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ABSTRACT5

Nowadays, data fusion constitutes the key subject in numerous applications of remotely sensed displacement6

measurements, with the increasing availability of remote sensing data and the requirement of improvement7

of the measurement accuracy. This paper addresses the current status and challenges in the fusion of re-8

motely sensed displacement measurements. An overview is given to discuss the remote sensing sources and9

techniques extensively used for displacement measurement and the recent development and achievement of10

displacement measurements fusion. Fusion between displacement measurements and integration of a geo-11

physical model are discussed. The fusion strategies and uncertainty propagation approaches are illustrated12

in two main applications: 1) surface displacement measurements fusion to retrieve surface displacement13

with reduced uncertainty in case of redundancy, with larger spatial extension or of higher level in case14

of complementarity 2) surface displacement measurements fusion to estimate the geometrical parameters15

of a physical deformation model in case of redundancy and complementarity. Finally, the current status16

and challenges of remotely sensed displacement measurements fusion are highlighted. Moreover, some17

potential ways are proposed to deal with heterogeneous data types and to assimilate remote sensing data18

into physical models in order to realise near real time displacement monitoring.19

1 Introduction20

The surface of the Earth is deforming permanently due to mass transfer, either internal or external, either21

natural or man-made activities. The displacement at the Earth’s surface vary a lot in terms of spatial22
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extension, amplitude and temporal evolution. The investigation of the displacement at the Earth’s surface23

represents an essential part of geodesy and its quantification constitutes a major topic in the community24

of geoscience, since it is of particular importance for natural hazards monitoring. For example, the dis-25

placement measurements and the deformation model inferred from these measurements provide crucial26

information in order to avoid the installation of emergency shelter and reconstruction over affected areas27

that will result in further damage in a later earthquake [1, 2]. Further, these sources of information enrich28

the disaster early warning system in order to prevent the future natural hazards. Displacement measure-29

ments also present great potential for underground exploitation, bridges and dams sinking monitoring and30

they are of particular interest in civil engineering [3, 4, 5, 6].31

At the end of the 20th century, the development of spatial geodetic techniques (optical & SAR imagery,32

GPS) has allowed for drastic improvement of the spatial coverage, the resolution and the accuracy of33

displacement measurements. Spaceborne optical and radar sensors observe the Earth’s surface34

continuously, across both space and time, but with limited flexibility in terms of revisit35

time and acquisition geometry. Airborne optical and radar sensors provide displacement36

measurements with limited spatial/temporal coverage, but improved flexibility in terms of37

revisit time and acquisition geometry. Moreover, ground based optical and radar sensors,38

with good flexibility in terms of revisit time and acquisition geometry, often give precise39

information for small scale phenomena. Thanks to these techniques, spectacular results have been40

obtained in numerous applications with displacement of various characteristics in terms of magnitude,41

duration, spatial distribution, etc.: the study of subsidence in urban areas [3, 7, 8, 9, 10, 11], of the42

co-seismic, inter-seismic and post-seismic motions [12, 13, 14, 15, 16], of glacier flows [17, 18, 19], of volcanic43

deformation [20, 21, 22, 23], etc. Nowadays, the displacement maps obtained by remote sensing techniques44

reach an accuracy within millimetres per year for deformation velocity and cover almost the whole land45

of the Earth, including the non-instrumented remote areas and areas that do not have the necessary46

financial means and human resources for ground instrumentation. They have also proven very useful for47

regional studies. Moreover, due to the archiving system, a posteriori studies can be performed on areas48

where an interesting phenomenon has been detected. We thus have access to the initial phase. Therefore,49

remote sensing displacement measurements have obtained significant development in the past few years.50

They are considered as the predominant source for the detection and the quantification of the terrestrial51

deformation, from which geophysical models have been retrieved to further understand the deformation52

source in depth and the physical process that induces the displacement observed from the Earth’s surface.53

To this end, a good knowledge of the reliability of the remotely sensed measurements, as well as54
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of the geophysical models accordingly obtained, is crucial for all the researches and applications that55

use these sources of information. However, remote sensing displacement measurements are subject to56

incompleteness and uncertainty. Uncertainty is also present in the geophysical model due to limited57

knowledge about the phenomenon under observation and approximations made in the modelling, as well as58

uncertainties associated with the displacement measurements used to constrain the model. A perspective59

of significant reduction in the uncertainty of the displacement measurement appears thus with the60

increasing availability of different types of remote sensing measurements and the blooming development61

of displacement information extraction techniques. Thereby, the role of data fusion, making use of the62

redundant and complementary displacement information brought by different sources, becomes more and63

more important. Methodological development of the fusion of different types of displacement measurements64

and of the integration of a physical model based on supercomputer facilities seems necessary to improve65

the spatial extension and the accuracy of displacement measurements. In this context, this paper addresses66

the current status and challenges of the fusion of remotely sensed displacement measurements.67

This paper is organised as follows: In Section 2, remote sensing sources including optical, SAR images, in68

situ GPS measurements and levelling sources, as well as displacement extraction techniques such as offset-69

tracking, differential interferometry (DInSAR) are introduced. Moreover, the uncertainty quantification70

of measurements issued from these techniques is also discussed. In Section 3, the fusion of displacement71

measurements and the integration of geophysical models are presented. The fusion issues are presented72

through 2 main applications: from raw measurements to fused measurements and from measurements to73

model parameters. Finally, in Section 4, the current status and challenges are highlighted and perspectives74

to deal with heterogeneous data types and to assimilate remote sensing data into physical models are75

proposed.76

2 Displacement measurement data77

Nowadays, SAR and optical images constitute the predominant remote sensing source for displacement78

measurement, due to their high capacity in providing displacement measurement over large area and of79

great accuracy. GPS and levelling measurements, thanks to their high precision, are also widely used as80

complementary sources to remote sensing data.81
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2.1 Displacement extraction techniques82

Two different families of technique have been developed to extract displacement information from SAR83

or optical images: offset-tracking of amplitude SAR or optical images and DInSAR. Techniques in the84

family of offset-tracking, based on the cross-correlation between the master image and the slave image,85

provide two dimensional (2D) measurements (namely correlation measurements hereafter), with one hor-86

izontal component in the direction of the sensor motion and the other component in the perpendicular87

direction in the horizontal plane for optical images and in the Line Of Sight (LOS) for SAR images. The88

accuracy of these techniques is limited by the resolution of the images used, the stereoscopic effect and the89

decorrelation. Numerous studies have confirmed that the displacement error is generally included between90

tenth of pixel and one pixel [24, 25]. The best accuracy obtained is recorded as 1/30 pixel for SAR images91

[26] and 1/200 of pixel for optical images [27] with careful data processing. The application of offset92

tracking techniques is thus mainly determined by the resolution of the images used and the93

magnitude of the displacement to measure. Therefore, they are commonly applied for large94

displacement, e.g. glacier flow monitoring [28, 29, 30, 31] and strong earthquake measurement in the95

field near the fault rupture [24, 12, 32, 33, 34, 35].96

DInSAR, on the other hand, makes use of the phase information included in a pair of SAR images97

and allows for the measurement of the displacement occurred between the two acquisitions in the LOS98

direction. Compared to offset-tracking, this technique requires strong coherence between two SAR99

images, for which the geometrical and temporal baselines between the two acquisitions should100

be as small as possible. Moreover, more complex processing steps such as the orbital, topographical101

and atmospheric correction and phase unwrapping are necessary. In particular, phase unwrapping de-102

termining the success of the application of DInSAR, is difficult and delicate since the choice of the phase103

unwrapping method depends on the nature of the interferograms to be processed. The problems mainly104

encountered are the discontinuity of the coherent areas and the strong gradient of the displacement that105

can cause potential aliasing problem. Today, no method seems fully operational. DInSAR has been widely106

used to measure small displacements such as surface subsidence in urban area [7, 36, 37, 8], inter-seismic107

deformation [14, 38, 16] or glacier flow [39, 40, 41, 18], with an average accuracy of centimetres. With the108

increasing availability of SAR images, techniques such as Permanent Scatterer (PS) [42, 43, 44, 45] and109

Small BAseline Subset (SBAS) [46, 47, 48, 49, 50] dealing with time series have been developed in order to110

reduce the uncertainty of the displacement measurement and to get around of the principal limitations111

of the conventional DInSAR technique. With these techniques and the availability of the X-band high112

resolution images (TerraSAR-X, COSMO-SkyMed), precision on the order of millimetres per year113
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has been obtained for displacement rate. Recently, combination of these two techniques is performed in114

order to further reduce the uncertainty of the displacement measurements and promising results have115

been obtained [51, 52, 9]. Furthermore, multiple aperture InSAR (MAI) technique, based on116

split-beam InSAR processing, has been developed in order to extract along-track displace-117

ment from DInSAR data [53, 54]. The along-track displacement obtained is consistent with118

that obtained from offset-tracking. Note also that, in multitemporal InSAR processing, the119

deformation velocity estimation can be strongly biased by the thermal dilation of the imaged120

objects. Improvement of existing approaches and development of new approaches [55, 56, 57]121

have been proposed to deal with this issue. With these approaches, it is possible to achieve122

an extremely accurate monitoring of thermal dilation, up to a sensitivity on the order of123

1 mm in the deformation measurement [56].124

Besides SAR and optical images, continuous GPS, as a complementary remote sensing source, is also125

widely used in displacement measurement. Different from SAR/optical imagery, GPS provides the 3D126

displacement (with 3 components: East, North, Up in the terrestrial reference) on a much sparse and127

irregular spatial grid with temporal sampling every 5 minutes or even less. The uncertainty associated128

with the GPS displacement measurement is sufficiently small, on the order of 5 - 10 mm and 10 - 20 mm129

in horizontal and in vertical respectively [58]. Thanks to the dense temporal sampling, GPS allows us to130

obtain time series for displacement varying over time, at the scale of days and years. GPS measurements131

have been used in detection of tectonic activities like earthquake [59, 15]), volcano [60], glacier flow [61],132

plate movement [62], etc. Moreover, levelling, the measurement of elevation difference between 2 points at133

the Earth’s surface, can also be considered as a precise method for vertical displacement measurement. It134

has been used for displacement measurement for more than half a century [63, 64, 65, 15]). A precision on135

the order of mm/yr has been reported for vertical displacement rate [66]. However, besides the punctuality136

of the measurement, the major disadvantages of levelling also include the high cost and the large amount137

of time needed for collecting the data over long distances or over a large network.138

2.2 Uncertainty quantification139

The sources of uncertainty in optical/SAR imagery are very complex: they come from different pertur-140

bations that take place along the electromagnetic wave propagation (e.g. atmosphere) and at the back-141

scattering surface (e.g. properties change during two acquisitions), as well as the noise generated in the142

electronic processing. Moreover, imperfect displacement extraction technique (accuracy of the algorithm)143

and pre/post-processing treatment (coregistration, geometrical correction, etc) also induce uncertainties144
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in the displacement measurement. The sources of possible uncertainty in GPS measurements come from145

the atmospheric effects, the measurement noise or distortion of the signal caused by electrical interference146

or errors inherent in the GPS receiver, clock drift, etc. These diverse sources results in uncertainties with147

very complex characteristics. In addition, the ground truth is not available in most cases of terrestrial148

deformation. For all these reasons, the quantification of the uncertainty and the accuracy associated149

with the displacement measurement still remains a delicate problem.150

For feature-tracking measurements from optical/SAR images, two methods exist in the literature to151

estimate the displacement uncertainty. The first method adopts parameters associated with the correlation152

algorithm, for example, the correlation peak, the full width at half maximum, the curvature of the correla-153

tion surface, to represent the displacement uncertainty [67]. This kind of parameters indicate the relative154

reliability of the displacement measurement, they are thus not a measure of the uncertainty in strict sense.155

The second method consists of estimating a statistical variance in known stable areas [29, 68]. With this156

method, the spatial distribution of uncertainty is not available, since only one value is estimated for one157

pair of image. With large data sets, however, it is possible to statistically estimate the uncertainty at each158

point [19]. In case of earthquakes, pre-seismic image pairs are often used. This kind of uncertainty charac-159

terises essentially the random variation of the displacement, it cannot represent systematic and spatially160

correlated uncertainties. For DInSAR measurements, the main sources of uncertainty are considered from161

phase unwrapping. In [69, 7], phase unwrapping errors are analysed through the misclosure of the interfer-162

ograms networks, given that the redundancy exists between the interferograms used. In [70], the variance163

of the phase is estimated from the coherence. This variance can only represent the random part of the164

uncertainty due to the presence of random noise in the interferogram. In [71, 72, 16],the spatially corre-165

lated error is characterised in areas where neither deformation signal is expected nor visible166

on the interferogram assuming stationary and isotropic noise. For this, the semi-variogram167

and the semi-covariogram are computed as follows:168

γ̂(hc) =
1

2N

N∑
i=1,‖ri−si‖'hc

[d(ri)− d(si)]
2 (1)

Ĉ(hc) =
1

2N

N∑
i=1,‖ri−si‖'hc

d(ri)· d(si) (2)

where γ̂, Ĉ are the discrete sample semi-variogram value and the discrete sample semi-covariogram value169

for distance hc. N is the number of data points pairs at locations ri and si such that ||ri − si|| ' hc. d is170
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the displacement value measured in interferograms.171

With respect to the previous approaches, the advantage of this approach lies on the consideration of the172

spatially correlated error which constitutes an important part of the uncertainty that should be taken into173

account, since this part of uncertainty almost always exists in the interferogram due to the atmospheric174

and topographic effects.175

GPS measurements are often repeated observations and they are assumed to be samples of stochastically176

independent normally distributed random variables. The variability of the samples, the standard deviation,177

is often used as uncertainty associated with the displacement measurement. More elaborated analyses are178

described in [73]. The vertical displacement measured by levelling are also supposed to be samples of179

stochastically independent normally distributed random variables. The variance of the displacement can180

be deduced from the combination of the variance of the reference point (point without displacement, the181

absolute displacement is determined with respect to this point) and that of the elevation differences [74].182

The standard deviation is used as the uncertainty associated with the displacement. A more elaborated183

method to estimate the complete covariance matrix for levelling measurements is proposed in [75].184

3 Fusion of displacement measurements185

Fusion constitutes a formal framework in which are expressed the means and techniques that allows for186

the combination of information from diverse sources. The general principle consists of associating various187

information on the same problem in order to improve the knowledge. The imperfection of individual infor-188

mation such as the uncertainty, the incompleteness, the ambiguity, etc, constitutes the primary motivation189

of the fusion. Depending on the phenomenon under consideration, different fusion strategies are necessary190

to reduce the imperfection of individual information, benefiting the redundancy and the complementarity191

of one source of information with respect to the others. In displacement measurement, the main imper-192

fection to be improved by the fusion includes: 1) incompleteness due to limitations of data193

acquisition and/or data processing 2) uncertainty due to noise from data acquisition until194

the final displacement results.195

3.1 Fusion between displacement measurements196

Remote sensing measurements mainly provide displacement information at the Earth’s surface. Currently,197

the fusion of these surface displacement measurements can be summarised into 2 groups according to the198
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objectives. The first group corresponds to the processing ”from raw measurements to fused measurements”.199

In case of redundancy, the surface displacement measurements are combined to retrieve a surface displace-200

ment with reduced uncertainty. In case of complementarity, they are combined to retrieve a surface201

displacement with larger spatial extension or of higher level (for example, the 3D displacement field). The202

second group corresponds to the processing ”from measurements to model parameters”. Surface displace-203

ment measurements are combined to estimate the geometrical parameters of a physical deformation model204

in case of redundancy and complementarity.205

3.1.1 From raw measurements to fused measurements206

In case of redundancy, the common and intuitive approach consists in averaging all available measurements207

in order to obtain an estimation as precise as possible [76, 77, 78, 79]. However, this approach is subject to208

the difficulty in determining the contribution of each measurement and to the limitation of computational209

capacity while dealing with large volume data sets. Figure 1 gives an example of interferograms stacking210

for displacement measurement on the Hayward fault in the San Francisco Bay Area from 1992 to 2000211

[78]. For this, 37 interferograms with spatial baseline less than 200 m and temporal baseline longer than212

1 year are selected. This set of 37 interferograms are stacked by dividing the cumulative range change213

by the cumulative time span, which preferentially weighs the range change rate of those interferograms214

with longer temporal baseline. Afterwards, interferograms where more than 5% of the coherent phase215

exceeds 3 standard deviations from the stacked results are removed. Finally, a subset of 13 independent216

interferograms are selected for the stacking and the standard deviation is used as uncertainty measure217

associated with the stacked range change rate. Thanks to this stack, the atmospheric artefacts in individual218

interferograms are reduced significantly.219

[Figure 1 about here.]220

In case of spatial complementarity, a mosaic is usually performed in order to obtain a displacement221

measurement over large area. This is very useful to generate displacement maps at global scale [18, 68, 19].222

Figure 2 shows the annual velocity field obtained from feature-tracking of Landsat images to measure223

glaciers flow over the Karakoram. Panel (a) shows the result for a single pair (the pair with the highest224

spatial coverage among all available pairs): many gaps appear in saturated areas or areas covered by clouds225

(corresponding to measurements with a signal-to-noise ratio below 4), limiting the percentage of estimates226

over glaciers to 70%. Velocities in stable areas, expected to be null, are in the range of 10 m/year due227

to orthorectification errors. On the other hand, panel (b) shows the velocity obtained from fusion of 29228

8



annual pairs available for the period 1999-2001 and taking the median value at each location. The spatial229

coverage is increased to 94% thanks to the complementarity from one pair to another. Velocities in stable230

areas are reduced to 2.0 m/year thanks to the redundancy, and because orthorectification errors are not231

coherent [19].232

[Figure 2 about here.]233

In case of temporal complementarity, measurements time series can be used to follow the temporal234

evolution of the event with appropriate method, such as PS and SBAS approaches [46, 42, 43, 50, 80,235

44]. These approaches have been modified and improved since their first applications. Variants of SBAS236

approach such as PO-SBAS [26] and PSBAS [81] have been developed in order to make use of pixel237

offset measurements and to deal with large data sets. Variant of PS approach such as SqueeSAR [82]238

has been developed in order to improve the performance of the PS technique proposed previously. Along239

with PS interferometry, SAR tomography based approaches allow for an improvement in the240

detection of permanent scatterers in urban areas [83, 84, 85, 86, 87]. Figure 3 gives an example241

of surface displacement time series obtained with SBAS [50] and PO-SBAS [26] for Fernandina and Sierra242

Negra. The temporal evolution of the surface displacement for these two calderas is characterised thanks243

to the temporal complementarity. The eruptions for both calderas have been well identified by the abrupt244

change of the displacement magnitude from the time series. Regarding the quantification of the uncertainty245

associated with the displacement time series, it constitutes a truly complex task. For PS approaches,246

because of the iterative process (including the temporal phase unwrapping and the spatial integration)247

adopted by most PS approaches, the propagation of the input uncertainty and the quantification of the248

final uncertainty seem extremely difficult. The phase standard deviation is usually used as an indicator249

of the quality of the displacement velocity obtained. However, this parameter is strongly related to the250

nonlinear motion according to [51], thus not an appropriate indicator of the displacement uncertainty. For251

SBAS approaches, the main difficulty also lies on the quantification of the phase unwrapping error. In252

[7], the RMS misclosure is calculated to assess the phase unwrapping quality, but no clear uncertainty253

associated with the final displacement time series is provided.254

[Figure 3 about here.]255

In case of geometrical complementarity (from diverse acquisition geometries: different incident an-256

gles, different orbital directions (descending and ascending), different displacement directions (range and257

azimuth)), the 3D displacement at the Earth’s surface is usually retrieved by a linear inversion in least258
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square sense in order to interpret the surface displacement field in an homogeneous and intuitive way259

[40, 88, 89, 12, 90]. For example, in the displacement measurement of the Kashmir earthquake in 2005,260

surface displacement measurements from correlation of SAR amplitude images and DInSAR, including261

ascending and descending passes and different incident angles, are available. Both redundancy and spatial262

and geometrical complementarity thus exist. In particular, correlation and DInSAR measurements issued263

from the same pair of SAR images are available and these two types of measurements provide essentially264

complementary displacement information. On one hand, correlation measurements are reliable in areas265

where the displacement is large (usually close to the deformation source), while DInSAR measurements are266

mainly available in areas where the displacement is small (usually far from the deformation source). On267

the other hand, besides the displacement measurement in LOS direction, correlation measurements provide268

displacement measurement in azimuth direction, which is complementary to the DInSAR measurements.269

Regarding the redundancy of displacement measurement in LOS direction provided by both measurements270

in areas of moderate displacement, correlation measurements can be used to check the existence of phase271

unwrapping error and to retrieve the absolute displacement value in DInSAR measurements since relative272

displacement value is obtained from the phase. Further, since the precision of DInSAR measurement is273

much higher than that of correlation measurements, the contribution of DInSAR measurement is naturally274

more significant than that of correlation measurements.275

For the Kashmir earthquake (2005) example, 23 surface displacement data sets are available in total.276

Two fusion strategies, namely joint inversion and pre-fusion are investigated together with two uncertainty277

propagation approaches: one based on the probability theory and the other based on the possibility theory278

[91, 92]. In joint inversion, all available measurements are used simultaneously in the inversion. Pre-fusion279

consists of a fusion step before inversion. This fusion step can be performed for example using the mean280

value, the median value of a set of measurements or by selecting the best one according to certain criteria,281

for example, the reliability of measurements or the signal-to-noise ratio. Afterwards, the refined data282

sets are input in the inversion. In the probabilistic approach, displacement errors are assumed random283

and independent (optimist hypothesis that cannot be justified in most cases). They are represented and284

propagated by Gaussian distributions. With this hypothesis, the more measurements are fused, the smaller285

the output uncertainty is. The solution (displacement value U and displacement uncertainty ΣU ) given by286

the least squares inversion is shown in equation 3.287
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U = (P tΣ−1R P )−1P tΣ−1R R

ΣU = (P tΣ−1R P )−1 (3)

where U denotes the 3D displacement vector with 3 components. P is the projection vector from the 3D dis-288

placement to displacements measured by correlation and DInSAR. It is determined by the acquisition289

geometry: PLOS = (−cosϕsinθ, sinϕsinθ,−cosθ), Pazimuth = (sinϕ, cosϕ, 0) with ϕ azimuth of the290

satellite trajectory and θ the incident angle. R corresponds to the vector of displacement measured291

by correlation and/or DInSAR. ΣR and ΣU represent the error covariances of R and U respectively.292

In the possibilistic approach, no hypothesis is made on the displacement errors and they are represented293

and propagated by possibility distributions. The output uncertainty takes into account the worst bound294

among all the fused measurements (pessimist approach). As a result, even with more measurements, the295

output uncertainty is not decreased. The solution (possibility distribution Û including the displacement296

value and the displacement uncertainty at the same time) given by the least squares inversion is shown in297

given by:298

Û = (P tΣ−1R P )−1P tΣ−1R ⊗ R̂ (4)

Û denotes the possibility distribution of the 3D displacement vector. R̂ corresponds to the possibility299

distribution of the vector of displacement measured by correlation and/or DInSAR. t denotes the transpose300

and ⊗ refers to the matrix operator of fuzzy multiplication where the sum and the conventional scalar301

product are replaced by the corresponding fuzzy operations (min and max operators in most cases)302

[93, 91].303

An example of the Up component of the 3D displacement and the associated uncertainties is given in304

Figure 4. With the probabilistic approach, compared to pre-fusion, the uncertainty is reduced in areas305

where more measurements are available in joint inversion, while with possibilistic approach, the uncertainty306

is increased in the same areas, because of a different approach of uncertainty propagation. According to307

further demonstrations and analyses in [94], authors concluded that with both fusion strategies, the un-308

certainties associated with the 3D displacement field are reduced by fusion. On one hand, when random309

uncertainties are present in the measurements, the strategy of joint inversion can most reduce the un-310

certainty and the probabilistic approach is appropriate to represent and propagate the uncertainty. On311
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the other hand, when systematic uncertainties are present in the measurements, the strategy of pre-fusion312

gives better results and the possibilistic approach seems appropriate to represent and propagate the un-313

certainty. In addition, the strategy of pre-fusion is computationally more efficient than the strategy of314

joint inversion. In most real cases, random and systematic uncertainties are often present simultaneously315

in the displacement measurements. The uncertainty associated with the 3D displacement obtained with316

the probabilistic approach provides a lower bound, whereas that obtained with the possibilistic approach317

provides an upper bound. The real value should be situated in between. When random uncertainty is318

the main source of uncertainty in correlation/DInSAR measurements, the 3D displacement uncertainty is319

closer to the probabilistic result (equation 3). On the contrary, when systematic uncertainty dominates320

the uncertainty in correlation/DInSAR measurements, the 3D displacement uncertainty is closer to the321

possibilistic result (equation 4).322

[Figure 4 about here.]323

3.1.2 From measurements to model parameters324

One of the most important objectives of geophysics is to estimate, from surface displacement measurements,325

the geometry and the force of the deformation source in depth, e.g. a fault rupture and the associated slip326

in case of an earthquake or of a magmatical intrusion and an opening in volcanic context. Fusion of SAR,327

optical displacement measurements, GPS and other sources of information to constrain a physical model,328

such as the Okada model [95] and the Mogi model [96], by linear/nonlinear inversion thus constitutes a329

major topic in displacement measurement. In this case, spatial and geometrical complementarity is very330

important to infer model parameters correctly, because trade-off between model parameters exists and331

some parameters are only sensitive to surface displacements in a certain area or in a certain direction.332

Partial displacement information thus results in erroneous model parameters estimation. Because of the333

complexity of the model inversion, the fusion processing, especially the uncertainty propagation is much334

more complicated than in the previous case. The common fusion strategy is the joint inversion using335

all of the available surface displacement measurements. For sake of computational efficiency, surface336

displacement measurements are often subsampled in quadree so that the measurement point distribution337

varies as a function of the displacement gradient [97, 98, 99, 78].338
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3.1.2.a Fusion of same type displacement measurements339

In case of displacement measurements of the same type, SAR or optical measurements alone, the fusion340

strategy of pre-fusion, for example selecting highest quality measurements among all of the available341

measurements, can provide better results, given that good agreement cannot be obtained between all342

the measurements and the selected high quality measurements include almost all the useful information.343

In the case of the Kashmir earthquake (2005), a fault rupture model is inferred from the selection of high344

quality SAR measurements and this model cannot be obtained with the strategy of joint inversion. Artefact345

(erroneous slip with large magnitude situated at 40-50 km and 80-90 km along strike distance)346

exists in depth (deeper than 20 km along dip distance) using all of the available measurements as347

shown in Figure 5. Because of the noise present in the measurements, it is easier to adjust a model to a348

small number of measurements of high quality, but covering sufficient displacement information.349

[Figure 5 about here.]350

Regarding the uncertainty propagation, the approach commonly used consists of performing a large351

number (hundreds to thousands) of noise realisations in the surface displacement measurements and running352

repeatedly the model inversion in order to obtain the distribution and the correlation of model parame-353

ters [100]. An example is shown in Figure 6. The uncertainty associated with each model parameter is354

characterised by the histogram and the correlation between parameters is represented by the scatterplot.355

In this way, the uncertainties of the input measurements are propagated to the model parameters through356

the model functionality. However, note that uncertainty already exists in the input measurements before357

the noise realisation. Therefore, double levels of uncertainty exist in the measurements after the noise re-358

alisation. Uncertainties associated with the model parameters accordingly obtained thus do not represent359

the real uncertainties. They rather reveal the sensitivity of the model to noise. In practice, this approach360

is not always applied because of the computational cost. Instead, the quality of the retrieved model is361

evaluated directly by the residual compared to the measurements used in the model retrieval in some works362

[89, 100, 12, 34].363

[Figure 6 about here.]364
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3.1.2.b Fusion of different types displacement measurements365

In case of heterogeneous measurements with diverse characteristics and uncertainties, the fusion pro-366

cessing can be very complex. There have been numerous investigations that combine GPS and367

InSAR data to optimally measure coseismic deformation [98, 97, 99, 72, 101, 102, 103, 104],368

interseismic deformation [105, 38], post-seismic deformation [106, 107, 108] and volcanic de-369

formation [109]. The major difficulty lies on the determination of the relative contribution of each370

measurement. In general, the weight of each measurement depends on the associated uncertainty. For371

one data set, we can determine the contribution of each measurement according to their associated uncer-372

tainty. However, it is very difficult to provide a link between the measurements of one data set and the373

measurements of another data set of different type. In other words, we usually have information about374

the error covariance between measurements inside one data set (namely the first level weighting hereafter),375

but we do not have information about the error covariance between different data sets (namely the second376

level weighting hereafter), the full covariance matrix of error is thus unknown. The relative contributions377

of different data sets are often decided in an arbitrary way. For example, in [98, 99, 72], only the first378

level weighting was taken into consideration, on the basis of the uncertainty associated with displacement379

at each pixel. In [97, 78, 38], the two levels of weighting are performed. The relative contribution of380

each data set was determined by minimising the residual of all the types of measurements. For this, first381

sets of relative weight obtained from separate inversions with different types of data are necessary. An382

example for the latter (the two levels of weighting) is given in Figure 7. The slip models for the slow slip383

events in 2006 in the Guerrero seismic gap inferred from GPS and DInSAR measurements separately and384

jointly are shown. According to [38], the model obtained from one data type alone cannot explain well the385

displacement behaviour observed from the other data type and the joint minimisation of the residual of386

both GPS and DInSAR measurements allows for better constrain of the slip model, since the displacement387

behaviours observed from both data types are taken into account.388

[Figure 7 about here.]389

However, in this way, the uncertainty associated with each data set is not really taken into account. For390

a data set whose uncertainty is larger, it is normal that the corresponding residual is larger. Moreover, if391

the phenomenon under consideration is more sensitive to the horizontal displacement than to the vertical392

displacement, naturally the model to be adjusted takes more contributions of the measurements in the East393

and North directions of GPS data sets into account. This can cause a larger residual for the measurement394

in the LOS direction of DInSAR data sets. Therefore, the approach based on the joint minimisation of395
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residual is not appropriate in some cases. A potential way to avoid the disadvantages mentioned previously396

consists in constructing the full covariance matrix of error from a large number of noise realisations, inspired397

from the principle of the Ensemble Kalman Filter [110]. Regarding the uncertainty propagation in this case,398

the approaches of the noise realisation and the residual comparison mentioned previously (section 3.1.2.a)399

are used [98, 97, 72].400

3.2 Integration of geophysical model401

Besides the displacement measurements, the deformation model also provides useful displacement infor-402

mation, especially when displacement measurements are not available over some areas or during some403

periods. Fusion between the measurements and the predictions of the model in different manners has also404

been reported in previous works [78, 7, 111, 34].405

3.2.1 Model prediction for displacement measurement extraction406

The model prediction can be used to aid the displacement measurement extraction. The a priori infor-407

mation provided by the model can be considered as a guide for the displacement measurement extraction.408

For example, in SAR imagery, the deformation model can be used to facilitate the phase unwrapping,409

even though the displacement predicted by the model is not perfectly accurate. With the displacement410

predicted by the model removed from the interferogram, the number of fringes can be reduced, which411

makes the phase unwrapping easier, especially when the displacement gradient is large. In [78], a defor-412

mation model constrained by GPS data is used to remove the displacement from each interferogram. In413

[7], a deformation model is obtained from stacking the 5 best interferograms, then the phase unwrapping414

is guided by this deformation model. In [112], the smoothed range offset is used as a proxy for415

interferogram phase. In the previous works, it is much easier to unwrap the residual (original inter-416

ferogram - deformation model) instead of unwrapping the original interferogram. In this way, the phase417

unwrapping error is reduced significantly. In [111, 34], authors estimated the displacement field with the418

help of a mechanical deformation model and used multi-scale local frequencies of the phase (phase gradient)419

for phase unwrapping. Thanks to this method, the DInSAR has been applied successfully for the first time420

in displacement measurement of the Kashmir earthquake (2005). An example of this approach is shown421

in Figure 8. The deformation model in LOS direction corresponds to the surface displacement predicted422

by an homogeneous elastic linear deformation model obtained from the coseismic slip distribution in [12].423

From this model, the optimal scale (number of multi-looking), at which the phase unwrapping can be424
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performed in keeping the best resolution and avoiding the aliasing problem at the same time, is estimated.425

Thereafter, on one hand, phase unwrapping is carried out using the multi-scale local frequencies of the426

phase with a global least squares method. On the other hand, the wrapped interferogram is filtered by the427

multi-scale local frequencies of the phase in order to highlight the fringe patterns. Finally, the residual,428

calculated by comparing the re-wrapped unwrapped phase to the filtered phase, is quantified to validate429

the results. Only the interferograms whose residual is inferior to 2π are considered as correctly unwrapped.430

[Figure 8 about here.]431

3.2.2 Joint use of model prediction and displacement measurement432

The measurements and the model prediction can be used jointly to obtain some displacement information433

with improved quality or some displacement information that cannot be obtained with the measurements434

or the model alone. In [34], authors proposed a 2-segment fault rupture model that fitted better the435

observations than other 1-segment models obtained in previous work. This 2-segment model is inferred436

based on the surface displacement measurements and a 1-segment model obtained in the previous work437

[12]. With either the measurements or the 1-segment model alone, it is impossible that this 2-segments438

model can be retrieved. In [15], the coseismic and post-seismic slip distributions on the Paganica fault439

and the Campotosto fault of the 2009 L’Aquila earthquake are obtained based on the Paganica fault440

rupture plane geometry estimated in [113] and the Campotosto fault geometry derived from geological441

mapping studies (Figure 9). Small translation and rotation are performed to the modelled fault plane442

geometry in order to make it consistent with the observed surface rupture. The coseismic and post-seismic443

slip distributions are estimated based on these fault geometries and using DInSAR, GPS and levelling444

measurements. Indeed, for a given event, the fault geometry and slip distribution models in the previously445

published works often provide useful information for similar works later. Moreover, [114, 115] used446

jointly wrapped interferograms and geophysical deformation models to estimate the fault447

rupture parameters, avoiding the phase unwrapping which constitutes a major problem in448

interferometric processing. In addition, the measurements and the physical model can be combined449

together in a dynamic context to follow the temporal evolution, even to predict the future behaviour of450

the phenomenon under observation, which corresponds to the data assimilation that is commonly used in451

atmosphere and ocean science and has gained more and more attention in geoscience. In [116], the DInSAR452

surface displacement measurements are combined with a geomechanical model to characterise the evolution453

of the underground gas storage and to reduce the uncertainty associated with the model parameters.454
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[Figure 9 about here.]455

3.3 Discussion456

In displacement measurement, data fusion is often realised by linear and/or nonlinear inversion. In general,457

a consistency check is necessary before data fusion. It constitutes an important step that allows for458

an identification of the possible conflict between different measurements, then of the possible aberration459

present in some measurements. The latter should be removed in the data fusion process in order not to460

degrade the quality of the fusion results. Moreover, an analysis of the redundancy and the complementarity461

between different measurements is of particular importance to provide useful information for the choice462

of the fusion strategy. Furthermore, the characterisation of the displacement uncertainty is also essential463

for the choice of the appropriate fusion strategy. However, the uncertainty quantification investigation464

seems insufficient currently. In many studies, the detailed description of the displacement uncertainty is465

not available.466

In case of redundancy, if random uncertainty is present in the individual displacement measurement,467

all the measurements can be used jointly in linear inversion in order to maximise the reduction of the un-468

certainty associated with the fusion results, given enough computational capacity. For nonlinear inversion,469

the performance of this strategy depends on the data quality (noise level). This strategy can fail when it is470

difficult to adjust a model among a large number of noisy data. If systematic uncertainty is present in the471

individual displacement measurement, the pre-fusion can be a good choice for both linear and nonlinear in-472

versions. An appropriate fusion step before the inversion allows reducing most the systematic uncertainty.473

In case of complementarity, since each individual measurement brings non-replaceable information, all the474

measurements should be used. In both cases of redundancy and complementarity, data fusion can provide475

optimal results only if the specification of the displacement uncertainty is appropriate.476

In practice, both redundancy and complementarity exist in most studies. Moreover, the uncertainty477

associated with each measurement is not always reliable, even unavailable in some cases, which makes478

the judgement of the agreement between different measurements difficult. Currently, the main topic on479

displacement measurement fusion consists of using as many measurements as possible, joint inversion is480

thus the most used fusion strategy with expectation that we can obtain new information using more481

measurements. With good data quality (random uncertainty of small amplitude), this strategy can give482

satisfactory results, while with moderate or poor data quality (random uncertainty of large magnitude483

of systematic uncertainty), this strategy can fail because, it is difficult, on one hand, to adjust a model484
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among many noisy data, on the other hand, to determine the appropriate relative contribution of each485

measurement, even though numerous studies have been focused on the search of the optimal weighting486

of heterogeneous measurements. In this case, pre-fusion can be considered as a good choice. In case of487

complex geophysical model inversion where the computational time is the main concern, a step of pre-488

fusion between redundant measurements before the inversion is also preferred in order not to burden the489

inversion system.490

4 Conclusions and perspectives491

The arrival of remote sensing has caused a true revolution in displacement measurement by significantly492

improving the spatial coverage and the measurement accuracy. Spectacular results have been obtained493

in numerous fields: the study of urban subsidence, of coseismic, inter-seismic and post-seismic motion, of494

glacier flow, of volcanic deformation, etc. With the continuous launching of Earth observation satellites495

and the increasing availability of the amount of remote sensing data, data fusion becomes necessary and496

plays a more and more important role in displacement measurements. However, using all of the available497

measurements cannot always provide satisfactory results, but always presents difficulties such as unknown498

weighting coefficients and high computational cost. Intelligent fusion strategies and methods, involving499

how to benefit from the large volume of data in an efficient way to reduce the displacement uncertainty500

and to improve our knowledge on the physical process of the phenomenon under observation, constitutes a501

living topic in many works. Meanwhile, more and more attention is paid to the displacement uncertainty502

characterisation and quantification. The consideration lies not only on independent random uncertainty503

but also on correlated or systematic uncertainty. The uncertainty management approach has also been504

extended from a probabilistic approach to a possibilistic approach. On the other hand, the techniques505

in displacement measurement by remote sensing are still being improved in order to integrate as much506

as possible the benefit of the high spatial resolution and the increasing frequency of data acquisition for507

terrestrial displacement measurements. Moreover, efforts have been made to combine different techniques,508

for instance, the combination of PS and SBAS methods, of correlation and DInSAR, seeking to make the509

best use of the information contained in the data by exploiting the complementarity of different techniques.510

Besides the achievement in displacement measurements fusion, challenges are also present. Even though511

rapid development has been obtained in the recent years, the fusion of heterogeneous measurements, from512

SAR, optical images, GPS and other sources of information, still remains a delicate problem. No fusion513

method nor strategy is completely operational to deal with diverse characteristics and uncertainty levels514
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of the heterogeneous measurements in an inversion system. No efficient solution has been proposed to the515

determination of the contribution of each individual measurement, as well as their covariance. From the516

computational point of view, even with the availability of supercomputing facilities, we can still be quickly517

limited by the memory and storage capacity, as well as the computation time, given the high spatial reso-518

lution and the strong repetitiveness of acquisitions. For accuracy and uncertainty consideration, on one519

hand, the quantification and the improvement of the accuracy are always very challenging,520

given that in most cases the ground truth is not available. On the other hand, it is always521

difficult to characterise the uncertainty in displacement measurements, then to choose an appropriate522

uncertainty management approach. In satellite imagery, uncertainty comes from different perturbations523

generated along the wave propagation path, at the back-scattering surface, as well as from noise generated524

in the electronic processing. In addition, imperfect corrections (atmospheric and/or geometric corrections)525

performed in the displacement extraction chain also introduce systematic uncertainties. These diverse526

sources result in uncertainties of complex characteristics. Moreover, in case of model inversion, it is very527

difficult to propagate the uncertainty. The retrieved deformation models are often provided without un-528

certainty information. The evaluation of these models obtained with more or less different measurements529

is thus a challenging task. For example, in the case of the Kashmir earthquake (2005), [12, 32, 117, 34]530

obtained different fault rupture models by using different surface displacement measurements. Without531

ground truth, it is impossible to assess these models in an objective way.532

Given the current status and the future development of displacement measurement fusion, sophis-533

ticated statistic tools, such as the Kalman Filter, the Bayesian theory and so on, can be534

expected to further improve the results. Meanwhile, it will be important to modify the processing535

algorithms and to adapt our way of working. Inspired from the ocean reanalysis, different measurements536

with different spatial coverage, different spatial resolution, different time spans, bringing different infor-537

mation, including correlation of SAR, optical images, DInSAR, GPS and other in situ measurements, can538

be homogenised through a realistic physical model in order to produce spatially and temporally regular539

displacement maps (namely displacement reanalysis) to record the properties of the displacement over540

time. Later, instead of keeping and processing different types of measurements of large volume, these dis-541

placement reanalyses present numerous advantages. Currently, the displacement measurement by remote542

sensing is still mainly applied to past events that have taken place before the data processing. With the543

launching by ESA of the Sentinel series, remote sensing data can be acquired nearly everywhere on the544

Earth at least every 6 days. By adding the data issued from other satellites, TerraSAR-X and TanDEM-X,545

Landsat 8, the four satellites COSMO-SkyMed, ALOS-2, etc, real time monitoring by time series will546
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become possible. The combination in real time of displacement measurements from remote sensing im-547

agery and physical models is possible. It will thus be possible to predict the evolution of an event such as548

a magma reload of a reservoir located beneath an active volcano or a rupture of a serac. Data assimilation549

extensively investigated in atmosphere and ocean science will open new perspective for the observation and550

the prevention of natural hazards.551
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[69] O. Cavalié, M. P. Doin, C. Lasserre, and P. Briole, “Ground motion measurement in the lake Mead753

area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing754

the lithosphere rheological structure,” Journal of Geophysical Research, vol. 112, no. B03403, 2007.755
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Figure 1: (a) Linear range change rate (b) standard deviation of the linear range change rate obtained
from stacking of 13 independent interferograms in the San Francisco Bay Area from 1992 to 2000 (from
[78]).
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(a)

(b)

Figure 2: Ice flow velocity magnitude obtained from feature-tracking of Landsat images over the Karakoram
for (a) a single annual pair (b) the fusion of 29 annual pairs over the period 1999-2001. White gaps
correspond to areas where no measurements are available. In (a) the spatial coverage is 70%, while it is
increased to 94% in (b). Insets show histograms of the velocity in stable areas for each component.
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Figure 3: Example of displacement time series obtained with SBAS and P0-SBAS for Fernandina (a-c)
and Sierra Negra (d-f) (from [118]). (a) LOS mean deformation velocity map computed through the SBAS
approach and the displacement time series relevant to a point located in the inner caldera denoted by
the black square (b-c) Displacement during the period of 2003 - 2007 computed through the PO-SBAS
approach along the range and the azimuth directions and the displacement time series of representative
points located within the inner caldera. (d) Same as (a) but for Sierra Negra (e) Same as (b) but for
Sierra Negra (f) Same as (c) but for Sierra Negra. The displacement time series is relevant to the relative
displacement between two points located across the caldera, identified by the black boxes. Red lines refer
to the Fernandina May 2005 eruption and to the Sierra Negra October 2005 eruption.
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(a) (b) (c)

(d) (e)

Figure 4: The Up component of the 3D displacement obtained with joint inversion (a) and the associ-
ated uncertainty obtained with (b) joint inversion, probabilistic approach (c) joint inversion, possibilistic
approach (d) pre-fusion, probabilistic approach (e) pre-fusion, possibilistic approach in the case of the
Kashmir earthquake in 2005.
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(a)

(b)

Figure 5: Slip distribution on the fault plane obtained with (a) pre-fusion (b) joint inversion for the
Kashmir earthquake in 2005. The color represents the magnitude and the arrows represent the direction.
Artefact is observed in depth in model (b) because of the difficulty in adjusting a model to a large number
of noisy measurements.
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Figure 6: Example of distribution and correlation of geometrical parameters of a fault rupture model of the
2003 BAM (Iran) earthquake obtained by noise realisation (from [100]). Histograms show uncertainties in
individual model parameters. Scatterplots show degrees of correlation (trade-off) between pairs of model
parameters. (Strike, dip, and rake are in degrees; slip is in m; X and Y coordinates (of the centre of the
fault plane projected updip to the surface) are in UTM km (zone 40); length, width, and centroid (Cd)
depth are in km; and moment is in units of 1018 N m.)
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(a)

(b)

(c)

Figure 7: Slip model for the 2006 slow slip events in the Guerrero seismic gap inferred from (a) GPS
measurement alone (b) InSAR measurements alone (c) joint minimisation of residual of both GPS and
InSAR measurements (from [38]). GPS stations are represented by open black triangles and InSAR track
by black box. Dashed thin gray lines indicate the changes in the dip of the model subduction plane. Dashed
thick gray line represents the Middle American Trench (MAT) and thick continuous gray lines correspond
to fracture zones. The location of the Guerrero gap (G.gap) is shown in red.
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(a) (b)

(c) (d) (e) (f)

Figure 8: (a) A priori deformation model in LOS direction, negative value for displacement towards the
satellite. (b) Scale image for phase gradient estimation deduced from the a priori deformation model.
S0 corresponding to the full resolution SLC image and Sn to the multi-looking image after a complex
average of n looks in range and 5n looks in azimuth. (c) Original differential interferogram (d) Filtered
interferogram by multi-scale phase gradient (e) Unwrapped interferogram using multi-scale phase gradient
by a least squares method (f) Wrapped phase residual in the case of the Kashmir earthquake (2005) (from
[34]).
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Figure 9: (a) Geometrical parameters of the Paganica fault estimated in [113] (b) Coseismic and (c) post-
seismic slip distributions of the Paganica fault and the Campotosto fault using the Paganica fault geometry
in (a) and the Campotosto fault geometry derived from geological mapping and InSAR, GPS and levelling
data (from [15]). The write star indicates the April 6th Mw 6.3 L’Aquila mainshock, while the green
stars are the three Mw > 5 aftershocks on the Campotosto fault. The Paganica fault is in green and the
Campotosto fault is in red. The gray arrows show the slip direction.
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