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Complex solutions of Monge-Ampère equations

We describe a method to reduce partial differential equations of Monge-Ampère type in 4 variables to complex partial differential equations in 2 variables. To illustrate this method, we construct explicit holomorphic solutions of the special lagrangian equation, the real Monge-Ampère equations and the Plebanski equations.

Introduction

A Monge-Ampère equation is a partial differential equation which is non linear in a very specific way: its nonlinearity is the determinant one. In two variables, Monge-Ampère equations are

A ∂ 2 f ∂q 2 1 + 2B ∂ 2 f ∂q 1 ∂q 2 + C ∂ 2 f ∂q 2 2 + D ∂ 2 f ∂q 2 1 • ∂ 2 f ∂q 2 2 -( ∂ 2 f ∂q 1 ∂q 2 ) 2 + E = 0 ,
where coefficients A, B, C and D are smooth functions on jet space J1 R 2 . An important subfamily is the family of "symplectic" Monge-Ampère equations, when coefficients are assumed to be smooth functions on cotangent space T * R 2 . Contact geometry is then replaced by symplectic geometry. In this work, we will only consider Monge-Ampère with constant coefficients which fall in this symplectic subfamily. In higher dimensions, a Monge-Ampère equation is a linear combination of the minors of the hessian matrix Hess(f ) = ∂ 2 f ∂q j ∂q k j,k=1...n .

As examples in dimension 4, we will cite the famous special lagrangian equation described by Harvey and Lawson, or Plebanski equations and Grant equation obtained by reduction of Yang-Mills equations and Einstein equations:

                       ∂ 2 f ∂x 1 ∂x 3 ∂ 2 f ∂x 2 ∂x 4 - ∂ 2 f ∂x 1 ∂x 4 ∂ 2 f ∂x 2 ∂x 3 = 1 (Plebanski I equation) ∂ 2 f ∂x 2 1 ∂ 2 ∂x 2 2 - ∂ 2 f ∂x 1 ∂x 2 2 + ∂ 2 f ∂x 2 ∂x 4 - ∂ 2 f ∂x 1 ∂x 3 = 0 (Plebanski II equation) ∂ 2 f ∂x 2 1 + ∂ 2 f ∂x 1 ∂x 2 ∂ 2 f ∂x 3 ∂x 4 - ∂ 2 f ∂x 1 ∂x 4 ∂ 2 f ∂x 2 ∂x 3 = 0 (Grant equation).
After the seminal paper of Lychagin ([25]), geometry of Monge-Ampère equations is quite well understood in 2 and 3 variables ( [26], [1], [2], [3]) but dimension 4 remains mysterious. This is actually the first dimension in which the space of equivalent classes (modulo a change of independent and dependent variables) is a real moduli space and discrete classification is not possible anymore. We propose here a method to reduce these 4 dimensional equations to complex equations in two variables.

In the first section, we recall the Lychagin correspondence between Monge-Ampère equations and effective forms on the phase space and we describe briefly classification results in dimension 2 and 3. In the second section, we assume that the phase space is endowed with an extra compatible complex structure and we define the notion of complex solution. We explain why complex solutions of a given Monge-Ampère equation depend only of its bieffective part. In the third section we use this method to construct explicit complex solutions of the special lagrangian equation, the real Monge-Ampère equations and the Plebanski equations.

1 Monge-Ampère operators and differential forms 1.1 An example: the special lagrangian equation

Let Ω = i 2 dz 1 ∧ dz 1 + . . . + dz n ∧ dz n be the canonical Kähler form on C n and α = dz 1 ∧ . . . ∧ dz n be the complex volume form. A special lagrangian submanifold is a real n-submanifold L which is lagrangian with respect to Ω and which satisfies the special condition Im(α)| L = 0.

These submanifolds, introduced by Harvey and Lawson in their famous article Calibrated Geometries ( [12]) are minimal submanifolds of C n , and more generally of Calabi-Yau manifolds, transverse in some sense to complex submanifolds. They have been extensively studied after the construction proposed by Strominger, Yau and Zaslow ( [27]) of mirror partners of Calabi-Yau manifolds based upon an hypothetic special lagrangian fibration.

Some examples have been given by many people. We can cite for example Harvey and Lawson ( [12]), Joyce ([18], [19], [20], [21] [22]) and Bryant ([6], [7], [8]).

For every smooth function f on R n , the graph

L f = (q + i ∂f ∂q ), q ∈ R n
is a lagrangian submanifold of C n . The special lagrangian condition becomes then a differential equation on f , called the special lagrangian equation:

• n = 2: ∆f = 0

• n = 3: ∆f -hess f = 0

• n = 4: ∆f -hess 1 f -hess 2 f -hess 3 f -hess 4 f = 0 with ∆f the Laplace operator, hess f the determinant of the hessian matrix and hess i f the (i, i)-minor of the hessian matrix. The Monge-Ampère operators theory developed by Lychagin ([25]) generalizes this correspondence between "calibrated" lagrangian submanifolds of R 2n and Monge-Ampère equations on R n .

The Monge-Ampère operators theory

Let M a n-dimensional manifold and T * M its cotangent bundle endowed with the symplectic canonical form Ω ∈ Ω 2 (T * M ). Denote by q = (q 1 , . . . , q n ) a coordinates system on M and (q, p) the corresponding Darboux coordinates system on T * M such that Ω = dq 1 ∧ dp 1 + . . . + dq n ∧ dp n .

Let ω ∈ Ω n (T * M ) be a n -differential form on the 2n dimensional manifold

T * M . The Monge-Ampère operator ∆ ω : C ∞ (M ) → Ω n (M ) is defined by ∆ ω (f ) = (df ) * (ω)
where df : M → T * M is the differential of the smooth function f . a) A regular solution of the MA equation ∆ ω = 0 is a smooth function f on M such that ∆ ω (f ) = 0. b) A generalized solution is a lagrangian submanifold L of (T * M, Ω) on which vanishes the form ω: Ω| L = 0 and ω| L = 0.

Note that a lagrangian submanifold of T * R n which projects isomorphically on R n is the graph of an exact form df : R n → T * R n . Hence, a generalized solution can be thought of as a smooth patching of local regular solutions. c) Two MA equations ∆ ω1 = 0 and ∆ ω2 = 0 are said (locally) equivalent if there exists a (local) symplectomorphism F : (T * M, Ω) → (T * M, Ω) such that

F * (ω 1 ) = ω 2 .
The symplectomorphism F transforms a generalized solution of ∆ ω2 = 0 into a generalized solution of ∆ ω1 = 0 but regular solutions are not preserved.

For any (n -2)-form θ, the equations ∆ ω = 0 and ∆ ω+θ∧Ω = 0 have the same solutions. We need also to introduce effective n-forms, which satisfy Ω ∧ ω = 0 and the so-called Hodge-Lepage-Lychagin theorem ( [25]) establishes a one-to-one correspondence between effective forms and MA operators:

Theorem (Hodge-Lepage-Lychagin). a) Every n-form ω can be uniquely decomposed ω = ω 0 + ω 1 ∧ Ω with ω 0 effective b) Two effective n-forms which vanish on the same lagrangian subspaces are proportional.

Example. Consider the 2-dimensional equation

hess f = 1.
The corresponding effective form is ω = dp 1 ∧ dp 2 -dq 1 ∧ dq 2 which is transformed into θ = dp 1 ∧ dq 2 + dq 1 ∧ dp 2 by the partial Legendre transformation

Φ : (q 1 , q 2 , p 1 , p 2 ) → (q 1 , p 2 , p 1 , -q 2 )
Hence, hess f = 1 is equivalent to the Laplace equation ∆f = 0. Choose then any harmonic function, for example f (q 1 , q 2 ) = e q1 cos(q 2 ). We obtain a generalized solution L = (q 1 , -e q1 sin(q 2 ), e q1 cos(q 2 ), -q 2 ); (q 1 , q 2 ) ∈ R 2 .

which is, on an open subset, the graph of the non trivial regular solution

u(t 1 , t 2 ) = t 2 arcsin(t 2 e -t1 ) + e 2t1 -t 2 2 .
We know from Jörgens theorem that this regular solution can not be defined on the whole plane.

1.3 Classification results for n = 2 and n = 3

In 1874, Sophus Lie raised the question of linearization of Monge-Ampère equations: when a given equation is equivalent to a linear one ? In the formalism of Monge-Ampère operators, this problem turns into a problem of the Geometric Invariant Theory. Studying action of the symplectic group on effective forms, a complete classification of equivalence classes of Monge-Ampère equations (with constant coefficients) has been obtained in [26] for n = 2 and in [26] and [2] for n = 3.

For n = 2, every MAE with constant coefficient is linearizable (table 1).

∆ ω = 0 ω pf (ω) Geometry ∆f = 0 dq 1 ∧ dp 2 -dq 2 ∧ dp 1 1 A 2 ω = -1 f = 0 dq 1 ∧ dp 2 + dq 2 ∧ dp 1 -1 A 2 ω = 1 ∂ 2 f ∂q 2 1 = 0 dq 1 ∧ dp 2 0 A 2 ω = 0 Table 1: Classification of 2-dimensional MAE
Here, the pfaffian pf(ω) is the scalar defined by ω ∧ ω = pf(ω) Ω ∧ Ω and A ω is the tensor defined by ω(• , •) = Ω(A ω • , •). It is a complex structure for the elliptic equation and a product structure for the hyperbolic equation. It is explained in [3] how this unifying geometry coïncides, in the particular dimension n = 2, with the famous generalized complex geometry introduced by Hitchin ( [15]) and Gualtieri ([11]).

For n = 3, there are three non linear Monge-Ampère equation: the real one, the special lagrangian one and the pseudo special lagrangian one (table 2).

In this table, ε(g ω ) is the signature of the Lychagin-Roubstov metric (see [26]) defined by

g ω (X, Y )Ω 3 = ι X (ω) ∧ ι Y (ω) ∧ Ω,
and A ω is the Hitchin tensor ( [26]), defined for effective 3-forms by

g ω (A ω • , •) = Ω(• , •).
It is explained in [1] how these invariants define a geometry of real or complex Calabi-Yau type.

For dimensions 2 and 3, the quotient space of Monge-Ampère equations for the action of symplectic linear group G = Sp(2n, R) is thus a discrete space. More generally, a Monge-Ampère equation corresponds to a conformal class of an effective form ω. The orbit G • ω of this form is isomorphic to the quotient G/G ω where 2 Complex solutions and bieffective forms

∆ ω = 0 ε(g ω ) A ω 1 hess(f ) = 1 (3, 3) A 2 ω = 1 2 ∆f -hess(f ) = 0 (0, 6) A 2 ω = -1 3 f + hess(f ) = 0 (4, 2) A 2 ω = -1 4 ∆f = 0 (0, 3) A 2 ω = 0 5 f = 0 (2, 1) A 2 ω = 0 6 ∆ q2,q3 f = 0 (0, 1) A 2 ω = 0 7 q2,q3 f = 0 (1, 0) A 2 ω = 0 8 ∂ 2 f ∂q 2 1 = 0 (0, 0) A 2 ω = 0

Complex solutions

A complex structure J on manifold T * M is said to be compatible with symplectic form Ω, if Ω J = Ω(J• , •) is a 2-form. The complex 2-form Θ J = Ω -iΩ J is then a complex symplectic form.

In Darboux coordinates, such a compatible complex structure writes as

J = A B C A t with          B t = -B, C t = -C A 2 + BC = -1 AB + BA t = 0 AC + CA t = 0
As in generalized complex geometry, there are two important families:

J = A 0 0 A t with A a complex structure on M and J = 0 θ -θ -1 0
with θ a symplectic form on M Definition. Let ∆ ω = 0 be a MAE on M and let J be a compatible complex structure on T * M . A J-complex solution is a lagrangian and J-complex submanifold L of T * M on which ω vanishes:

Ω| L = 0 ; J L = L ; ω| L = 0
It is worth mentioning that the condition "complex lagrangian" is equivalent to the condition "real bilagrangian" as it is proved in [16].

Proposition (Hitchin). Let (N, Ω 1 + iΩ 2 ) be a complex symplectic manifold of complex dimension 2m. A real 2m-dimensional submanifold is a complex lagrangian submanifold if and only it is lagrangian with respect to Ω 1 and Ω 2 .

Example. Let us identify C 4 with H 2 endowed with the three complex structures I, J and K. We still denote by Ω the I -Kähler form, Ω J = Ω(J• , •) and

Ω K = Ω(K• , •).
Then Ω-iΩ J is a J-complex symplectic form and it is well known that every J-complex lagrangian submanifold is special lagrangian.

In the formalism of Monge-Ampère operators, this can be seen very simply. It is actually straightforward to check that the special lagrangian form writes as

Im(α) = Ω J ∧ Ω K and therefore, if Ω| L = 0 and Ω J | L = 0 then Im(α)| L = 0.

Bieffective forms

Two MAE ∆ ω = 0 and ∆ ω+θ1∧Ω+θ2∧Ω J = 0 have the same J-complex solutions. To understand this complex reduction, we need then to construct the bieffective part of ω. This is the goal of this section.

Let V be a complex symplectic space of real dimension 4m endowed with a complex symplectic form Θ = Ω 1 + iΩ 2 . Denote by Λ k (V * ) the space of real k-forms on V and Λ p,q (V * ) the space of (p, q)-complex forms, such that

Λ k (V * ) ⊗ C = p+q=k Λ p,q (V * )
Let us introduce for j = 1, 2 the operators ⊤ j and ⊥ j defined by

     ⊤ j θ = θ ∧ Ω j ⊥ j θ = ι XΩ j (θ) with X Ωj the unique bivector satisfying Ω j (X Ωj ) = 1
They have the following properties ( [25])

a) ⊥ j : Λ k (V * ) → Λ k-2 (V * ) is into for k ≥ 2m + 1 b) ⊤ j : Λ k (V * ) → Λ k+2 (V * ) is into for k ≤ 2m -1 c) [⊥ j , ⊤ j ](θ) = (2m -k)θ for θ ∈ Λ k (V * ). A k-form θ is said to be Ω j -effective if ⊥ j θ = 0. For k = 2m, this is equivalent to ⊤ j θ = 0. Let H = [⊥ 1 , ⊤ 1 ] = [⊥ 2 , ⊤ 2 ] and M = [⊥ 2 , ⊤ 1 ]
. We get then the complete list of so-called Lichnerowicz operators which satysfy the following (see [5]):

Proposition (Verbitsky -Bonan). [⊥ 1 , ⊤ 1 ] = H [⊥ 2 , ⊤ 2 ] = H [⊥ 1 , ⊤ 2 ] = -M [⊥ 2 , ⊤ 1 ] = M [⊥ 1 , ⊥ 2 ] = 0 [⊤ 1 , ⊤ 2 ] = 0 [⊥ 1 , H] = -2⊥ 1 [⊥ 2 , H] = -2⊥ 2 [⊤ 1 , H] = 2⊤ 1 [⊤ 2 , H] = 2⊤ 2 [⊥ 1 , M ] = -2⊥ 2 [⊥ 2 , M ] = 2⊥ 1 [⊤ 1 , M ] = -2⊤ 2 [⊤ 2 , M ] = 2⊤ 1 [H, M ] = 0
We obtain then a representation of the Lie algebra sl(2,

C)⊗sl(2, C) on Λ * (V * )⊗C, defining      E 1 = 1 2 (⊥ 1 + i⊥ 2 ) F 1 = 1 2 (⊤ 1 -i⊤ 2 ) H 1 = 1 2 (H + iM )      E 2 = 1 2 (⊥ 1 -i⊥ 2 ) F 2 = 1 2 (⊤ 1 + i⊤ 2 ) H 2 = 1
2 (H -iM ) Representation theory of Lie algebras gives us the existence and uniqueness of bieffective part of a 2m-form.

Theorem 1 ([4]). Every 2m-form ω ∈ Λ 2m (V * ) can be decomposed into a sum ω = ω 0 + ω 1 ∧ Ω 1 + ω 2 ∧ Ω 2 with ω 0 bieffective, that is ω 0 ∧ Ω 1 = 0 = ω 0 ∧ Ω 2 . Moreover the bieffective part ω 0 is unique.
Proof. From Weyl's theorem, we know that Λ * (V * )⊗C decomposes as a unique direct sum of irreducible subspaces. Let W such an irreducible subspace. Since H 1 and H 2 commute, they admit a common eigenvector x ∈ W . But E p 1 E q 2 x is also a common eigenvector. Their exist then p and q such that z = E p 1 E q 2 x is a primitive vector, that is E 1 z = E 2 z = 0. Therefore, W = Gz and every vector w in W writes as

w = j,k a jk F j 1 F k 2 z
We deduce that every 2m-form can be uniquely decomposed into a finite sum

ω = j,k (α jk + iβ jk ) ∧ (Ω 1 + iΩ 2 ) j ∧ (Ω 1 -iΩ 2 ) k
with α jk and β jk primitive. Noting now that 2m-primitive forms are the bieffective forms we obtain the result.

We give now an explicit formula for 4m = 8, which can be easily implemented on a computer.

Proposition. In dimension 8, the bieffective par ω 0 of a 4-form ω is

ω 0 = θ - 1 4 ⊤ 2 ⊥ 2 θ + ⊤ 1 ⊥ 1 θ - 1 4 M (M θ -⊤ 1 ⊥ 2 θ + ⊤ 2 ⊥ 1 θ)
where

θ = ω - (3⊥ 2 1 ω -⊥ 2 2 ω) 64 Ω 2 1 - ⊥ 1 ⊥ 2 ω 8 - (3⊥ 2 2 ω -⊥ 2 1 ω) 64 Ω 2
Proof. We know that

ω = ω 0 + ω 1 ∧ Ω 1 + ω 2 ∧ Ω 2 + ω 11 Ω 1 ∧ Ω 1 + ω 12 Ω 1 ∧ Ω 2 + ω 22 Ω 2 ∧ Ω 2 ,
with ω 0 , ω 1 and ω 2 primitive. Using Verbiski-Bonan relations, we obtain

⊥ 1 ω = 2ω 1 -M ω 2 + (6ω 11 + 2ω 22 )Ω 1 + 2ω 12 Ω 1 and then ⊥ 2 1 ω = 24ω 11 + 8ω 22 ⊥ 2 ⊥ 1 ω = 8ω 12 .
Starting from ⊥ 2 ω we obtain also

⊥ 2 2 ω = 8ω 11 + 24ω 22 . Therefore, ω 11 = 3⊥ 2 1 ω -⊥ 2 2 ω 64 , ω 22 = 3⊥ 2 2 ω -⊥ 2 1 ω 64 , ω 12 = ⊥ 1 ⊥ 2 ω 8 . Define now θ = ω 0 + ω 1 ∧ Ω 1 + ω 2 ∧ ω 2 . Since ⊥ 1 θ = 2ω 1 -M ω 2 and ⊥ 2 θ = M ω 1 + 2ω 2 , we deduce that M ⊤ 1 ω 1 = [M, ⊤ 1 ]ω 1 + ⊤ 1 M ω 1 = 2⊤ 2 ω 1 + ⊤ 1 (⊥ 2 θ -2ω 2 ) = 2⊤ 2 ω 1 -2⊤ 1 ω 2 + ⊤ 1 ⊥ 2 θ and similarly M ⊤ 2 ω 2 = 2⊤ 2 ω 1 -2⊤ 1 ω 2 -⊤ 2 ⊥ 1 θ.
and therefore

M θ = M ⊤ 1 ω 1 + M ⊤ 2 ω 2 = 4(⊤ 2 ω 1 -⊤ 1 ω 2 ) + ⊤ 1 ⊥ 2 θ -⊤ 2 ⊥ 1 θ.
Moreover, the computation of

M (⊤ 2 ω 1 -⊤ 1 ω 2 ) gives M (⊤ 2 ω 1 -⊤ 1 ω 2 ) = -4(⊤ 1 ω 1 + ⊤ 2 ω 2 ) + ⊤ 2 ⊥ 2 θ + ⊤ 1 ⊥ 1 θ. Finally, 4(ω 1 ∧ Ω 1 + ω 2 ∧ Ω 2 ) = ⊤ 2 ⊥ 2 θ + ⊤ 1 ⊥ 1 θ - M 4 (M θ -⊤ 1 ⊥ 2 θ + ⊤ 2 ⊥ 1 θ).

Action of the complex symplectic group

For simplicity, we restrict now to complex dimension 4: V is a 4-dimensional complex vector space endowed with a complex symplectic form Θ = Ω 1 + iΩ 2 . The space of real bieffective 4-forms is

Λ 4 BE (V * ) = ω ∈ Λ 4 (V * ), ω ∧ Ω 1 = ω ∧ Ω 2 = 0 .
Let Λ 2,0 0 (V * ) be the 5 -dimensional complex vector space of (2, 0)-complex forms which are effective with respect to Θ = Ω 1 + iΩ 2 :

Λ 2,0 0 (V * ) = θ ∈ Λ 2,0 (V * ), θ ∧ Θ = 0
The exterior product is non degenerate on Λ 2,0 0 (V * ) and it defines a non degenerate symmetric inner product

< θ 1 , θ 2 > Θ 2 = θ 1 ∧ θ 2 .
We are going to identify bieffective forms with hermitian forms on Λ 2,0 0 (V * ).

Definition. The hermitian form Q ω on C 5 = Λ 2,0 0 (V * ) associated with a bieffective 4-form ω is:

Q ω (θ 1 , θ 2 ) (Θ ∧ Θ) 2 = ω ∧ θ 1 ∧ θ 2 .
Theorem 2. The map

Λ 4 BE (V * ) → su(5) ω → Q ω is an isomorphism.
Moreover, the group Sp(4, C)/Z 2 identifies with SO(5, C) and its action on Λ 4 BE (V * ) is the Hermite action of SO(5, C) on su (5).

Proof. We prove first that Λ 4 BE (V * ) = Λ 2,0 0 (V * ) ⊗ Λ 2,0 0 (V * ). Let ω ∈ Λ 4 BE (V *
) and consider its decomposition

ω = ω 40 + ω 31 + ω 22 + ω 13 + ω 04 with ω pq ∈ Λ p,q (V * ). Since ⊥ C : Λ p,q (V * ) → Λ p-2,q (V * ) is into for p ≥ 3 and ⊥ C : Λ p,q (V * ) → Λ p,q-2 (V * ) is into for q ≥ 3, and since ⊥ C ω = ⊥ C ω = 0, we deduce that ω ∈ Λ 2,2 . But Ker ⊥ C : Λ 2,2 → Λ 0,2 = Λ 2,0 0 (V * ) ⊗ Λ 0,2 so Ker ⊥ C ∩ Ker ⊥ C = Λ 2,0 0 (V * ) ⊗ Λ 2,0 0 (V * ).
We deduce that Λ 4 BE (V * ) and su( 5) have same dimension. Since ω → Q ω is injective, this is an isomorphism. Now, the action of Sp(4, C) preserves this symmetric product, with kernel Z 2 . Since dim C (Sp(4, C)) = 10 = dim C (SO(5, C)), we deduce that Sp(4, C)/Z 2 = SO(5, C).

Moreover, we have

Q F * ω (θ 1 , θ 2 )(Θ ∧ Θ) 2 = F * (ω) ∧ θ 1 ∧ θ 2 = ω ∧ (F -1 ) * (θ 1 ) ∧ (F -1 ) * (θ 2 ) so Q F * ω = F -1 t Q ω F -1 .
This action is completely described by Hong in [17]. Let us briefly explain this result. Let Q be a hermitian matrix and define the canonical form of Q as a direct sum of three hermitian matrices:

J(Q) = H P (Q) ⊕ K N (Q) ⊕ K C (Q) ,
which are obtained from Jordan blocks of Q as follows:

a) H P (Q) = H m1 (λ 1 ) ⊕ . . . ⊕ H mp (λ q )
, where all λ i ≥ 0 and λ 2 i are the positive eigenvalues of

QQ t . b) K N (Q) = K 2n1 (µ 1 ) ⊕ . . . ⊕ H 2nr (µ r )
, where all µ i > 0 and -µ 2 i are the negative eigenvalues of

QQ t . c) K C (Q) = L 2k1 (ξ 1 ) ⊕ . . . ⊕ L 2ks (ξ s )
, where ξ 2 i are the non real eigenvalues of QQ t , with

K 2n (µ) = 0 -iH n (µ) iH n (µ) 0 , L 2k (ξ) = 0 H k (ξ) H ⋆ k (ξ) 0 and 2H m (λ) =           0 0 . . . 0 1 2λ 0 . . . 0 1 2λ 1 . . . . . . 1 2λ 1 0 . . . 1 2λ 1 . . . . . . 1 2λ 1 . . . 0 0 2λ 1 0 . . . 0 0           + i           0 1 0 . . . 0 0 -1 0 1 . . . 0 0 . . . -1 0 1 . . . . . . . . . . . . -1 0 1 0 0 . . . 0 -1 0 1 0 0 . . . 0 -1 0          
Theorem (Hong). Let Q be a hermitian matrix. Then there exists F complex orthogonal and ε = (ε 1 , . . . , ε p )

with ε i = ±1 such that F t QF = J ε (Q) with J ε (Q) = H ε P (Q)⊕K N (Q)⊕K C (Q) = ε 1 H m1 (λ 1 )⊕. . .⊕ε p H mp (λ q ) ⊕K N (Q)⊕K C (Q)
It is therefore difficult to give a complete classification of all possible complex reductions. Nevertheless, to characterize the orbit of a bieffective form ω, it is necessary to know

a) the signature ε(Q ω ) of Q ω , b) the spectrum of Q ω Q t ω
. and it will be sufficient for the examples we are interested in.

3 Some examples in dimension 4

The choice of the complex structure

The crucial point in this method is the choice of the compatible complex structure, which should depend on the initial Monge-Ampère equation. We choose here five simple complex structures, and give a corresponding complex Darboux coordinates system (z 1 , z 2 , u 1 , u 2 ) in which

Θ J = Ω -iΩ J = dz 1 ∧ du 1 + dz 2 ∧ du 2
The initial coordinate systems on T * R 4 is still (q, p) with

Ω = dq 1 ∧ dp 1 + dq 2 ∧ dp 2 + dq 3 ∧ dp 3 + dq 4 ∧ dp 4 .
We define

A =     0 -1 0 0 1 0 0 0 0 0 0 -1 0 0 1 0     ; Ã =     0 -1 0 0 1 0 0 0 0 0 0 1 0 0 -1 0     ; A 2 =     1 -2 0 0 1 -1 0 0 0 0 1 -2 0 0 1 -1     and J = A 0 0 A t z 1 = q 1 + iq 2 u 1 = p 1 -ip 2 z 2 = q 3 + iq 4 u 2 = p 3 -ip 4 K = 0 A A 0 z 1 = q 1 + ip 2 u 1 = iq 2 + p 1 z 2 = q 3 + ip 4 u 2 = iq 4 + p 3 J = Ã 0 0 Ãt z 1 = q 1 + iq 2 u 1 = p 1 -ip 2 z 2 = q 3 -iq 4 u 2 = p 3 + ip 4 K = 0 Ã Ã 0 z 1 = q 1 + ip 2 u 1 = iq 2 + p 1 z 2 = q 3 -ip 4 u 2 = -iq 4 + p 3 J 2 = A 2 0 0 A t 2 z 1 = q 1 + (-1 + i)q 2 u 1 = (1 -i)p -ip 2 z 2 = q 3 + (-1 + i)q 4 u 2 = (1 -i)p -ip 4

Simple equations

Here is a non exhaustive list of simple complex Monge-Ampère equations which will be our model equations. Function φ is a holomorphic function in (z 1 , z 2 ) and we note

φ jk = ∂ 2 φ ∂z j ∂z k . ε(Q ω ) ∆ ω = 0 spectrum(Q ω Q t ω ) |φ 11 | 2 = 0 (0,0,0,0,0) (1,0) |φ 12 | 2 = 0 (1,0,0,0,0) |φ 11 | 2 = 1 (0,0,0,0,0) (1,1) |φ 12 | 2 = 1
(1,0,0,0,0)

|φ 11 | 2 -|φ 22 | 2 = 0 (-1,-1,0,0,0) |φ 11 | 2 + |φ 12 | 2 = 0 (1,0,0,0,0) (2,0) |φ 11 | 2 + |φ 22 | 2 = 0 (1,1,0,0,0) |φ 11 | 2 + |φ 12 | 2 = 1
(1,0,0,0,0) (2,1) φ 12 + φ 12 -|φ 11 | 2 = 0 (0,0,0,0,0) Table 4: Simple complex Monge-Ampère equations

Examples

We study now the special lagrangian equation, the two real Monge Ampère equations hess f = ±1, the two Plebanski equations and the Grant equation. The corresponding effective forms on (T * R 4 , Ω) are:

ω SLAG = Im dq 1 + idp 1 ) ∧ (dq 2 + idp 2 ) ∧ (dq 3 + idp 3 ) ∧ (dq 4 + idp 4 ) ω H+ = dp 1 ∧ dp 2 ∧ dp 3 ∧ dp 4 -dq 1 ∧ dq 2 ∧ dq 3 ∧ dq 4 ω H-= dp 1 ∧ dp 2 ∧ dp 3 ∧ dp 4 + dq 1 ∧ dq 2 ∧ dq 3 ∧ dq 4 ω P I = dq 1 ∧ dq 2 ∧ dp 1 ∧ dp 2 -dq 1 ∧ dq 2 ∧ dq 3 ∧ dq 4 ω P II = dq 1 ∧ dq 2 + dq 3 ∧ dp 2 + dq 1 ∧ dq 2 ∧ dq 4 ∧ dp 1 + dq 3 ∧ dq ∧ dp 1 ∧ dp 2 ω G = dq 2 ∧ dq 3 ∧ dq 4 ∧ dp 1 -dq 1 ∧ dq 3 ∧ dp 1 ∧ dp 3
We compute for the five compatible complex structures defined above the bieffective part of these forms and the signature of the hermitian form associated with.

Equation J K J K J 2 SLAG 0 0 0 0 (1,1) hess(f ) = 1 (1,1) 0 (1,1) 0 (1,1) hess(f ) = -1 (2,0) (3,2) (2,0) (3,2) (2,0) Plebanski I (2,0) (3,2) (1,1) (3,2) (2,0) Plebanski II (2,1) (3,2) (1,0) (3,2) (2,1) Grant (3,2) (3,2) (3,2) (3,2) (3,2)
Table 5: Examples

This method fails for the Grant equation, at least for this choice of complex structures: signature is always (3,2) and the corresponding complex equation is therefore fully non degenerate. We study the other cases in more details.

Special lagrangian equation

As, we have seen the special lagrangian form ω SLAG has no bieffective part for J and for K since

ω SLAG = Ω J ∧ Ω K
This is the same for any complex structure J = F -1 JF with F in SU (4), since

ω SLAG = F * ω SLAG = F * Ω J ∧ F * Ω K = Ω F -1 JF ∧ Ω F -1 KF
This explains why ω SLAG does not have bieffective part also for J and K. This is the reason of the choice of J 2 : we were looking for a simple complex structure which is not in so(8). In the complex Darboux coordinates system, the bieffective part is

ω BE SLAG = 1 8 (1 + 2i)dz 1 ∧ dz 2 ∧ dz 1 ∧ du 2 + (-1 -2i)dz 1 ∧ dz 2 ∧ dz 2 ∧ du 1 + (1 -2i)dz 1 ∧ du 2 ∧ dz 1 ∧ dz 2 + (1 + 2i)dz 1 ∧ du 2 ∧ du 1 ∧ du 2 + (-1 + 2i)dz 1 ∧ du 1 ∧ dz 1 ∧ dz 2 + (-1 -2i)dz 2 ∧ du 1 ∧ du 1 ∧ du 2 + (1 -2i)du 1 ∧ du 2 ∧ dz 1 ∧ du 2 + (-1 + 2i)du 1 ∧ du 2 ∧ dz 2 ∧ du 1
and this is straightforward to check that

ω BE SLAG = √ 5 4 dZ 1 ∧ dU 2 ∧ dZ 1 ∧ dU 2 -dZ 2 ∧ dU 1 ∧ dZ 2 ∧ dU 1 where (Z 1 , Z 2 , U 1 , U 2 )
is the complex Darboux coordinates system

Z 1 = αz 1 + α -1 u 1 i √ 2 ; U 1 = αz 1 -α -1 u 1 i √ 2 Z 2 = αz 2 -α -1 u 2 √ 2 ; U 2 = αz 2 + α -1 u 2 √ 2 α 2 = 1 + 2i √ 5
We obtain then the following result: Proposition 1. Let φ be a holomorphic solution of

∂ 2 φ ∂z 2 1 2 - ∂ 2 φ ∂z 2 2 2 = 0
and let L φ be the submanifold

L φ = (z 1 , z 2 , ∂φ ∂z 1 , ∂φ ∂z 2 ) ⊂ C 4 .
Then F -1 (L φ ) is special lagrangian in (T * R 4 , Ω, ω SLAG ) where F (q, p) = (z, u) with

z 1 = αq 1 + (-1 + i)αq 2 + (1 -i)α -1 p 1 -iα -1 p 2 i √ 2 
z 2 = αq 3 + (-1 + i)αq 4 -(1 -i)α -1 p 3 + iα -1 p 4 √ 2 
u 1 = αq 1 + (-1 + i)αq 2 -(1 -i)α -1 p 1 + iα -1 p 2 i √ 2 
u 2 = αq 3 + (-1 + i)αq 4 + (1 -i)α -1 p 3 -iα -1 p 4 √ 2 

Real Monge-Ampère equations

For every holomorphic function

φ = f + ig : C 2 → C, we have hess R f = | hess C φ| 2
so for J, J and J 2 , which come from complex structures on R 4 , the complex reduction of hess f = ±1 are | hess φ| 2 = ±1 which are equivalent to

∂ 2 ψ ∂z 2 1 2 = ± ∂ 2 ψ ∂z 2 2 2
For example, for J, the corresponding symplectomorphism is the partial Legendre transform

G(z 1 , z 2 , u 1 , u 2 ) = (u 1 , z 2 , -z 1 , u 2 )
We obtain then the following results:

Proposition 2. Let φ be a holomorphic solution of

∂ 2 φ ∂z 2 1 2 - ∂ 2 φ ∂z 2 2 2 = 0 Then G -1 (L φ ) is a generalized solution of hess f = 1 with G(q, p) = (p 1 -ip 2 , q 3 + iq 4 , -q 1 -iq 2 , p 3 -ip 4 ) Proposition 3. Let φ a holomorphic function of the form φ(z 1 , z 2 ) = a(z 1 )b(z 2 ). Then G -1 (L φ ) is a generalized solution of hess f = -1.
Moreover, we see in table 5 that ω H+ has no bieffective part for K and K. We get immediately Proposition 4:

Proposition 4. Any complex lagrangian surface in (T * R 4 , Ω, K) or (T * R 4 , Ω, K) is a generalized solution of hess f = 1.
This result is underlying the strong relationship there is between special lagrangian geometry and "real special lagrangian" geometry or "split special lagrangian geometry", as described in [13].

Plebanski equations

Computing the bieffective part of ω P I , we obtain that the J-complex reduction of Plebanski I equation is

|φ 11 | 2 = -1
which is equivalent up the partial Legendre transform G to

|ψ 11 | 2 + |ψ 12 | 2 = 0 Proposition 5. Let φ a holomorphic function of the form φ(z 1 , z 2 ) = az 1 + b(z 2 ). Then G -1 (L φ ) is a generalized solution of Plebanski I equation.
Similarly, the J-complex reduction is

|φ 12 | 2 = 1 Proposition 6. Let φ a holomorphic function on (R 4 , Ã) of the form φ(z 1 , z 2 ) = z 1 z 2 + a(z 1 ) + b(z 2 ).
Then its real part is a regular solution of Plebanski I equation.

Finally, same computations give analog results for Plebanski II equation:

Proposition 7. Let φ a holomorphic function on (R 4 , A) of φ 12 + φ 12 + |φ 11 | 2 = 0
Then its real part is a regular solution of Plebanski II equation.

Proposition 8. Let φ a holomorphic function on (R 4 , Ã) of the form

φ(z 1 , z 2 ) = a(z 2 ) + b(z 2 )z 1 .
Then its real part is a regular solution of Plebanski II equation.

Conclusion

Studying geometry of 4-bieffective forms on R 8 , we have reduced important equations in Physic to simple -but non empty -complex equations. This has been done for arbitraries complex structures. It would be interesting now, for a given equation in four variables, to study all possible compatible complex structures and to parameterize in this way analytical solutions by pair of compatible complex structures on R 8 , and holomorphic functions on C 2 . Note that bieffective part still exists for 2m-forms on R 4m and such a parametrization should also exist for equations with 2m variables.

A more global approach would be also interesting. We have considered only complex structures with constant coefficients but our decomposition theorem remains valid on a complex symplectic manifold. This suggests to understand "Monge-Ampère calibrations" on complex symplectic manifolds as a generalization of the special lagrangian calibration on HyperKähler manifolds.

Introduction

A Monge-Ampère equation is a partial differential equation which is non linear in a very specific way: its nonlinearity is the determinant one. In two variables, Monge-Ampère equations are

A ∂ 2 f ∂q 2 1 + 2B ∂ 2 f ∂q 1 ∂q 2 + C ∂ 2 f ∂q 2 2 + D ∂ 2 f ∂q 2 1 • ∂ 2 f ∂q 2 2 -( ∂ 2 f ∂q 1 ∂q 2 ) 2 + E = 0 ,
where coefficients A, B, C and D are smooth functions on jet space J 1 R 2 . An important subfamily is the family of "symplectic" Monge-Ampère equations, when coefficients are assumed to be smooth functions on cotangent space T * R 2 . Contact geometry is then replaced by symplectic geometry. In this work, we will only consider Monge-Ampère with constant coefficients which fall in this symplectic subfamily. In higher dimensions, a Monge-Ampère equation is a linear combination of the minors of the hessian matrix

Hess(f ) = ∂ 2 f ∂q j ∂q k j,k=1...n .
As examples in dimension 4, we will cite the famous special lagrangian equation described by Harvey and Lawson, or Plebanski equations and Grant equation obtained by reduction of Yang-Mills equations and Einstein equations:

                       ∂ 2 f ∂x 1 ∂x 3 ∂ 2 f ∂x 2 ∂x 4 - ∂ 2 f ∂x 1 ∂x 4 ∂ 2 f ∂x 2 ∂x 3 = 1 (Plebanski I equation) ∂ 2 f ∂x 2 1 ∂ 2 ∂x 2 2 - ∂ 2 f ∂x 1 ∂x 2 2 + ∂ 2 f ∂x 2 ∂x 4 - ∂ 2 f ∂x 1 ∂x 3 = 0 (Plebanski II equation) ∂ 2 f ∂x 2 1 + ∂ 2 f ∂x 1 ∂x 2 ∂ 2 f ∂x 3 ∂x 4 - ∂ 2 f ∂x 1 ∂x 4 ∂ 2 f ∂x 2 ∂x 3 = 0 (Grant equation).
After the seminal paper of Lychagin ([25]), geometry of Monge-Ampère equations is quite well understood in 2 and 3 variables ( [26], [1], [2], [3]) but dimension 4 remains mysterious. This is actually the first dimension in which the space of equivalent classes (modulo a change of independent and dependent variables) is a real moduli space and discrete classification is not possible anymore. We propose here a method to reduce these 4 dimensional equations to complex equations in two variables.

In the first section, we recall the Lychagin correspondence between Monge-Ampère equations and effective forms on the phase space and we describe briefly classification results in dimension 2 and 3. In the second section, we assume that the phase space is endowed with an extra compatible complex structure and we define the notion of complex solution. We explain why complex solutions of a given Monge-Ampère equation depend only of its bieffective part. In the third section we use this method to construct explicit complex solutions of the special lagrangian equation, the real Monge-Ampère equations and the Plebanski equations.

1 Monge-Ampère operators and differential forms 1.1 An example: the special lagrangian equation

Let Ω = i 2 dz 1 ∧ dz 1 + . . . + dz n ∧ dz n be the canonical Kähler form on C n and α = dz 1 ∧ . . . ∧ dz n be the complex volume form. A special lagrangian submanifold is a real n-submanifold L which is lagrangian with respect to Ω and which satisfies the special condition Im(α)| L = 0.

These submanifolds, introduced by Harvey and Lawson in their famous article Calibrated Geometries ( [12]) are minimal submanifolds of C n , and more generally of Calabi-Yau manifolds, transverse in some sense to complex submanifolds. They have been extensively studied after the construction proposed by Strominger, Yau and Zaslow ( [27]) of mirror partners of Calabi-Yau manifolds based upon an hypothetic special lagrangian fibration.

Some examples have been given by many people. We can cite for example Harvey and Lawson ( [12]), Joyce ([18], [19], [20], [21] [22]) and Bryant ([6], [7], [8]).

For every smooth function f on R n , the graph

L f = (q + i ∂f ∂q ), q ∈ R n
is a lagrangian submanifold of C n . The special lagrangian condition becomes then a differential equation on f , called the special lagrangian equation:

• n = 2: ∆f = 0

• n = 3: ∆f -hess f = 0 • n = 4: ∆f -hess 1 f -hess 2 f -hess 3 f -hess 4 f = 0
with ∆f the Laplace operator, hess f the determinant of the hessian matrix and hess i f the (i, i)-minor of the hessian matrix. The Monge-Ampère operators theory developed by Lychagin ([25]) generalizes this correspondence between "calibrated" lagrangian submanifolds of R 2n and Monge-Ampère equations on R n .

The Monge-Ampère operators theory

Let M a n-dimensional manifold and T * M its cotangent bundle endowed with the symplectic canonical form Ω ∈ Ω 2 (T * M ). Denote by q = (q 1 , . . . , q n ) a coordinates system on M and (q, p) the corresponding Darboux coordinates system on T * M such that Ω = dq 1 ∧ dp 1 + . . . + dq n ∧ dp n .

Let ω ∈ Ω n (T * M ) be a n -differential form on the 2n dimensional manifold T * M . The Monge-Ampère operator ∆ ω :

C ∞ (M ) → Ω n (M ) is defined by ∆ ω (f ) = (df ) * (ω)
where df : M → T * M is the differential of the smooth function f . a) A regular solution of the MA equation ∆ ω = 0 is a smooth function f on M such that ∆ ω (f ) = 0. b) A generalized solution is a lagrangian submanifold L of (T * M, Ω) on which vanishes the form ω: Ω| L = 0 and ω| L = 0.

Note that a lagrangian submanifold of T * R n which projects isomorphically on R n is the graph of an exact form df : R n → T * R n . Hence, a generalized solution can be thought of as a smooth patching of local regular solutions. c) Two MA equations ∆ ω1 = 0 and ∆ ω2 = 0 are said (locally) equivalent if there exists a (local) symplectomorphism F : (T * M, Ω) → (T * M, Ω) such that

F * (ω 1 ) = ω 2 .
The symplectomorphism F transforms a generalized solution of ∆ ω2 = 0 into a generalized solution of ∆ ω1 = 0 but regular solutions are not preserved.

For any (n -2)-form θ, the equations ∆ ω = 0 and ∆ ω+θ∧Ω = 0 have the same solutions. We need also to introduce effective n-forms, which satisfy Ω ∧ ω = 0 and the so-called Hodge-Lepage-Lychagin theorem ( [25]) establishes a one-to-one correspondence between effective forms and MA operators:

Theorem (Hodge-Lepage-Lychagin). a) Every n-form ω can be uniquely decomposed ω = ω 0 + ω 1 ∧ Ω with ω 0 effective b) Two effective n-forms which vanish on the same lagrangian subspaces are proportional.

Example. Consider the 2-dimensional equation

hess f = 1.
The corresponding effective form is ω = dp 1 ∧ dp 2 -dq 1 ∧ dq 2 which is transformed into θ = dp 1 ∧ dq 2 + dq 1 ∧ dp 2 by the partial Legendre transformation

Φ : (q 1 , q 2 , p 1 , p 2 ) → (q 1 , p 2 , p 1 , -q 2 )
Hence, hess f = 1 is equivalent to the Laplace equation ∆f = 0. Choose then any harmonic function, for example f (q 1 , q 2 ) = e q1 cos(q 2 ). We obtain a generalized solution L = (q 1 , -e q1 sin(q 2 ), e q1 cos(q 2 ), -q 2 ); (q 1 , q 2 ) ∈ R 2 .

which is, on an open subset, the graph of the non trivial regular solution

u(t 1 , t 2 ) = t 2 arcsin(t 2 e -t1 ) + e 2t1 -t 2 2 .
We know from Jörgens theorem that this regular solution can not be defined on the whole plane.

Classification results for n = 2 and n = 3

In 1874, Sophus Lie raised the question of linearization of Monge-Ampère equations: when a given equation is equivalent to a linear one ? In the formalism of Monge-Ampère operators, this problem turns into a problem of the Geometric Invariant Theory. Studying action of the symplectic group on effective forms, a complete classification of equivalence classes of Monge-Ampère equations (with constant coefficients) has been obtained in [26] for n = 2 and in [26] and [2] for n = 3.

For n = 2, every MAE with constant coefficient is linearizable (table 1).

∆ ω = 0 ω pf (ω) Geometry ∆f = 0 dq 1 ∧ dp 2 -dq 2 ∧ dp 1 1 A 2 ω = -1 f = 0 dq 1 ∧ dp 2 + dq 2 ∧ dp 1 -1 A 2 ω = 1 ∂ 2 f ∂q 2 1 = 0 dq 1 ∧ dp 2 0 A 2 ω = 0 Table 1: Classification of 2-dimensional MAE
Here, the pfaffian pf(ω) is the scalar defined by ω ∧ ω = pf(ω) Ω ∧ Ω and A ω is the tensor defined by ω(• , •) = Ω(A ω • , •). It is a complex structure for the elliptic equation and a product structure for the hyperbolic equation. It is explained in [3] how this unifying geometry coïncides, in the particular dimension n = 2, with the famous generalized complex geometry introduced by Hitchin ( [15]) and Gualtieri ([11]).

For n = 3, there are three non linear Monge-Ampère equation: the real one, the special lagrangian one and the pseudo special lagrangian one (table 2).

In this table, ε(g ω ) is the signature of the Lychagin-Rubtsov metric (see [26]) defined by

g ω (X, Y )Ω 3 = ι X (ω) ∧ ι Y (ω) ∧ Ω,
and A ω is the Hitchin tensor ( [26]), defined for effective 3-forms by

g ω (A ω • , •) = Ω(• , •).
It is explained in [1] how these invariants define a geometry of real or complex Calabi-Yau type.

For dimensions 2 and 3, the quotient space of Monge-Ampère equations for the action of symplectic linear group G = Sp(2n, R) is thus a discrete space. More generally, a Monge-Ampère equation corresponds to a conformal class of an effective form ω. The orbit G • ω of this form is isomorphic to the quotient G/G ω where

∆ ω = 0 ε(g ω ) A ω 1 hess(f ) = 1 (3, 3) A 2 ω = 1 2 ∆f -hess(f ) = 0 (0, 6) A 2 ω = -1 3 f + hess(f ) = 0 (4, 2) A 2 ω = -1 4 ∆f = 0 (0, 3) A 2 ω = 0 5 f = 0 (2, 1) A 2 ω = 0 6 ∆ q2,q3 f = 0 (0, 1) A 2 ω = 0 7 q2,q3 f = 0 (1, 0) A 2 ω = 0 8 ∂ 2 f ∂q 2 1 = 0 (0, 0) A 2 ω = 0 Table 2: Classification of 3-dimensional MAE G ω = {F ∈ G, F * ω = ω}
is the stabilizer. For n = 4, the dimension of the group G = Sp(8, R) is 36, and dimension of the effective 4-forms space is 42. Dimensions of some stabilizers have been computed in [9] (table 3)

Equation Stabilizer's dimension SLAG 15 hess(f ) = 1 15 Plebanski I 13 Plebanski II 14 Linear ≥ 16 
Table 3: Stabilizers of some 4-dimensional MAE Moreover, generic effective forms have trivial stabilizer as it is explained in [26]. Hence, we need between 6 and 21 parameters to describe the quotient space around a Monge-Ampère equation.

Complex solutions and bieffective forms 2.1 Complex solutions

A complex structure J on manifold T * M is said to be compatible with symplectic form Ω, if

Ω J = Ω(J• , •) is a 2-form. The complex 2-form Θ J = Ω -iΩ J is then a complex symplectic form.
In Darboux coordinates, such a compatible complex structure writes as

J = A B C A t with          B t = -B, C t = -C A 2 + BC = -1 AB + BA t = 0 AC + CA t = 0
As in generalized complex geometry, there are two important families:

J = A 0 0 A t with A a complex structure on M and J = 0 θ -θ -1 0
with θ a symplectic form on M Definition. Let ∆ ω = 0 be a MAE on M and let J be a compatible complex structure on T * M . A J-complex solution is a lagrangian and J-complex submanifold L of T * M on which ω vanishes:

Ω| L = 0 ; J L = L ; ω| L = 0
It is worth mentioning that the condition "complex lagrangian" is equivalent to the condition "real bilagrangian" as it is proved in [16].

Proposition (Hitchin). Let (N, Ω 1 + iΩ 2 ) be a complex symplectic manifold of complex dimension 2m. A real 2m-dimensional submanifold is a complex lagrangian submanifold if and only it is lagrangian with respect to Ω 1 and Ω 2 .

Example. Let us identify C 4 with H 2 endowed with the three complex structures I, J and K. We still denote by Ω the I -Kähler form, Ω J = Ω(J• , •) and

Ω K = Ω(K• , •).
Then Ω-iΩ J is a J-complex symplectic form and it is well known that every J-complex lagrangian submanifold is special lagrangian.

In the formalism of Monge-Ampère operators, this can be seen very simply. It is actually straightforward to check that the special lagrangian form writes as

Im(α) = Ω J ∧ Ω K and therefore, if Ω| L = 0 and Ω J | L = 0 then Im(α)| L = 0.

Bieffective forms

Two MAE ∆ ω = 0 and ∆ ω+θ1∧Ω+θ2∧Ω J = 0 have the same J-complex solutions. To understand this complex reduction, we need then to construct the bieffective part of ω. This is the goal of this section.

Let V be a complex symplectic space of real dimension 4m endowed with a complex symplectic form Θ = Ω 1 + iΩ 2 . Denote by Λ k (V * ) the space of real k-forms on V and Λ p,q (V * ) the space of (p, q)-complex forms, such that

Λ k (V * ) ⊗ C = p+q=k Λ p,q (V * )
Let us introduce for j = 1, 2 the operators ⊤ j and ⊥ j defined by

     ⊤ j θ = θ ∧ Ω j ⊥ j θ = ι XΩ j (θ) with X Ωj the unique bivector satisfying Ω j (X Ωj ) = 1
They have the following properties ( [25])

a) ⊥ j : Λ k (V * ) → Λ k-2 (V * ) is into for k ≥ 2m + 1 b) ⊤ j : Λ k (V * ) → Λ k+2 (V * ) is into for k ≤ 2m -1 c) [⊥ j , ⊤ j ](θ) = (2m -k)θ for θ ∈ Λ k (V * ).
A k-form θ is said to be Ω j -effective if ⊥ j θ = 0. For k = 2m, this is equivalent to

⊤ j θ = 0. Let H = [⊥ 1 , ⊤ 1 ] = [⊥ 2 , ⊤ 2 ] and M = [⊥ 2 , ⊤ 1 ]
. We get then the complete list of so-called Lichnerowicz operators which satysfy the following (see [5]):

Proposition (Verbitskii -Bonan). [⊥ 1 , ⊤ 1 ] = H [⊥ 2 , ⊤ 2 ] = H [⊥ 1 , ⊤ 2 ] = -M [⊥ 2 , ⊤ 1 ] = M [⊥ 1 , ⊥ 2 ] = 0 [⊤ 1 , ⊤ 2 ] = 0 [⊥ 1 , H] = -2⊥ 1 [⊥ 2 , H] = -2⊥ 2 [⊤ 1 , H] = 2⊤ 1 [⊤ 2 , H] = 2⊤ 2 [⊥ 1 , M ] = -2⊥ 2 [⊥ 2 , M ] = 2⊥ 1 [⊤ 1 , M ] = -2⊤ 2 [⊤ 2 , M ] = 2⊤ 1 [H, M ] = 0
We obtain then a representation of the Lie algebra sl(2,

C)⊗sl(2, C) on Λ * (V * )⊗C, defining      E 1 = 1 2 (⊥ 1 + i⊥ 2 ) F 1 = 1 2 (⊤ 1 -i⊤ 2 ) H 1 = 1 2 (H + iM )      E 2 = 1 2 (⊥ 1 -i⊥ 2 ) F 2 = 1 2 (⊤ 1 + i⊤ 2 ) H 2 = 1
2 (H -iM ) Representation theory of Lie algebras gives us the existence and uniqueness of bieffective part of a 2m-form.

Theorem 1 ([4]

). Every 2m-form ω ∈ Λ 2m (V * ) can be decomposed into a sum

ω = ω 0 + ω 1 ∧ Ω 1 + ω 2 ∧ Ω 2
with ω 0 bieffective, that is ω 0 ∧ Ω 1 = 0 = ω 0 ∧ Ω 2 . Moreover the bieffective part ω 0 is unique.

Proof. From Weyl's theorem, we know that Λ * (V * )⊗C decomposes as a unique direct sum of irreducible subspaces. Let W such an irreducible subspace. Since H 1 and H 2 commute, they admit a common eigenvector x ∈ W . But E p 1 E q 2 x is also a common eigenvector. Their exist then p and q such that z = E p 1 E q 2 x is a primitive vector, that is E 1 z = E 2 z = 0. Therefore, W = Gz and every vector w in W writes as

w = j,k a jk F j 1 F k 2 z
We deduce that every 2m-form can be uniquely decomposed into a finite sum

ω = j,k (α jk + iβ jk ) ∧ (Ω 1 + iΩ 2 ) j ∧ (Ω 1 -iΩ 2 ) k
with α jk and β jk primitive. Noting now that 2m-primitive forms are the bieffective forms we obtain the result.

We give now an explicit formula for 4m = 8, which can be easily implemented on a computer. This action is completely described by Hong in [17]. Let us briefly explain this result. Let Q be a hermitian matrix and define the canonical form of Q as a direct sum of three hermitian matrices:

J(Q) = H P (Q) ⊕ K N (Q) ⊕ K C (Q) ,
which are obtained from Jordan blocks of Q as follows: a) H P (Q) = H m1 (λ 1 ) ⊕ . . . ⊕ H mp (λ q ), where all λ i ≥ 0 and λ 2 i are the positive eigenvalues of

QQ t . b) K N (Q) = K 2n1 (µ 1 ) ⊕ . . . ⊕ H 2nr (µ r )
, where all µ i > 0 and -µ 2 i are the negative eigenvalues of QQ t . c) K C (Q) = L 2k1 (ξ 1 ) ⊕ . . . ⊕ L 2ks (ξ s ), where ξ 2 i are the non real eigenvalues of QQ t , with

K 2n (µ) = 0 -iH n (µ) iH n (µ) 0 , L 2k (ξ) = 0 H k (ξ) H ⋆ k (ξ) 0 and 2H m (λ) =           0 0 . . . 0 1 2λ 0 . . . 0 1 2λ 1 . . . . . . 1 2λ 1 0 . . . 1 2λ 1 . . . . . . 1 2λ 1 . . . 0 0 2λ 1 0 . . . 0 0           + i           0 1 0 . . . 0 0 -1 0 1 . . . 0 0 . . . -1 0 1 . . . . . . . . . . . . -1 0 1 0 0 . . . 0 -1 0 1 0 0 . . . 0 -1 0          
Theorem (Hong). Let Q be a hermitian matrix. Then there exists F complex orthogonal and ε = (ε 1 , . . . , ε p )

with ε i = ±1 such that F t QF = J ε (Q) with J ε (Q) = H ε P (Q)⊕K N (Q)⊕K C (Q) = ε 1 H m1 (λ 1 )⊕. . .⊕ε p H mp (λ q ) ⊕K N (Q)⊕K C (Q)
It is therefore difficult to give a complete classification of all possible complex reductions. Nevertheless, to characterize the orbit of a bieffective form ω, it is necessary to know

a) the signature ε(Q ω ) of Q ω , b) the spectrum of Q ω Q t ω
. and it will be sufficient for the examples we are interested in.

The complex lagrangian grassmannian

Denote by Gr ω the set of all complex lagrangian planes of the complex symplectic space (V, Θ) on which vanishes the bieffective form ω.

The complex isomorphism Θ : V → Λ 1,0 (V * ) transforms a complex basis of such a plane L into a decomposable effective (2, 0) forms θ L ∈ Λ 2,0 0 (V * ). Note that θ L is decomposable if and only if θ L ∧ θ L = 0.

Moreover, the condition ω| L = 0 is equivalent to the condition ω ∧ θ L ∧ θ L = 0.

Proposition. The grassmannian Gr ω identifies with the real algebraic subvariety of P 4 (C) = P (Λ 2,0 0 ) defined by θ ∧ θ = 0 and Q ω (θ) = 0.

Remark. This grassmannian could be empty, for example if Q ω is positive-definite. It could happen therefore that the Monge-Ampère equation ∆ ω = 0 has no generalized complex solution.

3 Some examples in dimension 4

3.1 The choice of the complex structure

The crucial point in this method is the choice of the compatible complex structure, which should depend on the initial Monge-Ampère equation. We choose here five simple complex structures, and give a corresponding complex Darboux coordinates system (z 1 , z 2 , u 1 , u 2 ) in which

Θ J = Ω -iΩ J = dz 1 ∧ du 1 + dz 2 ∧ du 2
The initial coordinate systems on T * R 4 is still (q, p) with

Ω = dq 1 ∧ dp 1 + dq 2 ∧ dp 2 + dq 3 ∧ dp 3 + dq 4 ∧ dp 4 .
We define

A =     0 -1 0 0 1 0 0 0 0 0 0 -1 0 0 1 0     ; Ã =     0 -1 0 0 1 0 0 0 0 0 0 1 0 0 -1 0     ; A 2 =     1 -2 0 0 1 -1 0 0 0 0 1 -2 0 0 1 -1     and J = A 0 0 A t z 1 = q 1 + iq 2 u 1 = p 1 -ip 2 z 2 = q 3 + iq 4 u 2 = p 3 -ip 4 K = 0 A A 0 z 1 = q 1 + ip 2 u 1 = iq 2 + p 1 z 2 = q 3 + ip 4 u 2 = iq 4 + p 3 J = Ã 0 0 Ãt z 1 = q 1 + iq 2 u 1 = p 1 -ip 2 z 2 = q 3 -iq 4 u 2 = p 3 + ip 4 K = 0 Ã Ã 0 z 1 = q 1 + ip 2 u 1 = iq 2 + p 1 z 2 = q 3 -ip 4 u 2 = -iq 4 + p 3 J 2 = A 2 0 0 A t 2 z 1 = q 1 + (-1 + i)q 2 u 1 = (1 -i)p 1 -ip 2 z 2 = q 3 + (-1 + i)q 4 u 2 = (1 -i)p 3 -ip 4

Examples

We study now the special lagrangian equation, the two real Monge Ampère equations hess f = ±1, the two Plebanski equations and the Grant equation. The corresponding effective forms on (T * R 4 , Ω) are:

ω SLAG = Im dq 1 + idp 1 ) ∧ (dq 2 + idp 2 ) ∧ (dq 3 + idp 3 ) ∧ (dq 4 + idp 4 ) ω H+ = dp 1 ∧ dp 2 ∧ dp 3 ∧ dp 4 -dq 1 ∧ dq 2 ∧ dq 3 ∧ dq 4 ω H-= dp 1 ∧ dp 2 ∧ dp 3 ∧ dp 4 + dq 1 ∧ dq 2 ∧ dq 3 ∧ dq 4 ω P I = dq 1 ∧ dq 2 ∧ dp 1 ∧ dp 2 -dq 1 ∧ dq 2 ∧ dq 3 ∧ dq 4 ω P II = dq 1 ∧ dq 2 + dq 3 ∧ dp 2 + dq 1 ∧ dq 2 ∧ dq 4 ∧ dp 1 + dq 3 ∧ dq 4 ∧ dp 1 ∧ dp 2 ω G = dq 2 ∧ dq 3 ∧ dq 4 ∧ dp 1 -dq 1 ∧ dq 3 ∧ dp 1 ∧ dp 3
We compute for the five compatible complex structures defined above the bieffective part of these forms and the signature of the hermitian form associated with. These invariants are given in table 5 and have to be compared with invariants for simple complex equations given in table 4.

In table 4, φ is a holomorphic function in (z 1 , z 2 ) and we note

φ jk = ∂ 2 φ ∂z j ∂z k . ε(Q ω ) ∆ ω = 0 spectrum(Q ω Q t ω ) |φ 11 | 2 = 0 (0,0,0,0,0) (1,0) |φ 12 | 2 = 0 (1,0,0,0,0) |φ 11 | 2 = 1 (0,0,0,0,0) (1,1) |φ 12 | 2 = 1 (1,0,0,0,0) |φ 11 | 2 -|φ 22 | 2 = 0 (-1,-1,0,0,0) |φ 11 | 2 + |φ 12 | 2 = 0 (1,0,0,0,0) (2,0) |φ 11 | 2 + |φ 22 | 2 = 0 (1,1,0,0,0) |φ 11 | 2 + |φ 12 | 2 = 1
(1,0,0,0,0) (2,1) φ 12 + φ 12 -|φ 11 | 2 = 0 (0,0,0,0,0) Table 4: Simple complex Monge-Ampère equations in complex dimension 2

Equation J K J K J 2 SLAG 0 0 0 0 (1,1) hess(f ) = 1 (1,1) 0 (1,1) 0 (1,1) hess(f ) = -1 (2,0) (3,2) (2,0) (3,2) (2,0) Plebanski I (2,0) (3,2) (1,1) (3,2) (2,0) Plebanski II (2,1) (3,2) (1,0) (3,2) (2,1) Grant (3,2) (3,2) (3,2) (3,2) (3,2)
Table 5: Invariants for some Monge-Ampère equations in dimension 4

We see in table 5 that this method fails for the Grant equation, at least for this choice of complex structures: signature is always (3,2) and the corresponding complex equation is therefore fully non degenerate. We study the other cases in more details.

Special lagrangian equation

As, we have seen the special lagrangian form ω SLAG has zero bieffective part for J and for K since ω SLAG = Ω J ∧ Ω K This is the best situation, since every complex lagrangian submanifold is solution. We note that this is the same for J and K and more generally for any complex structure J = F -1 JF with F in SU (4), since

ω SLAG = F * ω SLAG = F * Ω J ∧ F * Ω K = Ω F -1 JF ∧ Ω F -1 KF
Nevertheless, it does not give new solutions: we already know that the action of F ∈ SU (n) transforms a special lagrangian submanifold into an other special lagrangian submanifold. This is the reason of the choice of J 2 : we were looking for a simple complex structure which is not in so( 8) in order to construct other examples of solutions.

In the complex Darboux coordinates system, the bieffective part is where (Z 1 , Z 2 , U 1 , U 2 ) is the complex Darboux coordinates system

ω BE SLAG = 1 8 (1 + 2i)dz 1 ∧ dz 2 ∧ dz 1 ∧ du 2 + (-1 -2i)dz 1 ∧ dz 2 ∧ dz 2 ∧ du 1 + (1 -2i)dz 1 ∧ du 2 ∧
Z 1 = αz 1 + α -1 u 1 i √ 2 ; U 1 = αz 1 -α -1 u 1 i √ 2 Z 2 = αz 2 -α -1 u 2 √ 2 ; U 2 = αz 2 + α -1 u 2 √ 2 α 2 = 1 + 2i √ 5 
We obtain then the following result: Then F -1 (L φ ) is special lagrangian in (T * R 4 , Ω, ω SLAG ) where F (q, p) = (z, u) with

z 1 = αq 1 + (-1 + i)αq 2 + (1 -i)α -1 p 1 -iα -1 p 2 i √ 2 
z 2 = αq 3 + (-1 + i)αq 4 -(1 -i)α -1 p 3 + iα -1 p 4 √ 2 
u 1 = αq 1 + (-1 + i)αq 2 -(1 -i)α -1 p 1 + iα -1 p 2 i √ 2 
u 2 = αq 3 + (-1 + i)αq 4 + (1 -i)α -1 p 3 -iα -1 p 4 √ 2 

Real Monge-Ampère equations

For every holomorphic function φ = f + ig : C 2 → C, we have hess R f = | hess C φ| 2 so for J, J and J 2 , which come from complex structures on R 4 , the complex reduction of hess f = ±1 are | hess φ| 2 = ±1 which are equivalent to

∂ 2 ψ ∂z 2 1 2 = ± ∂ 2 ψ ∂z 2 2 2
For example, for J, the corresponding symplectomorphism is the partial Legendre transform G(z 1 , z 2 , u 1 , u 2 ) = (u 1 , z 2 , -z 1 , u 2 )

We obtain then the following results:

Proposition 2. Let φ be a holomorphic solution of

∂ 2 φ ∂z 2 1 2 - ∂ 2 φ ∂z 2 2 2 = 0
Then G -1 (L φ ) is a generalized solution of hess f = 1 with G(q, p) = (p 1 -ip 2 , q 3 + iq 4 , -q 1 -iq 2 , p 3 -ip 4 ) Proposition 3. Let φ a holomorphic function of the form φ(z 1 , z 2 ) = a(z 1 )b(z 2 ). Then G -1 (L φ ) is a generalized solution of hess f = -1.

Moreover, we see in table 5 that ω H+ has no bieffective part for K and K. We get immediately Proposition 4: This result is underlying the strong relationship there is between special lagrangian geometry and "real special lagrangian" geometry or "split special lagrangian geometry", as described in [13].

Plebanski equations

Computing the bieffective part of ω P I , we obtain that the J-complex reduction of Plebanski I equation is Then its real part is a regular solution of Plebanski I equation. Then its real part is a regular solution of Plebanski II equation.

Conclusion

Studying geometry of 4-bieffective forms on R 8 , we have reduced important equations in Physic to simple -but non empty -complex equations. This has been done for arbitraries complex structures. It would be interesting now, for a given equation in four variables, to study all possible compatible complex structures and to parameterize in this way analytical solutions by pair of compatible complex structures on R 8 , and holomorphic functions on C 2 . Note that bieffective part still exists for 2m-forms on R 4m and such a parametrization should also exist for equations with 2m variables.

A more global approach would be also interesting. We have considered only complex structures with constant coefficients but our decomposition theorem remains valid on a complex symplectic manifold. This suggests to understand "Monge-Ampère calibrations" on complex symplectic manifolds as a generalization of the special lagrangian calibration on HyperKähler manifolds.

Proposition 1 .

 1 Let φ be a holomorphic solution of let L φ be the submanifoldL φ = (z 1 , z 2 , ∂φ ∂z 1 , ∂φ ∂z 2 ) ⊂ C 4 .

Proposition 4 .

 4 Any complex lagrangian surface in (T * R 4 , Ω, K) or (T * R 4 , Ω, K) is a generalized solution of hess f = 1.

|φ 11 | 2 = - 1 whichProposition 5 . 1 Proposition 6 .

 21516 is equivalent up the partial Legendre transform G to|ψ 11 | 2 + |ψ 12 | 2 = 0 Let φ a holomorphic function of the form φ(z 1 , z 2 ) = az 1 + b(z 2 ). Then G -1 (L φ ) is a generalized solution of Plebanski I equation.Similarly, the J-complex reduction is|φ 12 | 2 = Let φ a holomorphic function on (R 4 , Ã) of the form φ(z 1 , z 2 ) = z 1 z 2 + a(z 1 ) + b(z 2 ).

Finally, same computationsProposition 7 .Proposition 8 .

 78 give analog results for Plebanski II equation: Let φ a holomorphic function on (R 4 , A) of φ 12 + φ 12 + |φ 11 | 2 = 0 Then its real part is a regular solution of Plebanski II equation. Let φ a holomorphic function on (R 4 , Ã) of the form φ(z 1 , z 2 ) = a(z 2 ) + b(z 2 )z 1 .

Table 2 :

 2 Classification of 3-dimension MAEG ω = {F ∈ G, F * ω = ω} is the stabilizer. For n = 4, the dimension of the group

	G = Sp(8, R) is 36, and dimension of the effective 4-forms space is 42. Dimensions of
	some stabilizers have been computed in [9] (table 3)
	Equation	Stabilizer's dimension
	SLAG	15
	hess(f ) = 1	15
	Plebanski I	13
	Plebanski II	14
	Linear	≥ 16
	Table 3: Stabilizers of some 4-dimensional MAE
	Hence, generic orbits are 21-dimensional in a 42-dimensional space and 21 param-
	eters are needed to describe the quotient space.

  dz 1 ∧ dz 2 + (1 + 2i)dz 1 ∧ du 2 ∧ du 1 ∧ du 2 + (-1 + 2i)dz 1 ∧ du 1 ∧ dz 1 ∧ dz 2 + (-1 -2i)dz 2 ∧ du 1 ∧ du 1 ∧ du 2 + (1 -2i)du 1 ∧ du 2 ∧ dz 1 ∧ du 2 + (-1 + 2i)du 1 ∧ du 2 ∧ dz 2 ∧ du 1 ∧ dU 2 ∧ dZ 1 ∧ dU 2 -dZ 2 ∧ dU 1 ∧ dZ 2 ∧ dU 1

	and this is straightforward to check that
	ω BE SLAG =	√ 5 4	dZ 1
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Proposition. In dimension 8, the bieffective par ω 0 of a 4-form ω is

where

Proof. We know that

with ω 0 , ω 1 and ω 2 primitive. Using Verbitskii-Bonan relations, we obtain

Starting from ⊥ 2 ω we obtain also

Therefore,

and therefore

Action of the complex symplectic group

For simplicity, we restrict now to complex dimension 4: V is a 4-dimensional complex vector space endowed with a complex symplectic form Θ = Ω 1 + iΩ 2 . The space of real bieffective 4-forms is

Let Λ 2,0 0 (V * ) be the 5 -dimensional complex vector space of (2, 0)-complex forms which are effective with respect to Θ = Ω 1 + iΩ 2 :

The exterior product is non degenerate on Λ 2,0 0 (V * ) and it defines a non degenerate symmetric inner product

We are going to identify bieffective forms with hermitian forms on Λ 2,0 0 (V * ). Definition. The hermitian form Q ω on C 5 = Λ 2,0 0 (V * ) associated with a bieffective 4-form ω is:

Theorem 2. The map

Moreover, the group Sp(4, C)/Z 2 identifies with SO(5, C) and its action on Λ 4 BE (V * ) is the Hermite action of SO(5, C) on su (5).

Proof. We prove first that Λ 4 BE (V * ) = Λ 2,0 0 (V * ) ⊗ Λ 2,0 0 (V * ). Let ω ∈ Λ 4 BE (V * ) and consider its decomposition ω = ω 40 + ω 31 + ω 22 + ω 13 + ω 04 with ω pq ∈ Λ p,q (V * ). Since ⊥ C : Λ p,q (V * ) → Λ p-2,q (V * ) is into for p ≥ 3 and ⊥ C : Λ p,q (V * ) → Λ p,q-2 (V * ) is into for q ≥ 3, and since

We deduce that Λ 4 BE (V * ) and su(5) have same dimension. Since ω → Q ω is injective, this is an isomorphism. Now, the action of Sp(4, C) preserves this symmetric product, with kernel Z 2 . Since dim C (Sp(4, C)) = 10 = dim C (SO(5, C)), we deduce that Sp(4, C)/Z 2 = SO(5, C).

Moreover, we have