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Le groupement de clés est une technique utilisée dans les plateformes de traitement de flux pour simplifier le dé-
ploiement parallèle d’opérateurs à états. Cette méthode consiste à subdiviser le flux de tuples en plusieurs sous-flux
disjoints, au regard d’une clef définie pour chaque tuple. Chaque opérateur recevant l’un de ces sous-flux est donc as-
suré de recevoir tous les tuples contenant une clé spécifique. Une solution classique est de grouper les clés en utilisant
des fonctions de hachage, induisant potentiellement un déséquilibre de charge des opérateurs en cas de distribution bi-
aisée des clefs du flux d’entrée. Nous présentons une solution permettant d’obtenir une répartition de la charge proche
de l’optimal, quelque soit la distribution. Cette solution repose sur le fait que l’équilibre est majoritairement influencé
par les clés les plus fréquentes. En identifiant ces valeurs dominantes et en les groupant judicieusement avec des clés
plus rares, les sous-flux ainsi obtenus permettent d’atteindre un équilibrage de charge quasi-optimal. Nous présentons
une analyse théorique des bornes de qualité obtenu avec notre algorithme et illustrons son impact sur des applications
de traitement de flux, via des simulations intensives et un prototype opérationnel.

Mots-clefs : Traitement de flux; Groupement de clé; Equilibrage de charge; Algorithme d’approximation probabiliste;
Evaluation de performance
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1 Introduction
Stream processing systems are today gaining momentum as a tool to perform analytics on continuous data
streams. A stream processing application is commonly modeled as a direct acyclic graph where data op-
erators, represented by nodes, are interconnected by streams of tuples containing data to be analyzed, the
directed edges. Scalability is usually attained at the deployment phase where each data operator can be
parallelized using multiple instances, each of which will handle a subset of the tuples conveyed by the oper-
ator’s ingoing stream. Balancing the load among the instances of a parallel operator is important as it yields
to better resource utilization and thus larger throughputs and reduced tuple processing latencies.

How tuples pertaining to a single stream are partitioned among the set of parallel instances of a target
operator strongly depends on the application logic implemented by the operator itself. When the target
operator is stateful (assignment based on the specific value of data contained in the tuple itself; key or field
grouping) things get more complex as its state must be maintained continuously synchronized among its
instances, with possibly severe performance degradation at runtime; a well-known workaround to this prob-
lem consists in partitioning the operator state and let each instance work on the subset of the input stream
containing all and only the tuples which will affect its state partition, simplifying the work of developing
parallelizable stateful operators.
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The downside of using key grouping is that it may induce noticeable imbalances in the load experienced
by the target operator whenever the data value distribution is skewed, a common case for many application
scenarios. This is usually the case with implementations based on hash functions: the hashed data is
mapped, for example using modulo, to a target instance. A solution could lie in defining an explicit one-
to-one mapping between input values and available target instances that could take into account the skewed
frequency distribution and thus uniformly spread the load; this solution is considered impractical as it
requires to have precise knowledge on the input value distribution (usually not known) and imposes, at
runtime, a memory footprint that is proportional to the huge number of possible values in the input domain.

In this paper we propose a new key grouping technique called Distribution-aware Key Grouping (DKG)
targeted toward applications working on input streams characterized by a skewed value distribution. DKG
is based on the observation that when the values used to perform the grouping have skewed frequencies, e.g.,
they can be approximated with a Zipfian distribution, the few most frequent values (the heavy hitters) drive
the load distribution, while the remaining largest fraction of the values (the sparse items) appear so rarely
in the stream that the relative impact of each of them on the global load balance is negligible. However,
when considered in groups sparse items should be handled with care. After an initial training phase, whose
length can be tuned, the final mapping is obtained by running a greedy multiprocessor scheduling algorithm
that takes as input the heavy hitters with their estimated frequencies and the groups of sparse items with
their frequencies and outputs a one-to-one mapping of these elements to the available target instances.
The final result is a mapping that is fine-grained for heavy hitters, that must be carefully placed on the
available target instances to avoid imbalance, and coarse-grained for the sparse items whose impact on load
is significant only when they are considered in large batches. DKG is a practical solution as it uses efficient
data streaming algorithms to estimate with a bounded error the frequency of the heavy hitters, and has a
small and constant memory footprint that can be tuned by system administrators, thus overcoming the two
main limitations of standard one-to-one mappings.

We show, through a theoretical analysis, that DKG provides on average near-optimal mappings using sub-
linear space in the number of tuples read from the input stream in the learning phase and the support (value
domain) of the tuples. We also extensively tested DKG both in a simulated environment with synthetic
datasets and on a prototype implementation based on Apache Storm (http://storm.apache.org)
running with real data. The experiments show that DKG outperforms standard hashing solutions when run
over streams with slightly- to strongly-skewed value distributions. In particular, DKG is able to deliver very
stable performance that do not vary strongly with the input, and that are always close to an approximate
optimum that is obtainable only with full information on the input distribution. Due to space constraints,
proofs and main experimental results are available in the companion paper [RQA+15], which the interested
reader is invited to consult.

2 Distribution-aware Key Grouping
In this section we present our solution consisting of a three-phase algorithm. (i) In the first phase the
algorithm becomes aware of the stream distribution (learning phase). (ii) The following phase builds a
global mapping function taking into account the previously gathered knowledge of the stream (build phase).
(iii) The last phase uses the built global mapping function to perform key grouping with near-optimal
balancing (deployment phase). As previously motivated, we cannot afford to store the entire input data
stream in order to analyze it and cannot make multiple passes over it to keep pace with the rate of the
stream. As such we rely on data streaming algorithms, which have shown their highly desirable properties
in data intensive applications to compute different kind of basic statistics.

Data Stream Model and Heavy Hitters A stream is a sequence of elements 〈t1, t2, . . . , tm〉 called tuples
or items, which are drawn from a large universe [n] = {1, . . . ,n}. In the following, the size (or length) of
the stream is denoted by m. Notice that in this work we do not consider m as the size of the whole stream,
but as the size of the learning set, i.e., how long the first phase lasts. In the following we denote by pi the
unknown probability of occurrence of item i in the stream and with fi the unknown frequency of item i,
i.e., the mean number of occurrences of i in the stream of size m. An item i of a stream is called heavy
hitter if the empirical probability pi with which item i appears in the stream satisfies pi ≥Θ for some given
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Figure 1: DKG architecture and working phases.

threshold 0 < Θ≤ 1. In the following we call sparse items the items of the stream that are not heavy hitters.

Greedy scheduling algorithm We adapt the Multiprocessor Scheduling problem to our setting. More
formally we have (i) a set of buckets bi ∈ B , each of them with an associated frequency fi, and (ii) a
set of instances r j ∈ R (|R | = k), each of them with an associated load L j. The load L j is the sum of the
frequencies of the buckets assigned to instance r j. We want to associate each bucket b j ∈B , minimizing the
maximum load on the instances: max j=1,...,k (L j). To solve efficiently this problem, known to be NP-hard,
we make use of the classic Least Processing Time First (LPTF) approximation algorithm run over small
inputs. The algorithm (referred as scheduling algorithm in the following) assigns the bucket bi ∈ B
with the largest frequency fi to the instance r j with the lowest load L j, then removes bi from B and repeats
until B is empty. This algorithm provides then a ( 4

3 −
1
3k )-approximation of the optimal mapping [Gra69].

DKG design As previously mentioned, the unbalancing in key grouping is mainly due to the skewness
of the input stream distribution. For instance, let i and j be the stream heavy hitters, most likely a good
mapping should keep them separated. In addition, if fi > m/k, the hash function should isolate i on an
instance. However, a randomly chosen hash function will almost certainly assign other (sparse) items with
i. Even worse, the hash function may end up putting i and j together. To cope with these issues, DKG
becomes aware of the stream distribution through a learning phase. It is then able to build a global mapping
function that avoids pathological configurations and that achieves close to optimal balancing.

DKG (Figure 1.A) chooses a hash function h̄ : {1, . . . ,n}→ {1, . . . ,kµ} randomly from a 2-universal hash
functions family, where µ is a user defined parameter. Increasing the co-domain size reduces the collision
probability, thus enhances the odds of getting a good assignment. Having more buckets (elements of h̄
co-domain) than instances, we can map buckets to instances minimizing the unbalancing. More in details,
DKG feeds to the previously presented scheduling algorithm the buckets of h̄ with their frequencies as
the set B and the number of instances k. To track the frequencies of h̄’s buckets, DKG keeps an array vh̄ of
size kµ. When receiving tuple t, DKG increments the cell associated through h̄ with t (Figure 1.B). In other
words vh̄ represents how h̄ maps the stream tuples to its own buckets.

While this mechanism improves the balancing, it still does not deterministically guarantee that heavy
hitters are correctly handled. If the buckets have in average the same load, the scheduling algorithm
should be able to produce a good mapping. To approximate this ideal configuration we have to remove all
the heavy hitters. As such, DKG uses the SS algorithm [MAEA05] to detect heavy hitters and manage them
ad-hoc. To match the required detection and estimation precisions, the SS algorithm monitors 1/ε distinct
keys, where ε < Θ (Θ is the relative frequency of heavy hitters and is a user defined parameter). When
receiving tuple t, DKG updates the Space Saving algorithm instance (Figure 1.C). At the end of the
learning phase, the SS algorithm will maintain the most frequent values of t and their estimated frequencies.
Then (Figure 1.D), DKG removes the frequency count of each heavy hitter from vh̄. Finally (Figure 1.E),
it feeds to the scheduling algorithm the vh̄ array and the heavy hitters from the SS algorithm, with the
frequencies of both, as the set of bucket B . The scheduling algorithm will return an approximation of
the optimal mapping from h̄ buckets and detected heavy hitters to instances.

When receiving tuple t in the deployment phase (Figure 1.F), the resulting global mapping function: (i)
checks if t is a frequent item and returns the associated instance. (ii) Otherwise it computes the hash of t:
h̄(t), and returns the instance associated with the resulting bucket.
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Theorem 2.1 (Time complexity of DKG) The time complexity of DKG is O(log1/ε) per update in the
learning phase, O ((kµ+1/ε) log(kµ+1/ε)) to build the global mapping function, and O(1) to return the
instance associated with a tuple.

Theorem 2.2 (Memory requirement of DKG) The space complexity of DKG is O ((kµ+1/ε) logm+ logn)
bits in the learning phase and to build the global mapping function. To store the global mapping function,
DKG requires O ((kµ+1/Θ) logn) bits.

Theorem 2.3 (Accuracy of DKG) DKG provides an (1 + Θ)-optimal mapping for key grouping using
O(kµ logm+ logn) bits of memory in the learning phase and O(kµ logn) bits of memory to store the global
mapping function, where µ≥ 1/Θ≥ k

3 Experiment results
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Figure 2: CPU usage (Hz) for 300s of execution (Θ = 0.1,
ε = 0.05, µ = 2 and k = 4)

We also extensively tested DKG both in a simulated
environment with synthetic datasets and on a proto-
type implementation running with real data. Due to
space constraints, the extensive simulation results
are available in the companion paper [RQA+15].
To evaluate the impact of DKG on real applications
we implemented it† as a custom grouping function
within the Apache Storm framework. The use case
for our tests is a partial implementation of the third
query from the DEBS 2013 Grand Challenge. The
goal is to compute, over four different time win-
dows and grid granularities, how long each of the
monitored players is in each grid cell. Figure 2(a) shows the CPU usage (Hz) over time (300 seconds of
execution) for DKG and Modulo (the default Apache Storm key grouping implementation) with the DEBS
trace in the test topology with k = 4 instances. The CPU usage was measured as the average number of
hertz consumed by each instance every 10 seconds. Plotted values are the mean, max and min CPU usage
on the 4 instances. The mean CPU usage for DKG is close to the maximum CPU usage for Modulo, while
the mean CPU usage for Modulo is much smaller. This was expected as there is a large resource under-
utilization with Modulo. Figure 2(b) shows the CPU usage’s distribution for the same time-slice. In other
words the data point x-axis value represents how many times an instance has reached this CPU usage (Hz).
Notice that the values are rounded to the nearest multiple of 5×107. This plot confirms that the CPU usage
for DKG’s replicas is concentrated between 2×109 and 2.5×109 Hz, i.e., all instances are well balanced
with DKG. On the other hand Modulo does hit this interval, but most of the data points are close to 5×108

Hz. The key grouping provided by DKG loads evenly all available instances. Conversely, with Modulo
some instance (in particular 3) are underused, leaving most of the load on fewer instances (in particular 1).
This improvement in resource usage translates directly into a larger throughput and reduced execution time;
in particular, in our experiments, DKG delivered 2× the throughput of Modulo for k ∈ {4,5,6,8,10}. The
length of the learning phase can have a large impact on the algorithm performances and the applicability of
the solution, however our tests show that DKG performances converge after less than 1,000 tuples.
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