
HAL Id: hal-01303882
https://hal.science/hal-01303882v1

Submitted on 19 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Résumer efficacement des flux de données massifs en
fenêtre glissante

Nicoló Rivetti, Yann Busnel, Achour Mostefaoui

To cite this version:
Nicoló Rivetti, Yann Busnel, Achour Mostefaoui. Résumer efficacement des flux de données massifs en
fenêtre glissante. ALGOTEL 2016 - 18èmes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications, May 2016, Bayonne, France. �hal-01303882�

https://hal.science/hal-01303882v1
https://hal.archives-ouvertes.fr

Résumer efficacement des flux de données
massifs en fenêtre glissante

Nicoló Rivetti1,2, Yann Busnel3,4 et Achour Mostefaoui1
1LINA / Université de Nantes, France
2Sapienza University of Rome, Italie
3Crest / Ensai, Rennes, France
4Inria Rennes – Bretagne Atlantique, France

Estimer la fréquence de n’importe quel item dans des flux de données massifs est un des problèmes majeurs de la
dernière décennie. Si plusieurs solutions élégantes ont été proposées récemment, leur approximation est calculée depuis
le commencement du flux. Dans un contexte applicatif en ligne, il serait préférable de collecter l’information sur un
passé récent, tant pour économiser des ressources que par pertinence de l’information la plus récente. Dans cet article,
nous considérons le modèle dit de fenêtre glissante et proposons deux algorithmes en ligne qui estiment la fréquence de
chaque item dans la fenêtre courante. Ces algorithmes sont des (ε,δ)-approximations absolues des valeurs de fréquences
réelles, utilisant une faible quantité mémoire (respectivement O(1

ε
log 1

δ
(logN + logn)) et O(1

τε
log 1

δ
(logN + logn))

bits, où N est la longueur de la fenêtre, n est le nombre d’items distincts du flux et τ est un paramètre permettant
de limiter l’utilisation mémoire. Les expérimentations conduites, comparant nos solutions à celles de l’état de l’art,
illustrent la validité et la robustesse de nos algorithmes.

Mots-clefs : Flux de données; Fenêtre glissante; Estimation de fréquence; Algorithme d’approximation probabiliste

Ces travaux ont été partiellement financés par le projet ANR SocioPlug (ANR-13-INFR-0003) et le projet DeSceNt du
Labex CominLabs (ANR-10-LABX-07-01).

1 Introduction
In many systems it is most likely critical to gather efficiently various aggregates over massive data that

may be generated at very high speed. A straightforward application is network monitoring, for instance
keeping track of the frequencies of IP addresses in a subnet. This can be modelled by a node trying to
continuously evaluate a given function over stream of items it can observe. The main goal is to evaluate such
functions at the lowest cost in terms of the space used, as well as minimizing the update and query time. The
solutions proposed so far are focused on computing functions or statistics using ε or (ε,δ)-approximations
in poly-logarithmic space over the size m of the stream and the number n of its distinct items.

Datar et al. [DGIM02] introduced the sliding window concept in the data streaming model presenting
the exponential histogram algorithm that provides an ε-approximation for basic counting. In this paper,
we tackle the frequency estimation problem in the sliding window model. Using little memory (low space
complexity) implies some kind of data aggregation. If the number of counters is less than the number of
different items then necessarily each counter encodes the occurrences of more than one item. The problem
is then how to slide the window to no more keep track of the items that exited the window and how to
introduce new items. We extend the well-known algorithm for frequency estimation, namely the COUNT-
MIN sketch [CM05], in a windowed version. We propose our approach in two steps, two first naive and
straightforward algorithms called PERFECT and SIMPLE followed by two more sophisticated ones called
PROPORTIONAL windowed and SPLITTER windowed algorithms. Then, we compare their respective per-
formances together with the ECM-sketches solution, proposed in [PGD12] (the only work that tackles a
similar problem, to our knowledge).

Nicoló Rivetti, Yann Busnel et Achour Mostefaoui

2 Data Streaming Model
We consider a massively long input stream σ, that is, a sequence of elements 〈a1,a2, . . . ,am, . . .〉 called

samples. Samples are drawn from a universe [n] = {1,2, . . . ,n} of items. The size of the universe (or number
of distinct items) of the stream is n. This sequence can only be accessed in its given order (no random
access). We rely on randomized algorithms that implement approximations of our goals. Namely, such an
algorithm A evaluates the stream in a single pass (on-line) and continuously. It is said to be an (ε,δ)-
additive-approximation of a function φ on a stream σ if, for any prefix of size m of items of the input
stream σ, the output φ̂ of A is such that P{| φ̂− φ |> εC} < δ, where ε, δ > 0 are given as precision and
error parameters, while C is an arbitrary constant. On the other hand, the sliding window model, formalized
by Datar et al. [DGIM02], models that when the function φ is evaluated, it will be only on the N more
recent items among the m items already observed. In this model, samples arrive continuously and expire
after exactly N steps. The additional problem brought by a sliding window resides in the fact that when a
prefix of a stream is summarized we lose the temporal information related to the different items making the
exclusion of the most ancient items non trivial with little memory.

3 Windowed Count-Min
The problem we tackle in this paper is the frequency estimation problem. In a stream, each item appears

a given number of times that allows to define its frequency. The function that defines this problem returns a
frequency vector f = (f1, . . . , fn) where f j represents the number of occurrences of item j in the portion of
the input stream σ evaluated so far. The goal is to provide an estimate f̂ j of f j for each item j ∈ [n].

Cormode and Muthukrishnan have introduced in [CM05] the COUNT-MIN sketch that provides, for each
item j an (ε,δ)-additive-approximation f̂ j of the frequency f j. Briefly, the CM algorithm maintains a two-
dimensional array F̂ of c1× c2 counters with c1 = dlog(1/δ)e and c2 = dexp(1)/εe, and uses a set of 2-
universal hash functions h1, . . . ,hc1 . Each time an item j is read from the input stream, this causes one coun-
ter per line to be incremented, i.e., F̂ [u][hu(j)] is incremented for all u ∈ {1, . . . ,c1}. When a query is issued
to get an estimate f̂ j, the returned value corresponds to the minimum among the c1 values of F̂ [u][hu(j)],
1≤ u≤ c1. Fed with a stream of m items, the space complexity of this algorithm is O(1

ε
log 1

δ
(logm+ logn))

bits, while update and query time complexities are O(log1/δ). Concerning its accuracy, the following bound
holds : P{| f̂ j− f j |≥ ε(m− f j)} ≤ δ, while f j ≤ f̂ j is always true.

We propose two extensions in order to meet the sliding window model : PROPORTIONAL and SPLITTER.
Nevertheless, we first introduce two naive algorithms that enjoy optimal bounds with respect to accuracy
(algorithm PERFECT) and space complexity (algorithm SIMPLE). Note that in the following f j is redefined
as the frequency of item j in the last N samples among the m items of the portion of the stream evalua-
ted so far. Due to space constraints, algorithm pseudo-codes and proofs are available in the companion
paper [RBM15], which the interested reader is invited to consult.

Perfect Windowed Count-Min PERFECT provides the best accuracy by dropping the complexity space
requirements : it trivially stores the whole active window. When it reads sample j, it enqueues j and in-
creases all the F̂ matrix cells associated with j. Once the queue reaches size N, it dequeues the expired
sample j′ and decreases all the cells associated with j′. The frequency estimation is retrieved as above.

Simple Windowed Count-Min SIMPLE is as straightforward as possible and achieves optimal space
complexity with respect to the vanilla algorithm. It behaves as the COUNT-MIN, except that it resets the F̂
matrix at the beginning of each new window. Obviously it provides a really rough estimation since it simply
drops all information about any previous window once a new window starts.

Proportional Windowed Count-Min We now present the first extension algorithm, denoted PROPOR-
TIONAL. The intuition behind this algorithm is as follows. At the end of each window, it stores separately
a snapshot of the F̂ matrix, which represents what happened during the previous window. Starting from the
current F̂ state, for each new sample, it increments the associated cells and decreases all the F̂ matrix cells
proportionally to the last snapshot. This smooths the impact of resetting the F̂ matrix throughout the current
window.

Résumer efficacement des flux de données massifs en fenêtre glissante

Theorem 3.1 PROPORTIONAL space complexity is O(1
ε

log 1
δ
(logN + logn)) bits. Update and query time

complexities are O(1
ε

log1/δ) and O(log1/δ).

Splitter Windowed Count-Min PROPORTIONAL removes the average frequency distribution of the pre-
vious window from the current window. Consequently, PROPORTIONAL does not capture sudden changes
in the stream distribution. To cope with this flaw, one could track these critical changes through multiple
snapshots. However, each row of the F̂ matrix is associated with a specific 2-universal hash function, thus
changes in the stream distribution will not affect equally each rows.

lastinit

) m = 101

1 77 20

...

count.

F̂ [1]

F̂ [2]

F̂ [i]
...

0 21 21 59

21 38 42 0

38 21 21 21

� = h0, 1, 2, 3, . . . , 0, 1, 2, 3, 0, 0, . . . , 0i
⇥21 ⇥17

}}c2 = 4; N = 100; ⌧ = 0.4; µ = 1.5

lastinit

81 93 10

count. lastinit

100 101 8

count.

lastinit

4 80 20

count. lastinit

84 84 1

count.

FIGURE 1: State of the data structure of SPLITTER

after a prefix of 101 items of σ.

Therefore, SPLITTER proposes a finer grained ap-
proach analyzing the update rate of each cell in F̂ . To
record changes in the cell update rate, we add a (fifo)
queue of sub-cells to each cell. When SPLITTER detects
a relevant variation in the cell update rate, it creates and
enqueues a new sub-cell. This new sub-cell then tracks
the current update rate, while the former one stores the
previous rate.

Each sub-cell has a frequency counter and 2 times-
tamps : init, that stores the (logical) time where the sub-
cell started to be active, and last, that tracks the time of
the last update. After a short bootstrap, any cell contains
at least two sub-cells : the current one that depicts what
happened in the very recent history, and a predecessor re-
presenting what happened in the past. Figure 1 illustrates
a possible state of the data structure of SPLITTER, after
reading a prefix of 101 items of σ, which is introduced in the top part of the figure with all the parameters
of SPLITTER.

SPLITTER spawns additional sub-cells to capture distribution changes. The decision whether to create a
new sub-cell is tuned by two parameters, τ and µ, and an error function : ERROR. Informally, the function
ERROR evaluates the potential amount of information lost by merging two consecutive sub-cells, while µ
represents the amount of affordable information loss. Performing this check at each sample arrival may lead
to erratic behaviors. To avoid this, we introduced τ, such that 0 < τ ≤ 1, that sets the minimal length ratio
of a sub-cell before taking this sub-cell into account in the decision process. More details is available in the
companion paper [RBM15].

Lemma 3.2 [Number of Splits Upper-bound] Given 0 < τ ≤ 1, the maximum number s of splits (number
of sub-cells spawned to track distribution changes) is O(1

ετ
log 1

δ
).

Theorem 3.3 SPLITTER space complexity is O(1
τε

log 1
δ
(logN + logn)) bits, while update and query time

complexities are O(log1/δ).

For comparizon, the closest related work, that is ECM-SKETCH [PGD12], owns a space complexity of
O
(

1
ε2 log 1

δ

(
log2

εN + logn
))

bits and its update and query times are O(log1/δ). Finally, distributed and
time-based versions of our algorithms are also available in the companion paper [RBM15].

4 Performance Evaluation
We have conducted a series of experiments on different types of streams and parameter settings, to com-

pare the respective efficiency of both proposed algorithms and also to compare them to the only similar
work in the related works. The wave-based version of ECM-SKETCH [PGD12] that we have implemented
replaces each counter of the F̂ matrix with a wave data structure. Each wave is a set of lists, the number and
the size of such lists is set by the parameter εwave = ε. To verify the robustness of our algorithms, we have
fed them with synthetic traces and real-world datasets. The latter give a representation of some existing
monitoring applications, while synthetic traces allow to capture phenomena that may be difficult to obtain
otherwise. Each run has been executed a hundred times, and we provide the mean over the repeated runs,

Nicoló Rivetti, Yann Busnel et Achour Mostefaoui

after removing the 1st and 10th deciles to avoid outliers. Finally, the accuracy metric used in our evaluation
is the mean absolute error of the frequency estimation of all n items returned by the algorithms with respect
to PERFECT, that is

(
∑ j∈[n]

∣∣∣ f̂ PERFECT
j − f̂ TESTEDALGORITHM

j

∣∣∣)/n. We refer to this metric as estimation error.

1

10

100

1e4

1e5

50k 100k 200k 400k 50k 100k 200k 400k 50k 100k 200k 400k

Normal Zipf-1 Zipf-2

er
ro

r

Window Size (N)

Distributions

Simple Proportional ECM-Sketch Splitter

(a) Average estimation error

Normal

Zipf-1
Zipf-2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

sp
lit

s
(s

)

Distributions

50K
100K

200K
400K

(b) Average splits

FIGURE 2: Results for different window sizes (N)

Window sizes Figure 2(a) presents the estima-
tion error of the algorithms with a stream of m =
3×N samples and n = 1,000 distinct items, while
considering three distributions : Normal, Zipf with
α = 1 and Zipf with α = 2. SIMPLE is always the
worst (with an error equals to 3395 in average), fol-
lowed by PROPORTIONAL (451 in average), ECM-
SKETCH (262 in average) and SPLITTER (57 in
average). In average, SPLITTER error is 4 times
smaller than ECM-SKETCH, with 4 times less me-
mory requirement. Figure 2(b) gives the number of
splits spawned by SPLITTER in average to keep up
with the distribution changes. The number of splits grows in average with a factor 1.7 for each 2-fold
increase of N. In fact, as τ is fixed, the minimal size of each sub-cell grows with N, and so does the error.

1

10

100

1e4

1e5

50000 100000 150000 200000 250000 300000 350000 400000

Normal Uniform Zipf-1 Uniform Zipf-2 Uniform

er
ro

r

Samples

Distributions

Simple Proportional Splitter ECM-Sketch

FIGURE 3: Estimation error with multiple distributions

Multiple distributions according to time Fi-
gure 3 presents the estimation error evolution as
the stream unfolds. Here, the stream distribution
is shifted every 15,000 samples and swapped each
60,000 samples in the order proposed on top of the
plot. Note that, in order to avoid side effect, the dis-
tribution shift and swap periods are not synchroni-
sed with the window size (N = 50,000). SPLITTER
error does not exceed 23 (and is equal to 13 in ave-
rage). ECM-SKETCH maximum error is 65 (29 in
average), as PROPORTIONAL goes up to 740 (207 in average) and SIMPLE reaches 1877 (1035 in average).
Since at the beginning of each window SIMPLE resets its F̂ matrix, there is a periodic behavior : the error
burst when a window starts and shrinks towards the end. In the 1-st window period (0 to 50,000) and in
the 6-th windows (250,000 to 300,000) the distribution does not change over time (shifting Uniform has
no effect). This means that SPLITTER does not capture more information than PROPORTIONAL, thus they
provide the same estimations in the 2-nd and the 7-th windows (respectively between 50,000 and 100,000
samples then between 300,000 and 350,000 samples).

The complete study [RBM15] shows the accuracy of both algorithms and that they outperform the only
existing solution with real world traces and also with specifically tailored adversarial synthetic traces. Last
but not least, these results reach better estimation with respect to the state of the art proposal and required 4
times less memory usage. We have also studied the impact of the two additional parameters of the SPLITTER
algorithm (τ and µ).

Références
[CM05] Graham Cormode and S. Muthukrishnan. An improved data stream summary : The count-min sketch and

its applications. J. of Algorithms, 55, 2005.

[DGIM02] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over sliding
windows. SIAM J. on Computing, 31, 2002.

[PGD12] Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. Sketch-based querying of dis-
tributed sliding-window data streams. Proc. of the VLDB Endowment, 2012.

[RBM15] N. Rivetti, Y. Busnel, and A. Mostefaoui. Efficiently summarizing data streams over sliding windows.
In Proc. of the 14th IEEE International Symposium on Network Computing and Applications (NCA’15),
Boston, USA, Best Student Paper Award, September 2015.

