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THE FIRST POSITIVE EIGENVALUE OF THE SUB-LAPLACIAN ON

CR SPHERES

AMINE ARIBI AND AHMAD EL SOUFI

Abstract. We prove that the first positive eigenvalue, normalized by the volume, of
the sub-Laplacian associated with a strictly pseudoconvex pseudo-Hermitian structure θ
on the CR sphere S2n+1 ⊂ Cn+1, achieves its maximum when θ is the standard contact
form.

1. Introduction and statement of the main result

According to a classical result of Hersch [15], given any Riemannian metric g on the 2-
dimensional sphere S2, the first positive eigenvalue λ1(g) of the Laplace-Beltrami operator
∆g satisfies the estimate

λ1(g)A(g) ≤ λ1(g0)A(g0) (1)

where g0 is the standard metric of S2 and A(g) is the area of S2 with respect to g.
Moreover, the equality holds in (1) if and only if g is isometric to g0. This result was
extended to higher dimensional spheres by Ilias and the second author as follows (see [12,
proposition 3.1]) : If a Riemannian metric g on the n-dimensional sphere S

n is conformal
to the standard metric g0, then

λ1(g)V (g)
2

n ≤ λ1(g0)V (g0)
2

n (2)

where V (g) denotes the Riemannian volume of the sphere with respect to g. Again, the
equality holds in (2) if and only if g is isometric to g0.

The aim of the present paper is to establish a version of the estimate (2) for the first
positive eigenvalue of the sub-Laplacian on the CR sphere S2n+1 ⊂ Cn+1. Indeed, let

θ0 =
i

2

n+1∑

j=1

(
ζj dζ̄j − ζ̄j dζj

)

be the standard contact form on S2n+1 whose kernel coincides with the Levi distribution
H(S2n+1) = TS2n+1 ∩ JTS2n+1, where J is the complex structure of Cn+1. The set
P+(S

2n+1) = {fθ0 ; f ∈ C∞(S2n+1) and f > 0} contains all pseudo-Hermitian structures
on S2n+1 whose Levi form is positive definite. Given a pseudo-Hermitian structure θ ∈
P+(S

2n+1), we denote by λ1(θ) the first positive eigenvalue of the corresponding sub-
Laplacian ∆θ, and by V (θ) the volume of S2n+1 with respect to the volume form ψθ =
1

n!2n
θ ∧ (dθ)n (see the next section for precise definitions). The main result of this paper

is
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Theorem 1.1. For every pseudo-Hermitian structure θ ∈ P+(S
2n+1) we have

λ1(θ)V (θ)
1

n+1 ≤ λ1(θ0)V (θ0)
1

n+1 . (3)

The equality holds in (3) if and only if there exists a CR-automorphism γ of S2n+1 such

that θ = c γ∗θ0 for some constant c > 0, or if and only if there exist p ∈ S2n+1 and t ≥ 0
such that

θ =
c

|cosh t+ sinh t (ζ, p)|2
θ0,

where ( , ) denotes the standard Hermitian product of Cn+1.

This result can be seen as a contribution to the program aiming to recovering the
main results of spectral geometry, established for the eigenvalues of the Laplace-Beltrami
operator on a compact Riemannian manifold, in the realm of CR and pseudo-Hermitian
geometry. This program has motivated a lot of research in recent years and we can find
significant contributions in [1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 13, 14, 17, 16, 18, 19, 20, 21, 22].

2. Proof of Theorem 1.1

Let M be a connected differentiable manifold of dimension 2n+1 ≥ 3. A CR structure
on M is a couple (H(M), J) where H(M) is a 2n-dimensional subbundle of the tangent
bundle TM , the so-called Levi distribution, endowed with a pseudo-complex operator J
satisfying the following integrability condition : ∀X, Y ∈ Γ(H(M)),

[X, Y ]− [JX, JY ] ∈ Γ(H(M))

and

J ([X, Y ]− [JX, JY ]) = [JX, Y ] + [X, JY ].

Real hypersurfaces of Cn+1 are the most natural examples of CR manifolds. Indeed,
if M ⊂ Cn+1 is such a hypersurface, then H(M) := TM ∩ J(TM) endowed with the
restriction of the standard complex structure J of Cn+1, is a CR structure on M .

If (M,H(M), J) is an orientable CR manifold, then there exists a nontrivial 1-form
θ ∈ Γ(T ∗M) such that Kerθ = H(M). Such a 1-form, called pseudo-Hermitian structure,
is of course not unique. The set of pseudo-Hermitian structures consists in all the forms
fθ, where f is a smooth nowhere zero function on M. To each pseudo-Hermitian structure
θ we associate its Levi form Lθ defined on H(M) by

Lθ(X, Y ) = −dθ(JX, Y ) = θ([JX, Y ]).

The integrability of J implies that Lθ is symmetric and J-invariant. The CR manifold M
is called strictly pseudoconvex if Lθ is definite. Of course, this condition does not depend
on the choice of θ (since Lfθ = fLθ). In the sequel, we denote by P+(M) the set of all
pseudo-Hermitian structures with positive definite Levi form. Every θ ∈ P+(M) is in fact
a contact form which induces on M the following volume form

ψθ =
1

2n n!
θ ∧ (dθ)n.

The associated divergence divθ is defined, for every smooth vector field Z on M , by

LZψθ = divθ(Z)ψθ.
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The sub-Laplacian ∆θ is then defined for all u ∈ C∞(M), by

∆θu = divθ(∇
Hu)

where ∇Hu ∈ Γ(H(M)) is the horizontal vectorfield such that, ∀X ∈ H(M), du(X) =
Lθ(∇

Hu,X). The following integration by parts formula holds for any u, v ∈ C∞
0 (M):

ˆ

M

(∆θu) v ψθ = −

ˆ

M

Lθ(∇
Hu,∇Hv)ψθ.

Given θ ∈ P+(M), there is a unique vectorfield ξ, often called Reeb vectorfield, that
satisfies θ(ξ) = 1 and ξ⌋dθ = 0. The Levi form Lθ extends to a Riemannian metric on M
(the Webster metric) given by

gθ(X, Y ) = Lθ(X
H , Y H) + θ(X)θ(Y )

with XH = X − θ(X)ξ. The corresponding Laplace-Beltrami operator ∆gθ is related to
∆θ by the following formula (see [13])

∆θ = ∆gθ − ξ2. (4)

The sub-Laplacian ∆θ is a sub-elliptic operator of order 1/2. When M is compact, it
admits a self-adjoint extension to an unbounded operator of L2(M,ψθ) whose resolvent is
compact (see for instance [2, Lemma 2.2]). Hence, the spectrum of −∆θ is discrete and
consists of a sequence of nonnegative eigenvalues of finite multiplicity {λk(θ)}k≥0 with
λ0(θ) = 0. The min-max variational principle gives

λ1(θ) = inf
´

M
uψθ=0

´

M
|∇Hu|2θ ψθ
´

M
u2 ψθ

(5)

where |∇Hu|2θ = Lθ(∇
Hu,∇Hu).

2.1. The CR Sphere. Let S2n+1 be the unit Sphere in Cn+1

S
2n+1 =

{
ζ = (ζ1, ..., ζn+1) ∈ C

n+1 ;
∑

j≤n+1

|ζj|
2 = 1

}

endowed with its standard CR-structure. The restriction to S2n+1 of the contact form

θ0 = −
i

2

n+1∑

j=1

(
ζ̄j dζj − ζj dζ̄j

)

is a pseudohermitian structure whose Reeb field ξ = i
∑n+1

j=1

(
ζj

∂
∂ζj

− ζ̄j
∂
∂ζ̄j

)
generates the

natural action of S1 on S2n+1. Since dθ0 is the standard Kähler form of Cn+1, the induced
Levi form on H(S2n+1) coincides with the standard metric of the sphere.

If Vp,q is the space of harmonic polynomials of bi-degree (p, q) in Cn+1, then, ξ acts on
V
p,q as the multiplication by i(p − q) and it can be deduced, using (4), that V

p,q is an
eigenspace of ∆θ0 on S2n+1 with eigenvalue 2n(p + q) + 4pq (see [10, Theorem 4.1] and
[22, Proposition 4.4] for details). Therefore,

λ1(θ0) = 2n. (6)
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2.2. One-parameter groups of CR-automorphisms of the sphere. A differentiable

map ϕ :M → M̃ between two CR manifolds is a CR map if for any x ∈M ,

dxϕ(Hx(M)) ⊂ Hϕ(x)(M̃) and dxϕ ◦ JMx = JM̃ϕ(x) ◦ dxϕ. (7)

A CR-automorphism of a CR manifold M is a diffeomorphism of M which is a CR map.

Let en+1 = (0, · · · , 0, 1) ∈ S2n+1. The punctured sphere S2n+1 \ {en+1} can be identified
with the boundary of the so-called Siegel domain Ωn+1 = {(z, w) ∈ Cn × C : Im w >
|z|2} ⊂ Cn+1 through the CR diffeomorphism Φ : S2n+1 \ {en+1} → ∂Ωn+1 given by

Φ(ζ) =
1

1− ζn+1
(ζ1, · · · , ζn, i(1 + ζn+1))

with

Φ−1(z, w) =
1

w + i
(2iz1, · · · , 2izn, w − i)

For every t ∈ R, the “dilation”

Ht : ∂Ωn+1 → ∂Ωn+1

(z, w) 7→ (etz, e2tw)

is a CR-automorphism of ∂Ωn+1. We define γt : S
2n+1 → S2n+1 by γt(en+1) = en+1 and,

∀ζ ∈ S2n+1 \ {en+1},

γt(ζ) = Φ−1 ◦Ht ◦ Φ(ζ) =
1

cosh t + sinh t ζn+1
(ζ1, · · · , ζn, sinh t+ cosh t ζn+1)

or

γt(ζ) =
1

cosh t + sinh t ζn+1
(ζ + (sinh t+ (cosh t− 1) ζn+1) en+1) .

Lemma 2.1. For every t, the map γt is a CR-automorphism of S2n+1 which satisfies

(γt)
∗θ0 =

1

|cosh t+ sinh t ζn+1|
2 θ0.

Proof. Let fj(ζ) =
ζj

cosh t+sinh t ζn+1
, j ≤ n, and fn+1(ζ) =

sinh t+cosh t ζn+1

cosh t+sinh t ζn+1
. Then

dfj =
dζj

cosh t + sinh t ζn+1
−

sinh t ζj dζn+1

(cosh t+ sinh t ζn+1)2
and dfn+1 =

dζn+1

(cosh t+ sinh t ζn+1)2
.

Therefore

fj df̄j =
ζj dζ̄j

|cosh t+ sinh t ζn+1|
2 −

|ζj|
2 sinh t dζ̄n+1

|cosh t + sinh t ζn+1|
2 (cosh t+ sinh t ζ̄n+1)

,

f̄j dfj =
ζ̄j dζj

|cosh t + sinh t ζn+1|
2 −

|ζj|
2 sinh t dζn+1

|cosh t+ sinh t ζn+1|
2 (cosh t + sinh t ζn+1)

which gives with
∑n

j=1 |ζj |
2 = 1− |ζn+1|

2,

n∑

j=1

(
fjdf̄j − f̄jdfj

)
=

1

|cosh t+ sinh t ζn+1|
2

n∑

j=1

(
ζj dζ̄j − ζ̄j dζj

)
+
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(
1− |ζn+1|

2) sinh t
|cosh t + sinh t ζn+1|

2

(
dζn+1

cosh t + sinh t ζn+1
−

dζ̄n+1

cosh t+ sinh t ζ̄n+1

)
.

On the other hand,

fn+1 df̄n+1 − f̄n+1 dfn+1 =

1

|cosh t+ sinh t ζn+1|
2

(
sinh t+ cosh t ζn+1

cosh t+ sinh t ζ̄n+1

dζ̄n+1 −
(sinh t + cosh t ζ̄n+1)

cosh t+ sinh t ζn+1
dζn+1

)

Now (with |ζn+1|
2 = ζn+1ζ̄n+1),(

1− |ζn+1|
2) sinh t−

(
sinh t+ cosh t ζ̄n+1

)

cosh t + sinh t ζn+1
= −ζ̄n+1

and
−
(
1− |ζn+1|

2) sinh t+ (sinh t+ cosh t ζn+1)

cosh t + sinh t ζ̄n+1

= ζn+1

Thus,
n+1∑

j=1

(
fjdf̄j − f̄jdfj

)
=

1

|cosh t+ sinh t ζn+1|
2

n+1∑

j=1

(
ζj dζ̄j − ζ̄j dζj

)

that is,

(γt)
∗θ0 =

i

2

n+1∑

j=1

(
fjdf̄j − f̄jdfj

)
=

1

|cosh t + sinh t ζn+1|
2 θ0.

�

Let p ∈ S2n+1 be any point of the sphere and let αp ∈ U(n+1) be such that αp(p) = en+1.
The family γpt = α−1

p ◦ γt ◦αp is a 1-parameter group of CR-automorphisms of the sphere

S2n+1 with

γpt (ζ) =
1

cosh t+ sinh t (ζ, p)
{ζ + (sinh t + (cosh t− 1) (ζ, p))p} (8)

and

(γpt )
∗θ0 =

1

|cosh t+ sinh t (ζ, p)|2
θ0. (9)

2.3. Preparatory lemmas.

Lemma 2.2. Let M be a strictly pseudoconvex CR manifold of dimension 2n+1 and let

θ, θ̂ ∈ P+(M) be two pseudo-Hermitian structures with θ̂ = f θ, f ∈ C∞(M). Then

ψθ̂ = fn+1ψθ (10)

Proof. From dθ̂ = f dθ + df ∧ θ we deduce, by induction,

(dθ̂)n = fn(dθ)n + αn ∧ θ

where αn is a differential form of degree 2n− 1. Thus,

θ̂ ∧ (dθ̂)n = fθ ∧ (fn(dθ)n + αn ∧ θ) = fn+1θ ∧ (dθ)n.

�
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Lemma 2.3. Let M be a strictly pseudoconvex CR manifold of dimension 2m+1 and let

φ :M → (S2n+1, θ0) be a CR map. Then, for every θ ∈ P+(M),

φ∗θ0 =
1

2m

(
2n+2∑

i=1

∣∣∇Hφi
∣∣2
θ

)
θ (11)

where φ1, . . . , φ2n+2 are the Euclidean components of φ.

Proof. Since φ is a CR map, the 1-form φ∗θ0 vanishes on H(M) which implies that there
exists f ∈ C∞(M) such that

φ∗θ0 = fθ. (12)

Differentiating, we get
φ∗dθ0 = df ∧ θ + fdθ.

Hence, for every X , Y ∈ Hx(M), one has φ∗dθ0(X, Y ) = fdθ(X, Y ) and, using (7),

Lθ0(dφ(X), dφ(X)) = dθ0(dφ(X), JS2n+1

dφ(X)) = dθ0(dφ(X), dφ(JMX))

= φ∗dθ0(X, J
MX) = fdθ(X, JMX) = fLθ(X,X).

On the other hand, since Lθ0 coincides with the standard inner product on Hφ(x)(S
2n+1),

Lθ0(dφ(X), dφ(X)) =
2n+2∑

i=1

(dφi(X))2 =
2n+2∑

i=1

Lθ(∇
Hφi, X)2.

Thus,

fLθ(X,X) =

2n+2∑

i=1

Lθ(∇
Hφi, X)2.

Taking an Lθ-orthonormal basis {e1, . . . , e2m} of Hx(M), we get

2mf =
2m∑

j=1

2n+2∑

i=1

Lθ(∇
Hφi, ej)

2 =
2n+2∑

i=1

Lθ(∇
Hφi,∇

Hφi) =
2n+2∑

i=1

∣∣∇Hφi
∣∣2
θ

which implies (11), thanks to (12). �

If φ : M → RN is a map and µ is a measure on M , we denote by
´

M
φ dµ the vector(´

M
φ1dµ, . . . ,

´

M
φNdµ

)
∈ R

N , where φ = (φ1, · · · , φN).

Lemma 2.4. Let M be a compact manifold and let µ be a measure on M such that no

open set has measure zero. If φ : M → S2n+1 is a non constant continuous map, then

there exists a pair (p, t) ∈ S2n+1 × [0,+∞) such that
ˆ

M

γpt ◦ φ dµ = 0.

Proof. The proof uses standard arguments (see [11, 15]). We consider the map

F : S2n+1 × (0,+∞) → B2n+2 ⊂ R2n+2

(p, t) 7→ 1
V

´

M
γpt ◦ φ dµ

where V =
´

M
dµ and B2n+2 is the unit Euclidean ball. Observe that (see (8)), ∀p ∈ S2n+1,

γp0 is the identity map while, ∀ζ 6= −p, γpt (ζ) tends to p as t → +∞. Consequently,
F (·, 0) = 1

V

´

M
ϕdµ is a constant map and F (·, t) tends to the identity of S2n+1 as
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t→ +∞. Such a map F is necessarily onto which implies that the origin of R2n+2 belongs
to its image. �

2.4. Proof Theorem 1.1. Let θ ∈ P+(S
2n+1) be a strictly pseudoconvex pseudo-Hermitian

structure. We apply Lemma 2.4 to the identity map of S2n+1 and the measure induced
by ψθ to obtain the existence of a pair (p, t) ∈ S2n+1 × [0,+∞) such that

ˆ

S2n+1

γpt ψθ = 0.

For simplicity, we write γ for γpt . The Euclidean components γ1, . . . γ2n+2 of γ satisfy
´

S2n+1 γj ψθ = 0. Hence, applying the min-max principle (5), we get for every j ≤ 2n+ 2,

λ1(θ)

ˆ

S2n+1

γ2j ψθ ≤

ˆ

S2n+1

∣∣∇Hγj
∣∣2
θ
ψθ.

Summing up we obtain, with
∑

j≤2n+2 γ
2
j = 1,

λ1(θ)V (θ) ≤
∑

j≤2n+2

ˆ

S2n+1

∣∣∇Hγj
∣∣2
θ
ψθ (13)

≤ 2n

(
ˆ

S2n+1

(
1

2n

∣∣∇Hγj
∣∣2
θ

)n+1

ψθ

) 1

n+1

V (θ)1−
1

n+1 . (14)

Using Lemma 2.3, we see that, since γ is a CR map from (S2n+1, θ) to (S2n+1, θ0),

γ∗θ0 =

(
1

2n

∑

j≤2n+2

∣∣∇Hγj
∣∣2
θ

)
θ (15)

which gives, thanks to Lemma 2.2

ψγ∗θ0 =

(
1

2n

∑

j≤2n+2

∣∣∇Hγj
∣∣2
θ

)n+1

ψθ.

Thus

λ1(θ)V (θ) ≤ 2nV (γ∗θ0)
1

n+1V (θ)1−
1

n+1 .

Since V (γ∗θ0) = V (θ0), we finally get

λ1(θ)V (θ)
1

n+1 ≤ 2nV (θ0)
1

n+1

which proves the inequality of the theorem thanks to (6).

Now, if the equality holds in (3), this means that we have equality in the Cauchy-

Schwarz inequality used in (14). Thus,
∑

j≤2n+2

∣∣∇Hγj
∣∣2
θ
is constant and, thanks to (15),

θ is proportional to γ∗θ0 which takes the form given by (9).

Conversely, it is clear that when γ is a CR-automorphism of the sphere then λ1(γ
∗θ0) =

λ1(θ0) = 2n and V (γ∗θ0) = V (θ0). Hence, the equality holds in (3).
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