
HAL Id: hal-01304012
https://hal.science/hal-01304012v1

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Appropriate Design Guided by Simulation: An
Hovercraft Application

Julien Alexandre Dit Sandretto, Douglas Piccani de Souza, Alexandre
Chapoutot

To cite this version:
Julien Alexandre Dit Sandretto, Douglas Piccani de Souza, Alexandre Chapoutot. Appropriate De-
sign Guided by Simulation: An Hovercraft Application. Workshop on Model-Driven Robot Software
Engineering, Jul 2016, Leipzig, Germany. �10.1145/3022099.3022100�. �hal-01304012�

https://hal.science/hal-01304012v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Appropriate Design Guided by Simulation: An Hovercraft

Application

Julien Alexandre dit Sandretto,
Douglas Picciani de Suza, and Alexandre Chapoutot

U2IS, ENSTA ParisTech, Université Paris-Saclay
828 bd des Maréchaux 91762 Palaiseau cedex France

{alexandre,piccani,chapoutot}@ensta.fr

March 2016

Abstract

A design methodology based on simulation of dynamical behavior is presented in this paper.
The particularity of our method is that it exploits the set-membership simulation. Indeed, this
method allows one to consider an interval of values for each parameter of the dynamical model.
Finding the parameters validating the requirements is then a filter, based on a Branch and Prune
algorithm. We prefer an approach of appropriate design that is a design which validates the physical
constraints coming from requirements, to an optimal design which does not lead to satisfy imperative
requirements. Our method is described and applied on the complex problem of design of an hovercraft
under dynamic requirements.

1 Introduction

During the design process of a complex system such as a vehicle (aircraft, ship, etc.), a chemistry device
or a production chain, it is usual to define constraints on the behavior of the futur system (see [8] for
a list of design applications), i.e., on its temporal evolution or its dynamics. These constraints come
from the requirements defined during the engineering step. The most common approach to model the
behavior of a complex system uses differential equations such as Ordinary Differential Equations (ODEs).
On contrary, there is no standard method to validate the requirements over the dynamics of the system.

One well known method, consisting in Monte-Carlo simulations for estimating the behavior of a
system, is often used to solve design problems. This method cannot try all the possible configurations
with continuous valued parameters and quickly leads to a combinatorial problem. Moreover, it is not
easy to manipulate uncertainties with this method, which are important in design of complex systems [7].

In a Multidisciplinary Design Optimization (MDO) process, one may consider the influence of the
physical process variability, information uncertainty and the choice of modeling on the design. If it is
different than a behavior constrained approach, it focuses on the uncertainties [2]. A common solution to
the issue of uncertainties is to use a probabilistic approach [15]. Unfortunately, this approach does not
provide guarantee on the requirement validation.

Finally, two main approaches can be used to solve a design problem

• Optimal design, which tries to find the best design w.r.t. a given cost, even if not feasible in the
sense of requirements;

• Appropriate design, which tries to find one feasible design, but does not consider the cost of the
solution.

We can notice that some methods mix both approaches such as [8]. If optimization approach is not
directly linked to the possible values of design parameters [12], the appropriate design based on interval
analysis searches design parameters into intervals [16].

Another similar method uses intervals and Branch and Bound algorithm to find a feasible and optimal
solution [21]. Both of these interval-based methods do not consider the dynamics of the studied system.
We propose in this paper an interval-based method using set-membership simulation and constraint

1

satisfaction problem (CSP) formalism. Our method is tested on the design of an hovercraft, which is an
application very close to [19].

After some preliminary definitions, we present our design methodology in three sections. We describe
two tools in sections 2 and 3, before presenting the complete algorithm in Section 4. Then we apply our
method on the design of an hovercraft and present the results in Section 5. Section 6 concludes.

Notation and Definitions

The main underlying tool, used in our design methodology, is interval analysis [17]. In the following, we
will often use the notation [x] ∈ IR (the set of intervals with real bounds) with [x] = [x, x] = {x ∈ R |
x 6 x 6 x} denoting an interval. By abuse of notation, [x] will also denote a vector of intervals, i.e., a
Cartesian product of intervals, a.k.a. a box. We now introduce two fundamental definitions.

Definition 1 Consider an Ordinary Differential Equation (ODE) with a given initial condition

ẋ(t) = f(t, x(t), p) with x(0) ∈ [x0], p ∈ [p], (1)

with f : R+ × Rn × Rm → Rn assumed to be continuous in t and p and globally Lipschitz in x. We
assume that parameters p are bounded. An Initial Value Problem (IVP) consists in finding a function
x(t) described by the ODE (1) for all p lying in [p] and for all the initial conditions in [x0].

Definition 2 A numerical (or continuous) Constraint Satisfaction Problem (CSP) (X ,D, C) is defined
as follows:

• X = {x1, . . . , xn} is a set of variables;

• D = {[x1], . . . , [xn]} is a set of domains ([xi] contains all possible values of xi);

• C = {c1, . . . , cm} is a set of constraints.

A valuation (v1, . . . , vn), vi ∈ [xi] with i = 1, . . . , n, of a CSP can be classified as i) accepted if it
satisfies all the constraints; ii) rejected if it does not satisfies at least one constraint; or iii) uncertain if it
partially satisfies, in a set-theoretic sense, at least one constraint and satisfies all the others constraints.
Many methods have been developed to solve CSPs, such as [14] and [20].

In order to be able to consider ODEs in CSP formalism, two main approaches can be distinguished.
First, [10] has shown that it is possible to consider ODE directly in CSP in an elegant manner by
considering the solution x(t) of (1) as a function involved into a constraint c. Second, [6] has defined a
new extended formalism named Constraint Satisfaction Differential Problem (CSDP). In this formalism,
the differential constraint is clearly identified. We place our approach in the first and classical formalism
of CSP, and we do not give more details, the implementation being out of the scope of this paper.

2 Set-based Simulation

Several methods exist to solve (1) involving interval values such as [18, 1]. In this section, we describe
our approach for validated simulation based on Runge-Kutta methods [5, 1].

A numerical integration method computes a sequence of approximations (tn, xn) of the solution x(t;x0)
of the IVP defined in Equation (1) such that xn ≈ x(tn;xn−1). The simplest method is Euler’s method in
which tn+1 = tn+h for some step-size h and xn+1 = xn+h×f(tn, xn, p); so the derivative of x at time tn,
f(tn, xn, p), is used as an approximation of the derivative on the whole time interval to perform a linear
interpolation. This method is very simple and fast, but requires small step-sizes. More advanced methods
coming from the Runge-Kutta family use a few intermediate computations to improve the approximation
of the derivative. The general form of an s-stage Runge-Kutta formula, that is using s evaluations of f ,
is

xn+1 = xn + h

s∑
i=1

biki , (2a)

ki = f
(
tn + cih, xn + h

s∑
j=1

aijkj , p
)
, i = 1, 2, . . . , s . (2b)

2

The coefficients ci, aij and bi fully characterize the method. To make Runge-Kutta validated, the
challenging question is how to compute a bound on the distance between the true solution and the
numerical solution, defined by x(tn;xn−1) − xn. This distance is related to the local truncation error
(LTE) of the numerical method.

To bound the LTE, we rely on order condition [11] respected by all Runge-Kutta methods. This
condition states that a method of this family is of order O iff the O + 1 first coefficients of the Taylor
expansion of the solution and the Taylor expansion of the numerical methods are equal. In consequence,
LTE is proportional to the Lagrange remainders of Taylor expansions. Formally, LTE is defined by
(see [5]):

x(tn;xn−1)− xn =

hO+1

(O + 1)!

(
f (O) (ξ, x(ξ;xn−1), p)− dO+1φ

dtO+1
(η)

)
ξ ∈]tn, tn+1[and η ∈]tn, tn+1[. (3)

The function f (n) stands for the n-th derivative of function f w.r.t. time t that is dnf
dtn and h = tn+1− tn

is the step-size. The function φ : R→ Rn is defined by φ(t) = xn +h
∑s
i=1 biki(t) where ki(t) are defined

as Equation (2b).
The challenge to make Runge-Kutta integration schemes safe w.r.t. the true solution of IVP is

then to compute a bound of the result of Equation (3). In other words we have to bound the value

of f (O) (ξ, x(ξ;xn−1), p) and the value of dO+1φ
dtO+1 (η). The latter expression is straightforward to bound

because the function φ only depends on the value of the step-size h, and so does its (O+ 1)-th derivative.
The bound is then obtain using interval analysis tools.

However, the expression f (O) (ξ, x(ξ;xn−1), p) is not so easy to bound as it requires to evaluate f for
a particular value of the IVP solution x(ξ;xn−1) at an unknown time ξ ∈]tn, tn+1[. The solution used is
the same as the one found in [18] and it requires to bound the solution of IVP on the interval [tn, tn+1].
This bound is usually computed using the Banach’s fixpoint theorem applied with the Picard-Lindelöf
operator, see [18]. This operator is used to compute an enclosure of the solution [x̃] of IVP over a time
interval [tn, tn+1], that is for all t ∈ [tn, tn+1], x(t;xn−1) ∈ [x̃]. We can hence bound f (O) substituting
x(ξ;xn−1) by [x̃].

3 From requirements to CSP

During the process of design a system, it is common to define some requirements on its behavior, in
particular for functional requirements. One requirement on the behavior of a system can be decomposed
as one scenario to follow and one or more criteria to fulfill (see theory of System Engineering [4]). Our
approach exploits the fact that a scenario can be simulated while each criterion can be translated into
a constraint. Then, a design problem is equivalent to find the design parameters which validate the
requirement by simulating the related scenario and by verifying a CSP.

Figure 1 shows an example of the use of constraints on a solution of a validated simulation. The
square in black represents the hovercraft position, computed by validated simulation, at some instants.
We set constraints which are represented by green boxes (for valid sets) and red boxes (for invalid sets).
The constraints can then be of different types, for example: (OK-1) Hovercraft stays inside a valid set ;
(OK-2) Hovercraft finishes in a valid set; (NOK-3) Hovercraft avoids an obstacle; and (NOK-4) Hovercraft
is not in an invalid state at a given time. Constraints OK-1, NOK-3 and NOK-4 are associated to safety
constraints while Constraint OK-2 is associated to a functional requirement.

4 Appropriate design algorithms

The modeling parameters can be split into two parts: the design parameters and the other ones, such
that p = {pdesign, pmodel}. The model parameters pmodel are fixed and can not be changed by the design.
Nevertheless, they can be uncertain and then bounded in intervals (due to uncertainties on construction
or modeling). The design parameters pdesign, taken inside intervals of possible values (depending on
construction constraints, part available on the market, etc.) will be filtered till they validate all the
requirements. For that, we use the classical Branch and Prune algorithm which is efficient for CSP
solving [13, 3].

3

OK-1

NOK-4

NOK-3

OK-2

Figure 1: Example of solution by simulation with interval analysis and some allowed constraints in green
and prohibited constraints in red.

4.1 Branch and Prune

A Branch and Prune algorithm consists on alternatively branching and pruning to produce two sub-
pavings L and S, with L the boxes too small to be bisected and S the solution boxes. We are then sure
that all the solutions are included in L ∪ S and that every point in S is solution.

Literally, this algorithm browses a list of boxes and for each one i) Prune: the CSP is evaluated (or
contracted) on the current box, if it is a solution it is added to S, otherwise ii) Branch: if the box is large
enough, it is bisected and the two boxes resulting are added to the main list, otherwise the box is added
to L.

4.2 Propagation

If a variable domain has been reduced, the reduction is propagated to all constraints on that variable,
which allows one to narrow the other variables domains. This process is repeated till a fixed point is
reached (or gain too small w.r.t. computation). In our case, it is important to note that if a parameter
design pdesign is reduced, all the simulation need to be computed again.

4.3 Design Algorithm

Figure 2: Schematic of the design methodology for one requirement.

A diagram of the proposed design methodology is presented in Figure 2 for only one requirement. A
requirement comes with a scenario and some constraints to verify over this scenario. This part represents
the engineering process of design. Another part, the mathematical one, provides a model of the considered

4

system. This model comes with some parameters that we want to compute in order to obtain a design
which validates the requirement. This model is used in the simulation process to obtain the behavior of
the system over the scenario. Then, CSPs are applied to this behavior to verify the constraints defined
by the requirement. If the result of CSPs is positive then the set of design parameters is accepted, if the
solution does not respect one of the CSPs then the set of design parameters is rejected. In other case, we
classify it as uncertain and bisect the set of design parameters to perform a new analysis on each part.
It is a classical Branch and Prune algorithm supplemented with set-membership simulation to deal with
ODEs.

Algorithm 1 The design methodology.

Require: Stack = ∅, Stackacc = ∅, Stackrej = ∅, Stackunc = ∅, [par]0 ⊂ Rn
Push [par]0 in Stack
while Stack 6= ∅ do

Pop a [par] from Stack
∀Si ∈ {S1, ...Sm} compute Soli solution using Simulation Si with [par] parameters
if ∀j ∈ {1, ..., m̃i}, CSP i j accept(Soli) then

Push [par] in Stackaccepted
else if ∃j ∈ {1, ..., m̃i} : CSP i j reject(Soli) then

Push [par] in Stackrejected
else if width([par]) > lim then

([parleft], [parright]) = Bisect([par])
Push [parleft] in Stack
Push [parright] in Stack

else
Push [par] in Stackuncertain

end if
end while

A general algorithm to handle more than one requirement is presented in Algorithm 1. In this
algorithm, we use both CSP for acceptance and CSP for rejection to speed up the algorithm. Note that
a CSP for rejection can be seen as the negation b̄ of a Boolean formula b, i.e., the values that satisfy b
are not satisfy b̄ and reciprocally. Hence, if we found values (v1, . . . , vn) satisfying a CSP rejection we
know that (v1, . . . , vn) does not satisfy the CSP and so we can look for an other valuation.

5 An hovercraft design

We are currently developing many autonomous small vehicles. One of them is an hovercraft, which has
many advantages but also a complex behavior. In order to build an efficient platform, we performed a
design step with our method previously presented.

5.1 Problem Definition

The starting point to model this particular vehicle is the study of surface ships [9]. It helps to define
a generic model of the dynamics of a rigid-body with 6 degrees of freedom. Applying some physical
constraints, such as lying on a plane surface (altitude fixed to zero), and assuming that the body-fixed
reference frame is placed at the center of gravity, the mathematical model is given by Equation (4) that
is

u̇ = vr +
1

m
X (4a)

v̇ = −ur +
1

m
Y (4b)

ṙ =
1

Iz
N (4c)

ẋ = cos(ψ)u− sin(ψ)v (4d)

ẏ = sin(ψ)u+ cos(ψ)v (4e)

ψ̇ = r (4f)

5

The function u stands for rectilinear acceleration in x-axis while v stands for rectilinear acceleration in
the y-axis. r stands for the angular acceleration while ψ is the angular velocity. The positions of the
hovercraft are given by x and y.

The forces and moments considered are related to the motor propulsion, the air resistance, the friction
on the ground, damping and rudder. They act on the system by X,Y,N as exposed in equations (5)
to (7).

X = Fu − µsecNf(u)
u√

u2 + v2
− 1

2
ρCdSu

√
u2 + v2u

−D11u (5)

Y =
1

4A
CLSvFuδ − µsecNf(v)

v√
u2 + v2

− 1

2
ρCdSv

√
u2 + v2v −D22v (6)

N = −L 1

4A
CLSgFuδ −D33r (7)

where f is a regularization function avoiding discontinuity between the static and the dynamic dry
frictions.

Table 1 gives the physical meanings of all the parameters used in (4) to (7) with their SI units. Design
parameters, i.e., those which will be used in CSP, are in bold font.

Table 1: Model and design (in bold) parameters
Param. Description IS Units

m Mass kg

Iz Inertia moment in relation
to the axis z

kg.m2

Cd Air resistance coefficient none

Su Frontal surface area m2

Sv Side surface area m2

ρ Air density kg.m−3

µsec Ground friction coefficient none

D11 Damping in relation to the axis
x

kg.s−1

D22 Damping in relation to the axis
y

kg.s−1

D33 Damping in relation to the axis
z

kg.s−1

xG x-Coordinate of the gravity cen-
ter

m

yG y-Coordinate of the gravity cen-
ter

m

CFu Propulsion coefficient none

D Propulsion propeller diam-
eter

m

CL Rudder lift coefficient rad−1

Sg Rudder area m2

L Distance between CG and
the rudder aerodynamic
center

m

5.2 Parameters configuration

Table 2 shows the chosen values, points or intervals, of each of the mathematical model parameters. The
design parameters m, Iz, D, Sg, L imply that our research space is in R5. The domains adopted by these
parameters determine a space region where one will perform the task to find a point in this region with
the values that lead to a validated design configuration, w.r.t. requirements. In this application, some
parameters are taken in continuous domains (i.e., the mass m) and some other are discrete modeling.

6

Discrete values represent a finite number of physical components that can be used to implement the
hovercraft such as the propulsion propeller diameter D. Remark that our algorithm straightforwardly
handles both kinds of parameter values.

Table 2: Values of the parameters
Model parameters

Cd 0.6
Su 0.1276
Sv 0.2146
ρ 1.225
D11 0
D22 0.2
D33 0.1
xG 0
yG 0
CFu 1.339
CL 1.891

Design parameters

m [1.0, 1.3]
Iz [0.05, 0.08]
D { 0.127, 0.1524, 0.1778, 0.2032, 0.2286 }
Sg { 0.0042, 0.005, 0.0059, 0.0067, 0.0075, 0.0084,

0.0101, 0.0117, 0.0126, 0.0134, 0.014, 0.0151,
0.0168, 0.0176, 0.0196, 0.0201, 0.0224, 0.0226,
0.0235, 0.0251, 0.0268, 0.0279, 0.0302, 0.0335,
0.0352, 0.0391, 0.0402, 0.0419, 0.0447, 0.0453,
0.0503, 0.0587, 0.0671, 0.0754 }

L [0.25 , 0.35]

For example, if we pick two different points in the design parameter space, we are able to simulate a
scenario which provides two very different behaviors, see Figure 3.

Figure 3: Two simulation solutions with different punctual values of the design parameters.

5.3 Requirements on Behavior

In this section, we show how requirements on the behavior of the hovercraft can be translated into a
simulation scenario and a CSP. For the hovercraft case study, we will consider four requirements each of
them is described in a separated section.

In the rest of this section, a simulation scenario is defined by i) the initial condition associated to (4);
ii) the control law used to obtain the desired behavior of the hovercraft; and iii) a simulation duration.
Each CSP will be described by the list of variables, their domains and a set of constraints.

7

5.3.1 Global constraints

Before describing the main requirements we considered for the hovercraft case study, we note that a
dynamical systems is constrained by global constraints depending on its intrinsic characteristics, e.g.,
its maximal possible speed. In other words, we take into account constraints which represents some
limitations on the behavior of the hovercraft for all its possible trajectories. These constraints will
naturally be added into all the CSP associated to the requirements we considered and can be also seen
as an independent CSP.

We will assume that the maximum speed reached by the hovercraft will be Vmax = 10m/s and
its maximum angular speed will be Rmax = πrad/s. Moreover, we define some constants useful to
describe simulation scenario such as the cruising speed Vc = 2m/s and the maximum travel distance
Dmax = Vmax × tf where tf is the simulation duration depending on each requirement.

In Table 3 we give the additional constraints which have to be added in each CSP associated to
requirements on the behavior of the hovercraft. More precisely, Constraint C0

t,u means that the rectilinear
acceleration in the x-axis is positive and bounded, i.e., we cannot go backward. Constraint C0

t,v means
that the acceleration in the y-axis of the hovercraft is bounded. Constraint C0

t,r means that the angular
acceleration is bounded. Constraints C0

t,x and C0
t,y give a bound on the position w.r.t. the duration of

the displacement.

5.3.2 Requirement 1: Cruising Speed

The first requirement on the behavior of the hovercraft is give in Table 4. It represents that the system may
have an acceleration allowing to reach the cruising speed Vc before 1 second. Note that constraints C1

t,y

and C1
t,ψ mean that the hovercraft follow a line along the x-axis, i.e., their values are closed to zero within

a distance of ε > 0.

5.3.3 Requirement 2: Braking Distance

The second requirement is to have the hovercraft stopping within a distance between 3m and 7m, once
the engine is turned off after a run in a straight line at cruising speed. Table 5 gives the mathematical
formulation in terms of simulation scenario and CSP. Constraint C2

t,u means that the rectilinear speed
along x-axis is positive and bounded by 0.1m/s at the end of the simulation. Constraints C2

t,x and C2
t,y

mean that the position of the hovercraft are bounded during the simulation.

5.3.4 Requirement 3: Curve

The third requirement specifies that the hovercraft can follow a curve without deriving too much from
the desired trajectory. The scenario, given in Table 6, consists to run in a straight line at the cruising
speed and turn at a given time. The requirement imposes that the hovercraft keeps a good behavior in
a sense of the CSP. Constraints C3

t,x and C3
t,y mean that at the end of the simulation the position of the

hovercraft is strictly positive in x and strictly negative in y. In other terms, theses constraints mean that
the hovercraft has turn to the right. Note that this requirement is hard to express in terms of radius of
curvature that is why we simplified it.

5.3.5 Requirement 4: Perturbation of Symmetry

The fourth requirement consists in verifying the robustness of the design to a possible uncertainty on
the mass distribution (expressed by an uncertainty on the gravity center position). For that, the gravity
center in y-coordinate is set to yG = [−0.2, 0.2] which represents 10% of the width of the hovercraft. The

Table 3: CSP of global constraints
Variables: {t, u, v, r, x, y, ψ}
Domains: R+ × R6

Constraints: {C0
t,u, C

0
t,v, C

0
t,r, C

0
t,x, C

0
t,y}

C0
t,u : (t, u(t)) ∈ [0, tf]× [0, Vmax]

C0
t,v : (t, v(t)) ∈ [0, tf]× [−Vmax, Vmax]

C0
t,r : (t, r(t)) ∈ [0, tf]× [−Rmax, Rmax]

C0
t,x : (t, x(t)) ∈ [0, tf]× [x0 −D,x0 +D]

C0
t,y : (t, y(t)) ∈ [0, tf]× [y0 −D, y0 +D]

8

Table 4: Cruising speed requirement
Requirement 1 – Cruising Speed

Simulation scenario

Initial condition
(u0, v0, r0, x0, y0, ψ0) = (0.1, 0, 0, 0, 0, 0)

Control input
W (t) = WVmax ,∀t ∈ [0, tf]

δ(t) = 0

Simulation duration
tf = 1 s

CSP

Variables
{t, u, v, r, x, y, ψ}

Domains
R+ × R6

Constraints
C1
t,y : (t, y(t)) ∈ [0, tf]× [−ε, ε]

C1
t,ψ : (t, ψ(t)) ∈ [0, tf]× [−ε, ε]
C1
t,u : (t = tf ∧ u(tf) = Vc)

Table 5: Braking distance requirement
Requirement 1 – Braking distance

Simulation scenario

Initial condition
(u0, v0, r0, x0, y0, ψ0) = (Vc, 0, 0, 0, 0, 0)

Control input
W (t) = 0, ∀t ∈ [0, tf]

δ(t) = 0

Simulation duration
tf = 10 s

CSP

Variables
{t, u, v, r, x, y, ψ}

Domains
R+ × R6

Constraints
C2
t,u : (t = tf) ∧ (u(t) ∈ [0, 0.1])
C2
t,x : (t, x(t)) ∈ [0, tf]× [3, 7]

C2
t,y : (t, y(t)) ∈ [0, tf]× [−0.5, 0.5]

scenario, given in Table 7, imposes to run in a straight line along x-axis at the cruising speed. After 3
seconds, the requirement is that the hovercraft did not drift more than 15cm from x-axis. Constraints C4

t,y

and C4
t,ψ mean that for the duration of the simulation the y coordinate and the headings of the hovercraft

are bounded.

5.4 Results

Applying this methodology to the hovercraft design, a set of appropriate solutions verifying the exigences
was found. A particular design solution was chosen to start the hovercraft construction. This latter is
chosen in the middle of the validated region, in order to be as robust as possible to the building/assembly
uncertainties.

Chosen solution for building the hovercraft

m [1.06562, 1.075]
Iz [0.0575, 0.065]
D [0.1778, 0.1778]
Sg [0.0352, 0.0352]
L [0.31875, 0.325]

9

Table 6: Curve requirement
Requirement 3

Simulation scenario

Initial condition
(u0, v0, r0, x0, y0, ψ0) = (V, 0, 0, 0, 0, 0)

Control input
W (t) = 1

3
WVmax , ∀t ∈ [0, tf]

δ(t) = π
12

(
1 + sin

(
π
2
t
))

Simulation duration
tf = 3s

CSP

Variables
{t, u, v, r, x, y, ψ}

Domains
R+ × R6

Constraints
C3
t,x : (t = tf) ∧ (x(t) ∈ [1,∞])

C3
t,y : (t = tf) ∧ (y(t) ∈ [−∞,−1])

Table 7: Symmetry robustness requirement
Requirement 4

Simulation scenario

Initial condition
(u0, v0, r0, x0, y0, ψ0) = (Vc, 0, 0, 0, 0, 0)

Control input
W (t) = 1

4
WVmax , ∀t ∈ [0, tf]
δ(t) = 0

Simulation duration
tf = 3s

CSP

Variables
{t, u, v, r, x, y, ψ}

Domains
R+ × R6

Constraints
C4
t,y : (t, y(t)) ∈ [0, tf]× [y0 − 0.15, y0 + 0.15]
C4
t,ψ : (t, y(t)) ∈ [0, tf]× [ψ0 − π

16
, ψ0 + π

16
]

To display the set of all solutions found, a projection from R5 to R2 is performed by fixing two discrete
parameters D and Sg. We then obtain three figures gathered in Figure 4.

6 Conclusion

We presented in this paper a tool for the design of complex systems, described by differential equations
with bounded uncertainties. In accordance with the requirements, expressed under the constraint satis-
faction problem formalism, our method is able to find design parameters. These parameters validate, even
in presence of uncertainties, the correspondence between behavior simulation and constraints defined by
requirements. This approach has been applied to the design of an hovercraft. The hovercraft is now in
construction and a step of validation will then be done. Obviously, the model being a simplification of
the real behavior of the hovercraft, we are waiting for a difference between the expected behavior and
the reality. Anyway, this difference can be surpassed by a parameter identification process, which may
allow to match the model and the real behavior of the hovercraft. This will be the futur work to validate
our methodology.

10

(a)

(b)

(c)

Figure 4: Solution set for m× L, after projection with Iz = [0.0575, 0.065], D = 0.1778 and Sg = 0.0176
(a); Sg = 0.0235 (b); and Sg = 0.0352 (c)

References

[1] J. Alexandre dit Sandretto and A. Chapoutot. Validated Explicit and Implicit Runge-Kutta Meth-
ods. Reliable Computing, 2016. To appear.

[2] S. M. Batill, J. E. Renaud, and X. Gu. Modeling and simulation uncertainty in multidisciplinary
design optimization. AIAA paper, 4803, 2000.

[3] F. Benhamou, D. McAllester, and P. Van Hentenryck. Clp (intervals) revisited. Technical report,
Providence, RI, USA, 1994.

[4] B. S. Blanchard, W. J. Fabrycky, and W. J. Fabrycky. Systems engineering and analysis, volume 4.
Prentice Hall New Jersey;, 1990.

[5] O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing temporal evolution of dynamical systems using
numerical methods. In NASA Formal Methods, number 7871 in LNCS, pages 108–123. Springer, 2013.

11

[6] J. Cruz and P. Barahona. Constraint reasoning over differential equations. Applied Numerical
Analysis and Computational Mathematics, 2004.

[7] D. A. DeLaurentis and D. N. Mavris. Uncertainty modeling and management in multidisciplinary
analysis and synthesis. In AIAA Aerospace Sciences Meeting, Paper No. AIAA-2000–422, 2000.

[8] M. Diez, D. Peri, G. Fasano, and E. F. Campana. Multidisciplinary robust optimization for ship
design. In 28th symposium on naval hydrodynamic, Pasadena, Caloifornia, USA, 2010.

[9] T. I. Fossen. Guidance and control of ocean vehicles. John Wiley & Sons, Ltd, 1994.

[10] A. Goldsztejn, O. Mullier, D. Eveillard, and H. Hosobe. Including ordinary differential equations
based constraints in the standard CP framework. In CP, volume 6308 of LNCS, pages 221–235.
Springer Berlin Heidelberg, 2010.

[11] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Prob-
lems. Springer-Verlag, 2nd edition, 2009.

[12] I. Kroo, S. Altus, R. Braun, P. Gage, and I. Sobieski. Multidisciplinary optimization methods for
aircraft preliminary design. AIAA paper, 4325:1994, 1994.

[13] Y. Lebbah and O. Lhomme. Accelerating filtering techniques for numeric CSPs. Artificial Intelli-
gence, 139(1):109 – 132, 2002.

[14] O. Lhomme. Consistency techniques for numeric CSPs. pages 232–238, 1993.

[15] D. N. Mavris and O. Bandte. A probabilistic approach to multivariate constrained robust design
simulation. SAE Technical Paper, 975508, 1997.

[16] J.-P. Merlet and D. Daney. Appropriate Design of Parallel Manipulators. 2004. INRIA.

[17] R. Moore. Interval Analysis. Prentice Hall, 1966.

[18] N. S. Nedialkov, K. Jackson, and G. Corliss. Validated solutions of initial value problems for ordinary
differential equations. Appl. Math. and Comp., 105(1):21 – 68, 1999.

[19] N. V. Nguyen, D. Lee, H.-U. Park, and J.-W. Lee. A multidisciplinary robust optimization framework
for UAV conceptual design. 118:123–142, 2014.

[20] M. Rueher. Solving continuous constraint systems. In Invited Talk, Proc. of 8th International
Conference on Computer Graphics and Artificial Intelligence, 2005.

[21] M. D. Stuber and P. I. Barton. Robust simulation and design using parametric interval methods. In
REC, pages 536–553, 2010.

12

	Introduction
	Set-based Simulation
	From requirements to CSP
	Appropriate design algorithms
	Branch and Prune
	Propagation
	Design Algorithm

	An hovercraft design
	Problem Definition
	Parameters configuration
	Requirements on Behavior
	Global constraints
	Requirement 1: Cruising Speed
	Requirement 2: Braking Distance
	Requirement 3: Curve
	Requirement 4: Perturbation of Symmetry

	Results

	Conclusion

