have a polynomial time
verifier Mi, and this verifier machine only accepts at most one certificate for each
problem instance of CQCi [8]. We denote l(Mi) as the bit length of Mi. We also

denote |CQCi| as the cardinality of CQCi. Certainly, l(Mi)
|CQCi| = 0 since CQCi has

infinite elements and the bit length of Mi is finite because CQCi ∈ UP . We get

limi→∞
l(Mi)
|CQCi| = 0 and thus limi→∞

l(Mi)
|CQCi| = limi→∞ l(Mi)

limi→∞ |CQCi| = 0. Moreover, we can

assure that limi→∞ |CQCi| = |GQC|, because limi→∞ CQCi = GQC. Therefore,

we obtain limi→∞ l(Mi)
|GQC| = 0. By the definition of Mi, we get limi→∞Mi = MGQC

where MGQC is a polynomial time verifier such that this verifier machine only
accepts at most one certificate for each problem instance of GQC. However, MGQC

might have an infinite bit length. Indeed, MGQC has a finite bit length if and only

if GQC ∈ UP . Consequently, limi→∞ l(Mi)
|GQC| =

l(MGQC)
|GQC| = 0. Since GQC is infinite

then MGQC has a finite bit length and thus GQC ∈ UP . �

Theorem 2.15. UP = NP .

Proof. Since GQC will be complete for NP , thus all language in NP will reduce
to UP . Since UP is closed under reductions, it follows that UP = NP . �

Conclusions

There is a previous known result which states that P = UP if and only if there
are no one-way functions [10]. Indeed, for many years it has been accepted the
P versus UP question as the correct complexity context for the discussion of the
cryptography and one-way functions [10]. For that reason, the proof of Theorem
2.15 negates this current idea and also the belief that UP = NP is a very unlikely
event. In addition, this demonstration might be a shortcut to prove P = NP ,
because if anybody proves that P = UP , then he will be proving the outstanding
and difficult P versus NP problem at the same time [3]. Furthermore, if we obtain
a possible proof of P 6= NP , then this work would also contribute to show P 6= UP .
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