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Abstract. This article is the second of a series where we develop and analyze structure-preserving finite
element discretizations for the time-dependent 2D Maxwell system with long-time stability properties,
and propose a charge-conserving deposition scheme to extend the stability properties in the case where
the current source is provided by a particle method. The schemes proposed here derive from a previous
study where a generalized commuting diagram was identified as an abstract compatibility criterion in
the design of stable schemes for the Maxwell system alone, and applied to build a series of conforming
and non-conforming schemes in the 3D case. Here the theory is extended to account for approximate
sources, and specific charge-conserving schemes are provided for the 2D case. In this second article we
study two schemes which include a strong discretization of the Faraday law. The first one is based on a
standard conforming mixed finite element discretization and the long-time stability is ensured by the
natural L? projection for the current, also standard. The second one is a new non-conforming variant
where the numerical fields are sought in fully discontinuous spaces. In this 2D setting it is shown that
the associated discrete curl operator coincides with that of a classical DG formulation with centered
fluxes, and our analysis shows that a non-standard current approximation operator must be used to
yield a charge-conserving scheme with long-time stability properties, while retaining the local nature of
L? projections in discontinuous spaces. Numerical experiments involving Maxwell and Maxwell-Vlasov
problems are then provided to validate the stability of the proposed methods.

Keywords. Maxwell equations, Gauss laws, structure-preserving, PIC, charge-conserving current de-

position, conforming finite elements, discontinuous Galerkin, Conga method.
Math. classification. 35Q61, 656M12, 65M60, 65M75.

1. Introduction

Like its companion article [10], this work addresses the issue of long-time stability in time-dependent
Maxwell solvers, either considered alone or coupled with an additional scheme for the current sources.
It is known that this issue is strongly related to the good preservation of the divergence constraints
at the discrete level. We refer to the introduction of [I0] for a review of the literature on which our
work is based, and for a presentation of its main guiding lines.

In this article we pursue this study and propose two compatible schemes that include discrete
Faraday laws in strong form for the 2D Maxwell system

OB+ curlE =0

(1.1)

WE — ?curl B = —iJ.
€0

The first scheme is a standard curl-conforming mixed finite element method for which we verify that
a standard Galerkin (L?) projection provides a Gauss-compatible approximation for the current .J,


mailto:campos@ljll.math.upmc.fr
mailto:sonnen@ipp.mpg.de

M. CampPos PINTO & E. SONNENDRUCKER

in the sense of [II]. The second scheme extends this construction to spaces of fully discontinuous
fields as in standard DG methods, in order to avoid inverting global mass matrices. It belongs to the
class of conforming/non-conforming (Conga) methods designed in [11] to preserve the mixed form of
conforming Galerkin approximations, and it also comes with a compatible approximation operator for
the current. An interesting feature of this particular method is that, in 2D, the associated discrete
curl operator coincides with that of a classical DG method with centered fluxes. However, the current
approximation operator is non-standard.

We then complete these two schemes by identifying for each of them the discrete divergence operators
that form a complete structure-preserving discretizations in the sense of [10]. In the case where the
Maxwell system is coupled with an additional equation for the source, such as a Vlasov equation

8tf+v-me+%(E+va)-V,,f:0 (1.2)

describing the collisionless evolution of one or several particle species with charge ¢ and mass m through
their distribution function f = f(¢,x,v), this framework allows us to show that the approximation
operators identified as Gauss-compatible for the Maxwell system alone can also be used to deposit the
associated current density

J = /vfdv (1.3)

(or better, its approximation by numerical particles) on the finite element spaces in a stable, charge-
conserving way, be it for the conforming or the non-conforming Galerkin discretization.

Finally, we provide numerical experiments that validate the approach and the numerical convergence
of the proposed schemes (established by theoretical means for the Maxwell system alone), using a pure
Maxwell problem and an academic Maxwell-Vlasov test case.

The outline is as follows: In Section [2] we briefly recall the main criterion identified by the stability
analysis developped in our previous works [I1], [I0] to the case considered here of a 2D Maxwell
equations with a strong Faraday law. Then in Section [3] we introduce the needed discrete function
spaces for a conforming Finite Element approximation and verify that they fit into our abstract
framework. We next consider in Section [4] the case of discontinuous non conforming Finite Elements
where our framework enables in a non trivial way to construct long time stable discretizations. We
also show that in 2D, this new scheme can be formulated as a Discontinuous Galerkin (DG) scheme
with a non-standard current approximation method. In Section [5| we then show how to construct an
approximation of the current from the particles that yields a stable scheme, which in the DG case
can be seen as a standard deposition method with a local correction. All this is finally validated in
Section [6] on two simple but relevant test cases.

2. Theoretical framework

To analyze the conforming and non-conforming methods described in the following sections we rely
on the tools provided in Section 2 of our companion article [10]. There the 2D Maxwell equations on
a bounded domain 2 were reformulated using a sequence of operators

A= d' = curl

3
v 0} (2.1)

with ¢ the canonical injection from R to L?(Q), and respective domains V? = R, V! = H(curl, Q),
V2 = H(div,Q) and V3 = L%(Q). If 2 is a bounded and simply-connected Lipschitz domain then the
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sequence ([2.1]) is exact, and so is the dual sequence of adjoint operators

0 (d?)* = — grad (dh)* = curl (d)* = £,

{0} Vs v

‘/'0*

(2.2)
with domains V5 = H(Q), Vo' = Hy(curl, Q), Vi* = L*(Q) and V§ = R. Letting then A be defined by

—_(d* _
A= (C?l (g ) > — ¢ <C3ﬂ Courl) on V=V'x V= H(curl,Q) x Hy(curl, ),

the time-dependent Maxwell equations ([1.1]) with metallic boundary conditions can be rewritten as

U — AU = —F (2.3)
with U = (¢B,E)T, F = (0,6,'J)”, and the Gauss laws in the reduced 2D setting can be recast as
DU =R (2.4)

where R := (chBO,ealp)T represents the charge density in this 2D model, and D is a composite
divergence operator defined by

D= <(dg)* d2) = <f09 d?v> on Vi xV?=1L2%Q)x H(div, Q).

For completeness we recall the following definitions from Section 2 of [10], as they are central in
our stability and error analysis. First a notion of Gauss-compatible approximation was derived from
our previous work [I1], which allows for long-stable schemes in the case of exact sources (see e.g.
Corollaries 2.6 and 2.7 in [10]).

Definition 2.1 (Def. 2.3 from [10]). We say that a discrete operator Ay : V, — V), forms a Gauss-
compatlble approx1mat10n of A together with a mapping Il on V), if there exists an auxiliary
mapping IIj, : V — V, that converges pointwise to the identity as h — 0, and that is such that

II,A = .AhHh (2.5)
holds on V.

Then, notions of structure-preserving and charge-conserving discretizations were introduced to guar-
antee long-time stability estimates in the case of approximate sources as detailed in Sections 2.1 and
2.4 of [10], see in particular Theorem 2.19. Since in this article we design schemes based on the second
sequence , the appropriate definition is as follows.

Definition 2.2 (Def. 2.10 and Lemma 2.13 from [10]). We say that a semi-discrete 2D Maxwell system
of the form

0¢By, +curly, E;, =0 curly, : Vhl N Vh2
2 with (2.6)
OB — ¢ curly By, = _5‘]’1 curly := (curly)* : V2 — V!

completed with discrete Gauss laws of the form

divy, E), = iph divy, : V2 — V2
€0 with o (2.7)
(tr)*Bn = (1n)"* By, iV =V

is structure-preserving if the following properties hold.
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e FEzact sequence property: with grad,, := —(divy,)*, the sequence
*
Vs grad, V2 curly, v (tn) o
(2.8)
is exact, in the sense that grad, V;> = ker curl;, and curl, V;2 = ker(up,)*.
e Stability: the operators in the above sequence satisfy Poincaré estimates,
llu|| < ep|lgrad;, ull, u € V2N (ker grad)*
lu|| < cp|lcurly, wl|, u € V2 N (ker curly)* (2.9)
l[ull < cpll(en) ull, u € Vi 0 (ker(en)*)*.

with a constant c¢p independent of h.

In Lemma 2.14 from [10] it is observed that if the discrete system (2.6)) is put under the form

QU — AUy = —F
tUh hYh h (210)
DU = Ry,
with
An=c O T v S i), D= (0 0 )ik 5 (0
= C\earl, o)XY nX V) T divy) R X Vn

then properties (2.8)-(2.9)) hold if and only if the composite curl and divergence operators satisfy:

(i) 1Z] < cpllAnZ|l, Z € (ker Ap)*" (unif. stability of Ap) (2.11)
(ii) 1Z|l < cp|DuZll, Z € (ker Dy)*" (unif. stability of Dy) (2.12)
(iii) ker Dy, = (ker Ap,)* (compatibility of the kernels). (2.13)

The purpose of Definition is to guarantee the long-time stability of the solutions to the full dis-
crete Maxwell system ([2.10)). A criterion on the discrete sources is then introduced to guarantee that
solutions to the discrete Ampere and Faraday equations also satisfy the proper discrete Gauss law.

Definition 2.3 (Def. 2.15 from [10]). We say that a semi-discrete Maxwell system of the form (2.10))
with Aj, a skew-symmetric operator, is charge-conserving if

(i) it is structure-preserving in the sense that properties (2.11)), (2.12) and (2.13)) hold,
(ii) and the approximate sources satisfy the corresponding discrete continuity equation
OtRpy, + Dy Fy, = 0. (2.14)

Finally we observe that with the notation of Definition the first equation from ([2.14)) is trivial
and the second one rewrites as

Orpp, + divy Jp, = 0. (2.15)
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3. Conforming elements for the 2D Maxwell system with a strong Faraday law

Although it makes no difference on the continuous problem whether one takes the sequence (2.1)) or
its dual version for the primal complex, on the discrete level it leads to two different types of
Galerkin methods. In our companion article [I0] we have described the first choice which leads to
a strong discretization of the Ampeére equation with natural boundary conditions. In this article we
consider the second choice which leads to a strong discrete Faraday equation with essential boundary
conditions.

Because the construction of our new non-conforming method relies on a good understanding of the
conforming tools, we now verify that the structure of the Finite Element exterior calculus introduced
by Arnold, Falk and Winther [11, 2] 3], linking the conforming Galerkin approximations of the different
Hilbert spaces perfectly fits in the framework introduced in the previous sections. Specifically, this will
allow us to show in Section that a standard sequence of Finite Element spaces can be equipped
with a Gauss-compatible approximation operator in the sense of Definition and in Section
we will verify that it naturally yields a structure-preserving discretization of Maxwell’s equations in
the sense of Definition Our non-conforming approximation will consist in giving more freedom
in the choice of the discrete spaces, in particular to include discontinuous broken spaces, by carefully
choosing the projection operators and discrete differential operators so as to preserve the compatibility
and structure-preserving properties.

3.1. Mesh notations

For the mesh elements we use the same notations as in [10]. In particular, we assume that the domain
Q) is partitioned by a regular family of conforming simplicial meshes 7, with maximal triangle diameter
h tending to zero. We denote by £(T") the edges of a triangle T' € T, and &, := UreT;, E(T') the set
of all the edges in the mesh. Boundary edges are stored in £P. Assuming that the triangles in 7, are
given arbitrary indices i = 0,...,#(7T,)—1, we fix an orientation for the edges as follows. Given e € &,
we let T~ (e) be the triangle of minimum index for which e is an edge, and if e is not a boundary edge
we denote by T (e) the other triangle sharing e. The edge e is then oriented by setting

T (e
—)

where n" denotes the outward unit vector of T that is normal to e, for any e € £(T).

3.2. Conforming Finite Elements with a strong Faraday law

To derive finite element schemes with a strong Faraday equation we approximate the non-trivial spaces
in the dual sequence (2.2), i.e.,

d®)* = —grad d\)* = curl
(@) 5 V5" = Hy(curl; Q) (@)

Vi = Hp(Q) Vi =L1(Q)

(3.1)

2 1=

by a sequence of discrete spaces V,f’ (d—h)> Vh2 (d—h)> Vhl. In this section we opt for a conforming sequence,
i.e., such that

VP C Hy(Q), Vi C Hy(ewl;Q), V) C L*Q), (3.2)
so that (d})* can be defined as the restriction of (d')* to V}fﬂ. Observe that here we denote standard
(strong) differential operators as dual ones, and conversely the plain notation dﬁl : V,ﬁ — V}fH will
be used to denote the discrete adjoint of (d%)*, which only makes sense in a weak form, using test
functions from V}fﬂ. This rather unusual choice is motivated by our desire to use notations consistent
with our companion article [I0] where the discretization is performed on the sequence which
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is seen as the primal one, but obviously the other choice could be made as well by calling the
primal sequence.

Again, several options are possible for the conforming spaces in . Here we focus on a standard
strategy (see, e.g., [20]) where the spaces V}f are respectively defined as a continuous Finite Element
space, a Nédélec Finite Element space of the first kind and a discontinuous Galerkin Finite Element
space, but we note that other choices are possible, see e.g. Remark [£.7] below. Specifically, given an
integer degree p > 1 we take

(dy)* := —grad ‘vh3 (dy)* = curl |vh2
Vi = Lp0(Q2, Tr) Vi = Np-10(Q, Th) Vi =Pp_1(Th)
(3.3)
where
Py1(Th) = {v € L*(Q) 1 v|p € Ppy(T), T € Tp} (3.4)
denotes the space of piecewise polynomials of maximal degree p — 1 on the triangulation 7j,
ﬁp’o(Q, ﬁl) = ]P’p('ﬁl) N Co(Q) (3.5)

corresponds to the continuous “Lagrange” elements with homogeneous boundary conditions, and

Nop10(T) == N1 (Th) N Ho(ewrli Q) with N 1(T) i= Py y ()2 + (V) Bpa (1) (3.6)
is the (first-kind) Nédélec Finite Element space of order p — 1 (thus of maximal degree p), again with
homogeneous boundary conditions, see e.g., [4].

Remark 3.1. To be conforming in H (curl; 2), the piecewise polynomial space th must be composed
of vector fields that have no tangential discontinuities on the edges of the mesh, in the sense that for
any u € Vh2 the tangential trace n. X w on an edge e must be the same when defined either from
T~ (e) or from T (e). In particular, every basis of V;> must contain some vector fields supported on
two adjacent cells at least.

For the sake of completeness we recall the following well-kown result which will be central to our
analysis. The proof is almost the same as the one of Lemma 3.2 in [10], up to the boundary conditions
which are treated by straightforward considerations, and will be skipped.

Lemma 3.2. The following sequence is exact, in the sense that the range of each operator coincides
with the kernel of the following operator,

(d?)* = —grad (d})* = curl

(0} 5 VP = £,0(2.73) Vit = Np-1.0(2, Th) Vi = Ppea(Th) do,p

where we remind that fo, : uw— [Q7! [ u.

Based on the above spaces, a standard conforming Finite Element method consists in computing
the unique solution (B, Ey) € C°([0,T]; V;! x V}2) to

(0B, @) + (curl By, ) = 0 p €V, C LX)
(3.7)
(O Ey,, p) — (B, curl p) = —%(Jh,cﬁ @ € V2 C Hy(curl; Q)

where Jj, € C°([0, T; V;?) represents an approximation of the given current density J and (-,-) stands
for the scalar product in L?(f2). Note that using the embedding curl Vh2 C Vh1 the second equation
amounts to

OBy, + curl Ej, =0 (in V31 (3.8)
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which justifies our “strong Faraday” terminology.

This space discretization is standard ans has been studied in, e.g., Ref. [20, 19, 25| 9] where the
source term J is approximated with a standard orthogonal projection on V2, leading to define Jj, by
(Jn, ) = (J, ) for ¢ € V2. We will see that this approximation of the source term gives a compatible
scheme. In the non-conforming case however, we will need to use a different approximation operator,

see Theorem [£4.2]

3.3. Projection operators and commuting diagram properties

In the conforming Finite Element case the projection operators and commuting diagram properties
have been discussed and described in a series of papers by Arnold, Falk and Winther on what they
call the Finite Element Exterior Calculus (FEEC) [1L 2], [3]. For the present paper we shall only need
to review the properties of ﬂﬁurl, the canonical projection on the curl-conforming Nédélec space. In 2D
this projection uses edge and face based degrees of freedom, and it satisfies a commuting diagram

curl

H'(9Q)? N Hy(curl; Q)

L*()
7.‘_}clurl PVhl (39)

curl

2 1
Vh Vh
involving the orthogonal projection on the discontinuous space Vhl, see Equation ([3.12)) below.

As a matter of fact, the canonical projection on the Nédélec space can be derived from the standard
Raviart-Thomas interpolation (recalled in our companion article [I0]) by a rotation of 7 /2. Specifically,
the degrees of freedom for the finite element space V;2 = N p_10(€2, Tp) read (see, e.g., [21] or [15])

{ M2(T,w) = {fpu-q: q€PyoT)?} for every triangle T' € Tp, (3.10)

Mi(e,u) :={[ (nexu)q: q€Pp_i(e)} for every edge e € &, \ EP
where S}? denotes the set of boundary edges. The Nédélec finite element interpolation
m Q) = VP = N 10(Th)
is then defined by the relations
ME(T, 7% —u) = {0}, TeT, and Mi(e,n5%u —u) = {0}, ec&\EP. (3.11)

Again, this interpolation satisfies a commuting diagram property which is easily verified using inte-
gration by parts,

curl 75"y, = Py curlw, u € HY(Q)? N Hy(curl; Q) (3.12)
where PVhl denotes the L? projection on the discontinuous space Vh1 =P,_1(73), and a classical error
estimate

w8y — w < ch™|u|m, 1<m<p, wue€ Hy(curl;Q). (3.13)

Remark 3.3. As is well known, in 2D the Nédélec finite element space N p—1 can be obtained by
rotating the Raviart-Thomas space RT p—1 by an angle of 7/2: we have N,_1(T) = RRT ,_1(T)
where R : w — (—uy,uz). Up to the boundary conditions (for which the degrees of freedom need to
be added or substracted from the respective bases), it is then easily verified that qurl = Rwﬁi"Rfl,
so that the properties listed here for the Nédélec interpolation can be derived from those of the
Raviart-Thomas interpolation recalled in [10], using the identity curl = div R~
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When designing non-conforming approximations based on broken spaces in Section it will be
convenient to follow [13] as we have done in [I0] for the non-conforming strong Ampere scheme, and
use a basis for th that is dual to the above degrees of freedom. Its construction goes as follows. Given
scalar-valued bases ge i, i = 1,...p for the edge polynomials P,_1(e), e € &, \ EZ, and vector-valued
bases qri, i = 1,...,p(p — 1) for the “volume” polynomials P, _»(T)?, T € T}, we span the moment
spaces listed in with the degrees of freedom

{a%i(u):fTu-qT,i, TeTh, i=1,....p(p—1)

3.14
Uz,i(u>:fe(ne X U)Ge iy 6€gh\5f]?, 1=1,...,p. ( )

It follows from the unisolvence of ([3.10) that N,—1(7) admits a unique basis goi’T with indices in

_ A2(T) o= {(Tyi) i =1,..,p(p — 1)}
MT) 1= MalT) U Acage(T) - where {Agdlge(T) = {(e,i): e € ET),i=1,...,p}

that is dual to the associated degrees of freedom, in the sense that we have ai((pi’T) = 04, for
v, A € A2(T). To form a basis of the global space Vh2 we then gather all the indices, except for those
attached to boundary edges, into

A? = (Urer, AX(T)) \ {(e,i) e € EPi=1,...p}.

The curl-conformity of (3.10) then guarantees that if we set cp?\’T := 0 for A € A7 \ A*(T) and if we
extend <p§\’T by 0 outside T for A € A?(T'), then the piecewise polynomials

2T 2,7
P2 = Z Lrey” = Py (3.15)
TeT, TeT

are in Hy(curl; Q) and they form a basis for the space V2 that is dual to the associated degrees of
freedom in the sense that

a%(go%\) =02 for v, A € AZ.
Moreover, if the polynomials ¢.; and gr; involved in (3.14]) are defined as suitable affine maps of

polynomial bases defined on a reference element, the resulting local basis functions <pi’T will also
correspond to affine maps of the associated reference basis. As a result, if the mesh 7y, is shape regular
in the standard sense of, e.g., [I5], Def. I-A.2], it is possible to ask for normalized local basis functions
satisfying, e.g.,

|~ 1 for T € T, A€ A*(T). (3.16)

2T
||‘P,\

3.4. Gauss-compatibility of the conforming FEM-Faraday scheme

In compact form, the conforming scheme (3.7) reads 0,U;, — ApUy = —F}, with Uy, = (cBp,, Ey)T and
F, = (0, 551Jh)T. The composite curl operator is defined on Vj, := Vh1 X Vh2 by

0 —curl, . curly, := curl [y : V2= v
with
curly, 0

A = (3.17)

curly, := (curly)* : Vi — V2.

Following Definition [2.I] and considering source and auxiliary approximation operators of the form

T 0 . a0
Hh = <Oh' 71_}21> and ]._.[h = <0h A2> (318)
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we then see that this scheme is Gauss-compatible on some product space Vix V2Zifforl = 1,2 we
can find approximation operators 7T;L and frfl mapping on V}f, such that

72 curlu = (curly)*7iu, ue V! (3.19)
and
i curlu = curl i u, ue V2 (3.20)

Note that these relations read 77 d'u = dj #} v and 7} (d')*u = (d})*#2u with the notations of Section

and B.21

Theorem 3.4. The conforming FEM-Faraday scheme (3.7)) associated with an orthogonal projection
for the current, namely

iy = P2t L(Q)? = Vi2 = Npo1,0(2, Th), (3.21)
see (3.6)), is Gauss-compatible on the product space
VIxV2.=Vix (HYQ)NVy)

where V' = H(curl; Q) and Vi = Hy(curl; Q), see Section @ In particular, Equation (3.19)) holds with
an L?-projection 7?,1Z = PVhl and Equation (3.20)) holds with 71',1L = th1 and 7?,21 = Wﬁurl the canonical
(Nédélec) interpolation on V2 defined in (3.11]). Moreover, these mappings satisfy

[Fpu = ull S A" |ulm, 0<m<p (3.22)
7w — ull S ™[], 1<m<p, wue HlwlQ) (3.23)
17w —ull S B ulm, 0<m<p (3.24)
I — ull S h™ [, 0<m<p. (3.25)

Proof. Let us first show that the relation (3.19) holds as claimed, that is,
1 1
Ppd'u=d,Pyiu,  ueVh (3.26)
Since both sides belong to Vh2 by construction, one can test this equality against an arbitrary v & Vh2,

which is in V5" by conformity (3.2)). Using the definition of the various operators, in particular the fact
that (d})* is defined as the restriction of (d')* to V2, we compute

(Pyad'u, o) = (d"u, v) = {u, (d')"v) = (u, (d})"0) = (Pyau, (d})"0) = (d} Py, v),

which proves (3.19). On the other hand, (3.20) is nothing but the commuting diagram (3.12)). Finally
the error estimates are standard for L? projections, and ([3.22) is (3.13). [ ]

If one is solving the Maxwell equations with exact sources, Theorem 2.5 from [10] applies and gives
the following a priori estimate.

Corollary 3.5. Let (B, E) be the exact solution to the Mazwell system (2.3). The semi-discrete
solution to the FEM-Faraday scheme (3.7) coupled with the orthogonal projection (3.21)) for the current
satisfies
1(B = Br)®)|| + [I(E — En) (@)l < 1Bu(0) — 7, B(0)|| + | En(0) — 73 E(0)]]
t t
+hm(|B(o)m+/ 0B (5) | s ) + 1™ (]E(O)]mer/ ()| ds)
0 0

for0<m <p, 1<m' <p, and with a constant independent of h and t.
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Remark 3.6. A priori estimates leading to long-time stability are known already for the strong
Faraday scheme , see [20, 19 25]. The main benefit of our analysis is that it readily applies to
Maxwell solvers for which the L? projection is not a compatible approximation operator, and non-
conforming discretizations, see e.g. Section

Remark 3.7. In the case of approximate sources, one must resort to the analysis developped in
Section 2.4 of [I0] to be able to derive long-time stability estimates. This will be done in Section
by showing that the FEM-Faraday scheme (3.7 is naturally structure-preserving.

4. Discontinuous elements for the 2D Maxwell system with a strong Faraday law

Because of its weak formulation, discretizing in time the Ampeére law from requires to invert
a mass matrix associated with the space Vh2, and due to the curl-conformity of the latter space the
resulting inversion can not be performed locally. This can of course become a computational burden
when the meshes become very fine and when parallel algorithms come into play. For this reason we
study a non-conforming method where the solution is approximated in a fully discontinuous space,

Vi2 ¢ Vi = Hy(curl; Q).
It turns out from our analysis that a natural choice corresponds to using the broken Nédélec space
ViZ = Np1(Th) = {u € L*(Q) s u|r € Np1(T), T € Tp} (4.1)

see . Standard polynomial spaces are also a possible choice, as discussed in Remark below.

Although the common way for designing non-conforming discretizations is to follow the discontin-
uous Galerkin methodology (see e.g. [14, [18]), in this work we aim at preserving a strong Faraday
equation like (3.8]). For that purpose we experiment a different path and apply to the 2D problem
the ideas of the Conga discretization proposed and studied in [I1] for the 3D Maxwell system (the
name standing for “Conforming/Non-conforming Galerkin”). In particular, our non-conforming dis-
cretization will be derived from the conforming one . As we did for the conforming case, and
following our 3D study [11], we will show that this non-conforming discretization can be equipped
with a Gauss-compatible approximation operator in the sense of Definition In Section [5.2] we will
extend this analysis by further verifying that it is essentially a structure-preserving discretization of
Maxwell’s equations in the sense of Definition [2.2] once associated with a nonstandard discrete diver-
gence. Interestingly, we will see that in the 2D setting the resulting method can be interpreted as a
centered DG method, see Section [4.3

4.1. Non-conforming “Conga” discretization

To extend the conforming method on the non-conforming space f/hQ we consider a smoothing
operator

P L2(Q)? = V2 (4.2)
(which is not required to satisfy a commuting diagram) and we define the associated Conga approxi-
mation (By, Ey) € C°([0,T); V3! x f/,?) by the system

OBy, + curl PYE), = 0 in V;!
N (4.3)
(O En, @) — (Bp, cwrl Ppp) = == (Jy, @) @ € V2 ¢ Hy(curl; Q)

where again J, represents an appropriate approximation (in f/,?) of the current density J. Below we will
see that Gauss-compatible and charge-conserving schemes cannot be obtained with a straightforward
L? projection as in the conforming case.

10
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For the smoothing projection 73,% one may think of using the L? projection on the conforming space
th, but this would have the downside of requiring to invert a Vh2 mass matrix, a global computation
that we precisely whish to avoid. Similarly as in [I1l [10] we thus use an averaging procedure based
on the canonical degrees of freedom for the curl-conforming space Vh2, here . To obtain a stable
projection in L? we can recycle the elegant construction proposed in [I3], where on each mesh triangle
T the authors use the local basis that is dual to the broken basis built in Section [3.3] namely the basis
zpi’T, A € A%(T), of Np—1(T) that is defined by the relations

2T
W37, e2") = o2 ) =dry  for Ay € AX(T). (4.4)
A convenient projection operator P7 : L?(€2)? — V2 is then given by

Pru:= Z “’% @3 (4.5)
h P :

,\€A2 TeTh(

Where Tn(A) :={T € Tp, : A € A%(T)} denotes the cells for which ) is an active index. Using (3.15)) and
we verify easily that this is indeed a projection on Vh = Span({¢? 1IAE A? i }). More precisely, on
the broken Nédélec space it amounts to averaging the broken version of the degrees of freedom (3.14]):

7:i(Phu) = o7 =02 T i=1,...,p(p—1
we N, (Th) = UTz(Ph u) UT@(U|T) JTz( u), € Tn, lB i ,p(p—1)
(phu> ( ez(u‘T (6))+U (u‘TJf(e))): €€gh\€h, t=1,...,p
(4.6)
where we remind that 7% (e) are the two triangles that share the interior edge e. Indeed, decomposing

U= reT; AeA(T) c§¢§’T, we infer from (4:4)) that ¢ = o2 (ulr). The duality (3.14) gives then

2Pt - [ Y Y o2 | = Erenm ain) e
¥ v ’ ? ’
AEAZ TET, (A # 77” #(Tn(7))

hence . Now, just as the basis functions go)\’ can be obtained as affine maps of reference basis
functions with an L? normalization , it is possible to design the dual basis functions with the
same property,
12T ~1  for T€Th XeA2(T). (4.8)

In particular, 73,% is locally bounded in L? and since it is a projection on the conforming space Vh2 it
satisfies an error estimate similar to .

In the analysis of the structure-preserving Conga scheme, an important tool is the adjoint operator
(P#)* which is bounded on L? like P?, and has the form

Pru=> Y #“ .43) 9T (4.9)

)\eAQ TeTh(A

Lemma 4.1. The operator (P2)* maps on the non-conforming space N'p—1(Tr), it is locally bounded
in L? and it preserves the piecewise polynomials of IP’p,g(’ﬁz)Q. In particular, if the mesh Ty, is shape
reqular we have

11— (PY")ull < Ch™ful,  0<m<p-—1 (4.10)

with a constant independent of h.

Proof. The fact that (P?)* maps on N,_1(7}) is obvious as every ¢/2\’T is in this space, and the local L?
bound is easily derived using the localized supports of the basis functions go?\ and the normalization of

the primal ¢} 215 and the dual ¢2 Tog, see (3.16) and (&.8). To show that (P?)* preserves the piecewise
polynomials of P,_5(7,)? we observe that due to the form of the volume-based degrees of freedom in

11
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(3.10)), the functions zﬁ?\’T, A = (T,i) € A2 (T), coincide with the polynomials gr; in (3.14)), hence
they form a basis of P,_o(T)%. Since the associated cp?\ vanish outside 7', they satisfy (pi = L,D?\’T and

it is easily seen that (Pﬁ)*'f#?\’T = d)i’T for all A € A2 |(T) (note that every such A is in A?). Estimate
(4.10)) is then a straightforward consequence of these properties and the Bramble-Hilbert Lemma. ®

4.2. Gauss-compatibility of the non-conforming Maxwell solver

We now establish that the above scheme can be made Gauss-compatible and give a priori error
estimates leading to long-time stability. Again we denote Uy = (cBy,, E)T and F,, = (O,eath)T. In
compact form, the non-conforming Conga-Faraday scheme reads 0,U;, — AU, = —F}, with a
composite curl operator that takes a form similar to but also involves the smoothing projection
P}QL. Specifically, it is defined on V}, := Vh1 X f/hQ by

— 2.2 1
< 0 _ cur1h> . curly, := curl Ph“}hz Vi =V,

Ay, = (4.11)

curly 0 curly, := (curly)* : V}I — V2.

According to Definition and using approximation projection operators of the form (3.18]), we then
see that this scheme is Gauss-compatible on some product space V! x V2 if for | = 1,2 we can find
approximation operators 7[';1 and frfz mapping on V,f, such that

77 curlu = (curly)* 7w, ue V! (4.12)
and
i curlu = curl Piaiu, ue V2 (4.13)

The following compatibility result is then easy to verify.
Theorem 4.2. The Conga-Faraday scheme associated with the corrected projection operator
= (P2)*: L2(Q)? = V2
for the current, see , is Gauss-compatible on the product space
Vi x V%= H(curl; Q) x (H'(Q)? N Hy(curl; Q).
In particular, Equation holds with the L? projection 7?,11 = thl and Equation holds with

ﬂ'i = th1 and fr,zl = qurl the Nédélec interpolation defined in (3.11). Moreover, these mappings
satisfy

17w — ul S A" ], 0<m<p (4.14)
7w —ull S A" |uln, 1<m<p, ue Hycurl;Q) (4.15)
I =l S B, 0<m<p (4.16)
i — || S 2w, 0<m<p-1. (4.17)

Proof. Since both sidfes of Equation (4.12) are in f/hQ, we can test it against an arbitrary v € VhQ We
thus compute for u € V! = H(curl; Q)

(72 curlu, v) = ((P?)* curlu, v) = (curlu, P?v) = (u, curl Piv) = <thlu,curlh v) = (curly thlu,’l)>
where we have used the equality curl, = curl P}QL = (curly)* : ‘7};,2 — V,}, and this proves (4.12)) with
ﬁ}L = PVhl. As for Equation (4.13)), it simply follows from the commuting diagram (3.12)) and the fact
that we have curly, ﬂfb‘“l = curl Pﬁﬂﬁ“ﬂ = curl ﬂﬁ“ﬂ since 77,% is a projection on VhQ. Estimates (4.14))

12
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and are then standard for the L? projection on Vh and , are and -,

respectlvely

If one is solving the Maxwell equations with exact sources, Theorem 2.5 from [I0] applies and gives
the following a priori estimate.

Corollary 4.3. Let (B, E) be the exact solution to the Mazwell system (2.3)). The semi-discrete
solution to the non-conforming Conga-Faraday scheme (4.3) coupled with the corrected projection
(4.9) for the current satisfies

1(B = Bu) ()l + (B — Ep)(®)]| S 1Bu(0) — 7, BO)]| + [ E(0) — 7 E(0)]

+hm(yB Y + /yat ymds)+hm (\E(O)\m/+/Ot(|8tE(s)]mr)ds>

for0<m <p, 1<m' <p-—1, and with a constant independent of h and t.

Remark 4.4. In the case of approximate sources, one must resort to the analysis developped in
Section 2.4 of [I0] to be able to derive long-time stability estimates. This will be done in Section
by showing that the Conga-Faraday scheme can be equipped with a non-standard divergence
that makes it structure-preserving.

4.3. Reformulation as a standard discontinuous Galerkin scheme

Because our smoothing projection 732 is defined as an averaged interpolation on the Nédélec elements
th, it is possible to reformulate the Conga-Faraday scheme as a standard DG scheme. To verify
this claim we remind that a centered-flux DG approximation (see, e.g., [I4]) based on the discontinuous
spaces V! and V2 defines (B, Ej) € C°([0,T7; V;! x V;2) as the solution to

<atBh7 90> + Z <Eh7curl QO>T - Z <{Eh}}7 [[90]]>6 =0, p e Vh1
TET;, ccE\EP
) (4.18)
<atEh)90> - Z <Bh,CUI‘1§0 + Z {Bh}} [[ ]]> _*<Jh,90>a pE Vh2
€0
TeT, ecly,

Here we have used standard notations for tangential jumps and averages (see, e.g., [6]): for interior
edges (shared by two cells T+ = T*(e), and writing nf = ngi for simplicity ) we denote

1
[u]e :== (n, xulp- +nf xulpi)le and  ful}e = (u\T +ulr+))le for e € Sh\é',? (4.19)

and for boundary edges (in the boundary of a single cell T- =T (e)),
[u]e := (n, xu|p-)le and {u}e := (u|r-)le for ec &EP. (4.20)

For a scalar-valued u the definitions are formally the same, keeping in mind that with the 2D convention
the product n x u is the vector (nyu, —nzu)T. To write (4.18) in an operator form we then let

curlPC : V2 — vl and curl}¢ : vl — v;2 (4.21)
be defined by the relations

(curlPC u, v) = Z (u,curlv)r — Z (ful, [v])e

TET, e€&,\ER

(curlEG v, Uy = Z (v, curlu)p — Z (v} [ul)e

TeTh ecé

for v € Vj}, uw € V2. (4.22)
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Hence writing again Uy, = (¢By, E;)T and Fy, = (0,5 J,)7T, the DG formulation (18] reads

0 — curlP¢
curlP¢ 0 '

The following results establishes that this approximation is equivalent with the Conga method (4.3)).

oUp, — AU, = —F, with Ap i=c <

Theorem 4.5. The DG curl operators defined above satisfy
curlPS = curl P?  on V72, and curl?® = (curl?4)*,
In particular, the Conga-Faraday scheme (4.3)) is equivalent with the centered-flur DG scheme (4.18)).

Remark 4.6. This result is specific to the 2D setting, for several reasons. First, the different degrees
involved in the edge and face degrees of freedom prevent similar computations to be carried out in
3D. In particular, it is not true that in 3D the centered DG scheme involves a strong Faraday law, as
this would imply that the divergence of the magnetic field remains constant in time, a property known
to be false in general [24]. Another indication is offered by considering the spectral properties of the
respective methods: whereas the 3D Conga method has been proved to be spectrally correct in [I1],
numerical and theoretical evidences [16] show that this is not the case for the centered DG scheme.

Proof. To prove the first equality we compute for v € Vh1 and u € \7,3 ,
(curl Piu,v) = Z ((Pu, curlv)r + (n x Phu,v)or)

TETh

= Z ((uw, curlv)r + (n x {u}, v)or\o0)
TETh

= Z (u, curlv)p — Z ({ul, [vD)e
TcT eES;L\S,?

= (curlP% u, v).
Here the second equality follows from the property (4.6) of P? and the form (3.14) of the Nédélec
degrees of freedom, together with the fact that v|r € Pp_1(T) which gives curlv|r € P,_o(T)? and
vle € Py_i(e) for e € E(T). The desired equality curl?“ = curl P? then follows from the fact that
curl 73% maps on Vhl. Starting next from the second line of (4.22)) and integrating by parts we compute

<curlEG v,u) = Z (v, curlu)p — Z ({v}, [u])e

TET, e€Ey
= Z ((CUI'IU, u>T + <’U, n X u’>(9T) - Z <{U}}, HU]DB
TET, ee&y
=3 (weurlo)yr + Y ((v_,n_ X u)e + (0Tt x ut)e — (Lo, [[u]]>e>
TEﬁL eegh\Ef
= (ucurlv)r — > ({u}, [v])e = (curl}C u,v)
TET) c€EL\ER
and the desired equality follows from the definition of the adjoint. Note that in the third equality we
have used the fact that ({v}, [u])e = (v7,m~ x u™)e on every boundary edge e € EF. [ |

Remark 4.7. Discontinuous Galerkin schemes are more commonly used with standard polynomials
spaces, such as

V2 =Py 1(Th)? = {u € L*(Q) : ulr € B,_1(T)?, T € Tp}. (4.23)
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To apply our analysis to that case the most natural path consists in replacing the conforming sequence

(3.3) by the following one

‘ d?)* = —grad d})* = curl
Vid = Lp0(Q,Th) () Vii =P, 1(T)* N Hy(curl; Q) ()" = e, Vi =Py o(Th)
which is also exact. Here the space Vh2 corresponds to the Nédélec elements of second type. Accordingly

one replaces the degrees of freedom (3.10) by

ME(T,u) = {/ u-q: qeP, 3(T)* + <x>IP’p_3(T)} for every triangle T' € Ty,
r Y (4.24)

M (e,u) = {/(ne Xu)q: q€ Ppl(e)} for every edge e € &, \ EP

see, e.g., [22, 4] and a new smoothing projection 77,% based on these degrees of freedom can be designed
following the same steps as before. One can verify that the resulting Conga scheme is equivalent with
the associated DG method. Namely, Theorem holds with f/hQ =P,_1(Tn)? and V}! =Pp_5(T). In
this article we have worked with the first Nédélec space because it has better convergence properties
than the second one (see e.g. [5]), but we believe that a proper theoretical and numerical study of the
other option should also be performed.

5. Application to the coupled Vlasov-Maxwell problem

In this section we apply the new stability analysis proposed in Section 2.1 and 2.4 of [I0] for approxi-
mate sources: in Section we begin by verifying that the conforming Finite Element discretization
studied in Section [3]is naturally structure-preserving in the sense of Definition [2.2] and in Section
we show that our new non-conforming Conga discretization of Section {4] is also structure-preserving,
once associated with a nonstandard discrete divergence. Assuming next a discrete particle represen-
tation of the approximate current density, for each Maxwell solver we provide a charge-conserving
current deposition method in the sense of Definition

To specify the problem we consider the case where the Maxwell system is coupled with a Vlasov
equation such as involving a species of charged particles with phase space distribution function
f = f(t,z,v). The charge and current densities are then given by the first moments of f,

p(t,x) := q/f(t,a:,'v) dv and J(t,x) = q/vf(t,ar:,v)dv. (5.1)

5.1. Structure-preserving discretization with conforming Finite Elements
The structure-preserving properties of the conforming Maxwell scheme (3.7)) essentially follow from

d . .
the fact that V,f’ gra Vh2 Vh1 JC—Q> R is an exact sequence, as recalled in Lemma (3.2l The
Poincaré estimates (2.9) are also standard to verify. The first one reads

curl

lull < cpllgradull, ueVy (5.2)
and is a standard Poincaré inequality, given the homogeneous boundary condition. The second one
|ul| < cplleurlull, w e V2N (kercurl): (5.3)

can be derived, e.g. from the similar stability estimate [23, Th. 4] recalled in [I0, Eq. (5.3)] for the
Raviart-Thomas elements, using the standard rotation argument of Remark Finally the third one
involves the integral operator f, and trivially holds on V;! N (ker f,)* = R. Hence the Lemma.
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Lemma 5.1. The conforming scheme (3.7)) associated with the discrete Gauss laws (2.7) defined by

(en)* ::][ V>R

Q
grad, := —grad ’V,f’ o (5.4)
divy, := —(grad,)* : V2 = V3

see (3.3)), is structure preserving in the sense of Definition .
Remark 5.2. With the operators (5.4)), the discrete Gauss laws (2.7)) read

(Bu(t) gradd) = S (on(t),¢)  for pe VP

]éBh(t) = ]éB,OL. !

5.2. Structure-preserving discretization with the discontinuous Conga method

To study the structure-preserving properties of the Conga method, and identify a proper discrete
divergence, we first characterize the kernel and the image of the non-conforming curl operator, following
the method introduced in [7].

Lemma 5.3. The non-conforming curl operator (4.11)), curl, = curl 73}2L|th : f/hz — Vi1, satisfies
ker(curly,) = grad V2 @ (I — P2)V;2 and Im(curl) = V; N R

Proof. Starting with the first identity, the inclusion D is verified by applying curl Pﬁ and the fact
that grad V;? is a subset of V}2 where P? = I. To verify the inclusion C we take u € V;2 Nker(curl P?).
Then P,%u is in Vh2 N ker curl which coincides with grad V,f’ thanks to Lemma Hence we have

u = Piu+ (I —Pp)u € grad V;} & (I - P}V,
and we easily verify that this is an orthogonal sum. The second identity follows from Lemma [3.2] and
the fact that Vh2 contains Vh2 , hence P,%V,f = Vh2. [ |

We are then in position to establish that the Conga-Faraday scheme is structure preserving when
associated with the proper discrete operators for the Gauss laws.

Lemma 5.4. The non-conforming Conga scheme (4.3) associated with the discrete Gauss laws (12.7))
defined by

(tp)* = ]é VPSR
grad, : (V2 x V2) 3 (¢, @) — grad ¢ + (I — P7)a € V2 (5.6)
divy, := —(grad,)* : VZ — (V2 x V}?)

see , 18 structure preserving in the sense of Definition .

Remark 5.5. With the proposed operators , the discrete Gauss laws read

L on(t), 8) for (¢, @) € V¥ x V2

— (Bu(t), (grad ¢ + (I - Pp)w)) =

]{ZBh(t) = ]{232.

(5.7)
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Proof. Here the exact sequence property ([2.8]) reads

N grad __ curly, = curl P? 1
V3 x V2 h V2 Ul & R

(5.8)
and it follows from Lemma To prove the stability estimates in (2.9) we follow the proof of The-

orem 4.1 from [8]. We begin by observing that since grad V> @ (I — P?)V}? is a direct sum, one
has

ker grad;, = (V2 Nkergrad) x (V2 Nker(I — P?)) = {0} x V;2.

Considering then ¢ € V2, u € f/hQ N (VhQ)L and using (5.2)) we compute
(¢, @)|1* < cpllgrad o] + [|a]* < |grad ¢ — Pral® + | Phal® + |l
< lgrad ¢ — Pral* + [[a]* = [lgrad ¢ + (I — Py)ull”
where the last equality uses that grad ¢ — P,%'il is in th and hence is orthogonal to w. This is the first
estimate in (2.9). For the second estimate, we use again the identity ker curl;, = grad V}? (- P}%)th
and consider now
@ € V2N (kercurly)t = V2N (grad V)L n (I — PHVR)*E
and let w € V2N (ker curl)t be defined by curlu = curl P2a. This implies that the difference u — P24
is in Vh2 N ker curl = grad V}?, hence it is orthogonal to u. Because the latter is also orthogonal to
(I — P,Zl)ﬁ, we find that it is orthogonal to @ — w. Using this and the conforming Poincaré estimate
(5.3) for u we compute
_ - _ 9y -

la] < (al? + u—a]*)? = [ul| < cpllewlul = cp|lcurl Pia|
which proves the non-conforming Poincaré estimate. Finally the third estimate is the same as in the
conforming case, and the proof is complete. |

5.3. Charge-conserving coupling with smooth particles

In the particle method the phase-space distribution function f solution to is approached by a
sum of N (macro) particles with positions x,(t) and velocities v, (t) = @/ (t), K = 1,... N, that are
pushed forward along the integral curves of the semi-discrete force field computed by the Maxwell
scheme, using some given ODE solver. The approximated density is then

N(t x,v) ZQHCE — (1)) (v — vi(t)) (5.9)

where ¢, is the numerical charge associated with the k-th (macro) particle and (. is a shape function
supported in the Ball B(0, ¢) of center 0 and radius € > 0, which can either be a smooth approximation
of the Dirac measure if ¢ > 0 (typically a spline with unit mass, see e.g. [I§]) or the Dirac measure
itself if ¢ = 0. The corresponding approximations for the charge and current densities read then

N N
= le(@—zu(t)  and  Iy(ta) =Y qe0a(H)ic(@ — k(1)) (5.10)

We observe that since v, (t) = @/, (t), these particle densities satisfy an exact continuity equation,

N
divJy :ZQHdiV (UHC&‘('_:EH qu‘ivﬁ grad<6 _wfi = ZQK&SC& _mm = _8tpN- (5'11>

k=1 k=1
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Note that in the case where ¢ = 0 these equalities hold in a weak sense, as we have

<JN7 grad QZS Z q,‘-@vﬁ gl‘ad (b :B/i Z QH8t¢ a:n Z q;ﬂ at x,(t > <atpN7 ¢> (512)

for ¢ € C3(Q)

In order to make both the conforming and the non-conforming schemes charge conserving in the
sense of Definition we must then find proper approximations Jj, for the particle current Jy. The
following result shows that for this task we can use the orthogonal projection in the conforming case
and the corrected projection in the non-conforming case, just as for the compatibility results stated

in Sections [3.4] and 4.2

Theorem 5.6. Let € > 0. The respective conforming (FEM) and non-conforming (Conga) schemes
and , associated with the discrete Gauss laws defined by the discrete divergence opera-
tors (5.4) and respectively, are charge conserving in the sense of Deﬁm’tion when the discrete
sources are defined from the particle charge and current densities by

p(t) == Pyspn(t) € Vi) and In(t) = Py2Jdn(t) € V) (5.13)
in the conforming case and
pn(t) = Pyspn(t) € Vi} and Jn(t) == (PH)*In(t) € V}? (5.14)

in the non-conforming case. Here va and th2 are the L? (orthogonal) projections on the continuous

and Nédélec spaces respectively, and (73,%)* is the discrete adjoint of the smoothing projector, see (4.9)).

Remark 5.7. As will be explained in Section the compatible current deposition proposed here for
the Conga method only involves local computations. This is a significant difference with the conforming
case where the L? projection requires to invert a mass matrix in the curl-conforming space VhQ7 which
is a global operation.

Proof. Since we already know that (3.7)) and are structure preserving when associated with
the respective operators and (b.6)), it suffices to verify that the resulting discrete continuity
equation indeed holds in both cases. In the conforming case where divy, is defined by its adjoint
(divy,)* = grad : V;2 — V; the discrete continuity equation reads

(Jn grad ¢) = (Qepn, ¢)  for ¢ € V] (5.15)
and is easily verified for ¢ > 0 by computing as in with ¢ € V3, since then both Jy(t) and
pn(t) are in L?(€2). In the non-conforming case the discrete operator divy, is defined by its adjoint
(divy)* = grady, : V}f’ X ‘7,? — ‘7,3 as in (5.6]), and the discrete continuity equation reads

(Jn grady,(¢,@)) = (Jp,grad ¢ + (I — Pp)a) = (Dypn,¢)  for (p,@) € Vi) x V2. (5.16)
In particular, plugging J, = (P?)*Jy in the above formula and using the fact that grad V;> c V}?

yields (Jp, grad,(¢,@)) = (Jn,P? grad ¢) = (Jn,grad ¢), so that the desired equality follows as in
the conforming case. ]

5.4. Charge-conserving coupling with point particles

To extend our results to the case of point particles (¢ = 0) it is convenient to consider a fully discrete
version of the proposed Maxwell solvers. For simplicity we assume an explicit leap-frog time scheme.

For the conforming (FEM) method (3.7) the approximate fields (B, B2 JE}) € Vil x V2 are then
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given by
1 _1
B"? — B 4 AtewlEP =0 (in V)
N . (5.17)
(B = Bp) = AU, aulg) = 20 g) pe V)

and for the non-conforming (Conga) method (4.3 the discrete fields (B, B2 JEP) € VI x V2 are
updated with

n+% n—% 2 . 1
B, *—DB, *+Atcurl P, E} =0 (in V}) (518
1 1 - '
(Ept' — B}, @) — AHB, el PRg) = 24072 g) g e VR

In both cases we thus need to define JnH/ % from the current density Jy carried by the moving

particles. Following our stability analysis we would like that the resulting solutions satisfy the proper
discrete Gauss laws which involve the structure-preserving divergence operators identified in this work,
namely and respectively. In [9] this construction was described for the conforming FEM
method, using a time averaging and an extension of the L? projection for current densities
carried by Dirac particles. Specifically, it was shown that the quantities

tn+1

n+i gt dr
(I 2,90>=< In(r At,<P> Zqﬁ/ velr) (@) gy wEVE (5.19)

t’!L

are well defined for point particles, and allow to define a current J,?H/ 2 e Vh2 which satisfies a
time-discrete version of the proper continuity equation (5.15)) in the conforming case, i.e.,

1,1
(3% grad o) = (g —Rh)9) ee Vi (5-20)

Here p} € V; is defined by the relations

(oh, @) = (pn ("), qu z.(t"),  peVy. (5.21)

Essentially, the reason why makes sense (and is stable with respect to the particle trajectories)
is that the test functions ¢ in the curl-conforming space Vh2 have their tangential components that are
continuous across interelement edges. In particular, we observe that in the last integral the disconti-
nuities of o may only pose a problem when the particle trajectory x, runs along an edge during some
non-zero time interval. But in this case the particle velocity is tangent to the edge and the function
v, (7T) - p(xk(7)) is well defined, i.e., stable with respect to the trajectory.

For the same reason, it is possible to extend the corrected projection (P2)* in (5.14) when the
current is carried by point particles. Specifically, for the fully discrete Conga scheme we define

. /2 _ 5 .
a charge-conserving current J ;LL T2 e Vh2 by the relations
tn+1 tn+1

<J;+;,¢>:< / In(r) S > Zqﬁ / vlr)- (PRO) ) o BETR (5.22)

n

since then 77,%95 is curl-conforming although ¢ was fully discontinuous. Notice that an orthogonal
projection on the fully discontinuous space V;? would involve products of the form [ v,(7)-@(x (7)) dr
which are not well-defined for particles running along the edges of the mesh. Arguing next as in the
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proof of Theorem [5.6], one easily verifies that the resulting sources satisfy indeed the proper continuity

equation ([5.16[), namely
n+3 2\ ~ 1
(J, *,grad¢ + (I — Py)u) = 5<Kt(
with pf € V2 defined again by (5.21)).

Remark 5.8. When the particle trajectories are piecewise polynomials as is usually the case, it is
possible to compute exactly the time integrals in (5.19)) and ([5.22)) using Gauss quadratures that involve
a few points within each cell travelled by the particles. We refer to [9] for the detailed algorithms.

PPt —pp).0)  (6w) € ViEX VR (5.23)

5.5. Compatible current deposition seen as a correction method

Before turning to the numerical experiments, let us make two simple but important observations.
First, given a cell-wise basis for Vh2 that we may denote as ¢ ) with T' € T;, and A € A%(T), we find
that the coefficients Jr ) of the compatible current Jj, := (P,%)*J ~ are determined by the relations

> Jralera era) = (Iners) = (In, Prors) for T € Ty, v € A*(T). (5.24)
AEA2(T)

Thus, the proposed deposition method involves (i) computing the products of the smooth particle
current against the averaged basis functions, and (ii) inverting the local mass matrices associated with
the discontinuous basis, namely
My = (e 1)) .
T <‘PT,)\ ‘PT,7> ArEA2(T)
In particular we see that these two steps can be performed locally, unlike in the conforming case ([5.13|)
where the inversion of a mass matrix of Vh2 is always a global operation over the mesh.
Second, we observe that step (i) above is easily obtained from the standard DG current coefficients
when they are available in an existing code. Here we refer to the current defined by a standard L?
projection on the fully discontinuous space, namely

7e = P
Jh th JN
where the exponent “nc” stands for “non-compatible” as this projection does not satisfy the discrete

continuity equation that we have identified in the non-conforming case. The coefficients Jz of the
latter in the cell-wise basis are then determined by the relations

Y IEera T = (I er) = (I era)- (5.25)
AEA2(T)

Now, since the averaging projection 79,% maps on Vh2 which is a subspace of f/hQ by construction, it can
be represented by a matrix P satisfying

Pior s = Z P (75,1 ) PT
T/ €T AEAZ(T)
so that the compatible moments my \(Jy) = (Jn,Pipr.) are easily derived from their standard
(non-compatible) counterparts my?, (Jn) = (Jn, p1,4) as
mT’,\(JN) = Z P(T,/\),(T/,'y)m%cf77(JN)‘ (526)
T~

If the standard moments m™° of the particle current are available, the above formula suffices to perform
step (i) and deposit the current in a compatible way. We may also verify that the coefficients of the
compatible current can be expressed as a local correction of the non-compatible ones, without referring
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to the moments themselves: using global notations for arrays and matrices defined over the whole mesh,
Equation ((5.25)) reads MJ" = m"¢(Jy), whereas (5.24) and (5.26) give MJ = m(Jy) = Pm"(Jn).

Therefore we have

J=M"'PMJ".
Here the matrix M has a block diagonal structure corresponding to the mesh cells, whereas P has
entries corresponding to couples of adjacent cells, in addition to those on the diagonal. In particular
its application is indeed a local operation, with coefficients easily given by : using local bases for
the broken Nédélec spaces that derive from the curl-conforming ones as described in Section the
non-zero entries of P are simply 1 for the volume-based degrees of freedom and % for the adjacent
edge-based degrees of freedom.

6. Numerical results

In this section we illustrate the proposed FEM and Conga methods on the two test cases already
used in our companion article [10]. For the time discretization we use the explicit leap-frog scheme
described in Section 5.4l

Remark 6.1. When studying the Conga method we have observed that the smoothed field P}%E}Z
was more accurate than the discontinuous field Ej' itself: for the studied cases, it had smaller errors
and higher convergence rates. Therefore we have decided to use the smoothing projection 73}% as a
systematic post-processing filter. Since this is a local operation on the discrete fields, its effect on the
overall computational time is not significant.

6.1. A Pure Maxwell problem: the 2D Issautier test case

To assess the basic convergence and stability properties of the proposed schemes we use the analytical
current source proposed in [I7, 12] to study the charge conservation properties of a penalized finite
volume scheme. The problem is posed in a metallic cavity Q = [0,1]? with articifial permittivity eo
and light speed c equal to one, and the current density is given as

J(t2.y) = (cos(t) — 1) (7r cos(mx) + mix sin(wy)) — cos(t) <x sin(wy)) ' (6.1)

7 cos(my) + w2y sin(rx) ysin(mwz)

We consider initial fields E° = 0 and B® = 0, so that the exact solution is

E(t,x,y) = sin(t) <”J Sin(?f?f))

ysin(mz) (6.2)

B(t,z,y) = (cos(t) — 1) (my cos(rz) — mx cos(my)).

We note that the associated charge density reads then p(t,z,y) = sin(¢) (sin(mz) + sin(ry)).

In Figure [I] we first assess the convergence properties of the two proposed methods by plotting the
relative L? errors ej, := max (|E — Ey|/| E|,||B — Bx||/||B||) at time ¢ = 0.27. In the left plot we
show the results obtained with the conforming FEM using different degrees and in the right plot
we show the errors corresponding to the non-conforming Conga method . The convergence rates
of both the FEM and Conga solutions is in agreement with Corollary and More precisely, we
observe that the Conga solutions of degree p+1 (smoothed as described in Remark converge with
a similar rate than the conforming solutions of degree p, close to h?. We also note that the former has
higher accuracy.

Time wise, we have observed that with our straightforward implementation the Conga simulations
were more efficient than the FEM ones when the meshes became finer, which is not surprising since the
former is purely local and does not require any global matrix inversion. Specifically, our simulations
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have shown that for p > 1, the computational time of the FEM method with degree p becomes higher
than that of the Conga method with degree p + 1, as soon as the mesh has more than about 6000
triangles (which corresponds to A < 0.06 for the meshes used here).

In order to assess the long-time properties of the Conga scheme (4.3) associated with a corrected
projection for the current density,

J, = (P3)*J e V2 (6.3)
as supported by our analysis, we have plotted in the left panel of Figure [2| the L? norm of an electric
field computed with that method. On the right panel we have shown the norm of the electric field
obtained with the same scheme but with a discrete current density computed by an orthogonal
projection on the broken Nédélec space f/hQ, namely

Ty = Py J e V2 (6.4)

In both cases the broken Nédélec space is defined with p = 2, using a mesh with about 250
triangles (h = 0.3).

In the latter case a rapid (linear in time) deterioration of the solution is visible, but with the Gauss-
compatible scheme the solution is stable, as predicted by Corollaries 2.6 and 2.7 in [10], applied to the
constant and time-harmonic parts of the Issautier field . Note that here we have only shown the
curves of the electric field, as those of the magnetic field were always on top of the reference curves
(dashed) computed from the exact solutions.

100 ; 100 T
101 F ] 101 F 06 —— 4
—1 11 oot
02 [ o+ ] 102k o ==111 4
- Y-
T "
-t A 2.1 A+
w4l + ] 0t i e 1
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105 | + ] 108 | =" | 28 Conga, p=1 7
+ FEM, p=1 — Pt Conga, p=2 - -4- -
108 | FEM, p=2 - -4-- 4 106 +-7 Conga, p=3 -+ T
. FEM, p=3 -+ , Conga, p=4 —-—---
10° ; 10 ‘
0.1 1 0.1 1

FIGURE 1. Convergence curves (relative errors vs. maximal triangle diameter h) for the
Issautier problem with analytical source . Results obtained with the conforming
FEM discretization are shown left, and those obtained with the non-conforming Conga
discretization are shown right.

6.2. A Vlasov-Maxwell problem: an academic diode test case

Turning to the coupled FEM-PIC and Conga-PIC schemes, we use again the academic diode test case
employed in [10] to test particle schemes coupled with Maxwell solvers with a strong Ampere law. Here
the domain is a square = [0, 0.1m]? with metallic boundary I'y; = {0,0.1m} x [0, 0.1m] and absorbing
boundary I'4 =]0,0.1m[x{0,0.1m}. On the left boundary a beam of electrons is steadily injected and
accelerated by a constant external field which derives from the electric potential imposed on both the
cathode (¢ext = 0 on the left boundary) and the anode (¢ext = 10°V on the right boundary). Due
to the propagation of the beam into the domain (initially empty of charges) a self-consistent electro-
magnetic field develops and is added to this constant external field, and in turn the trajectories of
the electrons are no longer straight lines. However this modification is of small relative amplitude and
the resulting solution tends towards a smooth steady state, so that the convergence of the numerical
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FIGURE 2. Evolution of the L? norm of the electric field for the Issautier problem. On
the left plot the numerical solution is obtained by approximating the current density
with a corrected projection on the fully discontinuous space f/hQ, see , whereas on
the right plot the current density is approximated using a standard L? projection .
For comparison, the norm of the exact solution is shown in dashed lines (on the left
plot it is on top of the solid line).

approximations can be easily assessed. In Figure [3| we show the typical profile of the solution in the
steady state regime (self-consistent electric field on the left and particles on the right), together with
the mesh used in the simulations.

To avoid using expensive numerical quadratures in space we consider a coupling with point particles,
as described in Section [5.4] The numerical algorithms tested here may then be seen as an extension
of those proposed in [9] to the case of fully discontinuous elements.
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FIGURE 3. Academic beam test case. The self-consistent E field (left plot) and the
numerical particles accelerated towards the right boundary (right plot) show the typical
profile of the solution in the steady state regime. For the considered geometry the
external field is constant Eey = (—10°,0)Vm ™!,

To finally assess the numerical stability properties of the proposed FEM and Conga methods over
long time ranges we plot in Figure [4] the profiles of several fields using a final time chosen so that the
particles have travelled approximatively five diode lengths.

On the left column of Figure [l we plot the profiles of the electro-magnetic field computed with the
conforming FEM-PIC scheme @ using a standard L? projection for the particle current, which

consists in defining J}:L /2. PVﬁ J;\L,H/ 2 through products of the form (5.19)). The stability of such a
coupling is supported by Theorem [5.6] and indeed the numerical results show a very good preservation

23



M. CampPos PINTO & E. SONNENDRUCKER

of the smooth steady state, both for the electric field (top and center row) and the magnetic field
(bottom row). On the center and right columns of Figure 4| we then plot the fields computed with
the non-conforming Conga-PIC scheme using two different deposition methods for the current,
similarly as what was done (starting from an analytical expression for J) in Figure

On the center column the DG current is obtained with a standard L? projection of the particle
current, i.e., JZH/Q = ~h2J]r\L,+1/2, and on the right column it is defined as J}?H/z = (Pﬁ)*JX,H/Q.
Note that in practice this may be done either by computing terms of the form and inverting
the block-diagonal DG mass matrix of f/hQ , or by correcting locally the array of coefficients computed
with the standard method, as described in Section Again, the enhanced stability of the former
coupling is supported by Theorem This is clearly confirmed by our numerical simulation. Whereas
the charge-conserving Conga scheme yields results comparable to the conforming method, the electric
field resulting from the standard DG deposition scheme has erratic oscillations that grow linearly in
time and reach, in the test done here, values about four times greater than the maximum amplitude
of the correct solution.

7. Conclusion

In this series of papers we have provided a rigorous solution to the longstanding problem of charge-
conserving coupling between general Maxwell solvers and particle methods, following the classical
approach developped by plasma physicists over the last decades. Our stability analysis extends a re-
cent work on compatible source approximation operators for pure Maxwell solvers, and it is based on
the notion of discrete de Rham structure. This abstract setting allows us to design charge-conserving
deposition schemes for general conforming but also non-conforming Maxwell discretizations, thus of-
fering an interesting alternative to divergence cleaning methods to stabilize Discontinuous Galerkin
(DG) Particle-in-Cell solvers.

The framework of de Rham sequences also allows the choice of discretizing either the Ampere or
the Faraday equation strongly, the other being handled by duality. In this paper we provided the
discrete framework for a strong Faraday equation and verified that it can be applied to a classical
curl-conforming (Nédélec) Finite Element discretization, and also to a new hybrid non-conforming
discretization based on broken Nédélec elements, having the advantage of avoiding global coupling.
In 2D this discretization can be interpreted as a DG-PIC discretization with a corrected deposition
scheme.

Numerical experiments using a pure Maxwell problem and a simple diode configuration allowed
us to validate the theoretical stability of the proposed methods. Future studies should now address
more elaborate test-cases to better understand the benefits of these structure-preserving and charge-
conserving solvers with a strong Faraday law. Another open problem of interest is the study of dis-
continuous solvers based on different polynomial spaces, such as standard ones.
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FIGURE 4. Academic beam test-case. Snapshots of the self-consistent fields (F, on the
top row, I, on the center row and B on the bottom row) obtained by depositing the
conservative current density carried by the particles with either the conforming FEM-
PIC scheme with standard L? projection for the particle current (left), the DG-PIC
scheme with standard L? projection for the current (center) and the DG-PIC scheme
with the corrected projection for the particle current (right).
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