
HAL Id: hal-01303837
https://hal.science/hal-01303837

Submitted on 18 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid client-server and P2P network for web-based
collaborative 3D design

Caroline Desprat, Hervé Luga, Jean Pierre Jessel

To cite this version:
Caroline Desprat, Hervé Luga, Jean Pierre Jessel. Hybrid client-server and P2P network for web-based
collaborative 3D design. 23rd International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG 2015), Jun 2015, Pilsen, Czech Republic. pp.229-238.
�hal-01303837�

https://hal.science/hal-01303837
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15476

The contribution was presented at :
http://www.wscg.eu/

Official URL: http://wscg.zcu.cz/WSCG2015/CSRN-2501.pdf

To cite this version : Desprat, Caroline and Luga, Hervé and Jessel, Jean-Pierre
Hybrid client-server and P2P network for web-based collaborative 3D design. (2015)
In: 23rd International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG 2015), 8 June 2015 - 12 June 2015
(Plzen, Czech Republic).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Hybrid client-server and P2P network for web-based

collaborative 3D design

Caroline Desprat

University of Toulouse

118 Route de Narbonne

Toulouse, France

desprat@irit.fr

Hervé Luga

University of Toulouse

118 Route de Narbonne

Toulouse, France

luga@irit.fr

Jean-Pierre Jessel

University of Toulouse

118 Route de Narbonne

Toulouse, France

jessel@irit.fr

ABSTRACT

Our proposed research project is to enable 3D distributed visualization and manipulation involving collaborative

effort through the use of web-based technologies. Our project resulted from a wide collaborative application

research fields: Computer Aided Design (CAD), Building Information Modeling (BIM) or Product Life Cycle

Management (PLM) where design tasks are often performed in teams and need a fluent communication system.

The system allows distributed remote assembling in 3D scenes with real-time updates for the users. This paper cov-

ers this feature using hybrid networking solution: a client-server architecture (REST) for 3D rendering (WebGL)

and data persistence (NoSQL) associated to an automatically built peer-to-peer (P2P) mesh for real-time commu-

nication between the clients (WebRTC). The approach is demonstrated through the development of a web-platform

prototype focusing on the easy manipulation, fine rendering and light update messages for all participating users.

We provide an architecture and a prototype to enable users to design in 3D together in real time with the benefits

of web based online collaboration.

Keywords
WebRTC, WebGL, collaborative, Peer-to-peer, Applications, Web

1 INTRODUCTION

As Ortiz [OJ10] questioned if “3D is finally ready for

the web?", the Internet responds with a large amount

of creation, transmission, storage and access solutions

for 3D contents [ERB14]. 3D CVEs (Collaborative Vir-

tual Environments) are representative of this increasing

popularity in industry and makers communities ; due

to the competition and the mobility nowadays, people

are turning faster toward the optimal resources. A good

example of this trend is the emerging market of 3D col-

laborative modelers, server-based such as GradCAD,

ThinkerCAD, Sunglass.io, Clara.io [HLL+13], Verold

Studio or cloud-based like AutoCAD360. The collabo-

rative aspect in 3D modeling CVEs shows the need of

an efficient cooperation over the network between the

users. Even if they are geographically far and have dif-

ferent points of interest, they have the same shared goal:

the manufacture of the product.

This research is led by the desire of working collabora-

tively and sharing 3D scenes across the network. Large

scenes or complex models are very likely to be con-

structed and reviewed by more than one person, es-

pecially in the context of 3D design, PLM (Product

Lifecycle Management) or BIM (Building Information

Modeling) solutions. The new usages and the increas-

ing mobility of workers are pointing to web based solu-

tions. Moreover, in small designing teams, we can ob-

serve that the design process is conducted with direct

communication channels. The mimic of direct com-

munication in computing is peer-to-peer (P2P): why to

pass through a proxy when the team members are so

close? We can also observe that the need of persistent

communications is mandatory with this running. Since

the network speed can be a limiting factor in collabora-

tive design, one of the main criteria for our system is to

spread and display only relevant information between

the users without overloading the server.

The contributions of this work are multi folds:

• consider the solutions for plug-in-less visualization

of 3D scenes on the web,

• use efficiently the local client resources for visual-

ization and storage,

• allow small and asynchronous message system,

• overcome the difficulties related to interactive col-

laboration across the network with shared access to

3D models with bandwidth limits of the actual con-

nections.

The reminder of this paper is organized as follows: the

related work in distributed collaborative modeling is in

section 2, our model architecture is described in sec-

tion 3, the implementation of the web editor, the server

architecture with the storage mechanisms and the P2P

communication layer with the synchronization are ex-

plained in section 4. Then we introduce some examples

of collaboration on 3D scenes with our model includ-

ing a discussion about the network and display opti-

mizations of the system regarding the user experience

(field-speciality, pieces that “matters" to the user, client

resources, device used. . .) in section 5. Finally, conclu-

sion and future works are given in section 6.

2 RELATED WORK

CAD is an essential tool for 3D models production in

industry. During the last years, considerable time and

resources were spent on CAD as well as in the improve-

ment of the computers power. These two features asso-

ciated with a increasing need of team working and pro-

fessional mobility, enabled the development of several

Internet based collaboration tools.

2.1 Web-based visualization and collabo-

ration

A wide range of standards and technologies have

emerged the last decade for web-based and mobile 3D

visualization. With HTML5 and more powerful clients,

solutions that do not require the installation of a soft-

ware are now well admitted on the web (unlike Flash,

Unity3D1). Two predominant pluginless approaches

exist: imperative with WebGL2 supported by the W3C3

and declarative [SKR+10] with X3D [JBDW12].

Mouton and al. [MSG11] sum up a coverful analysis

of current systems and trends in CVEs [Fle12] arguing

that web applications have major benefits over desktop

applications because they are available for all major

platform guaranteeing a cross-platform compatibility

(including mobile devices) and do not require any

software or libraries (except the web browser). They

highlighted the need for new applications to reduce

their bandwidth consumption by using local client

resources to increase performances (interactivity).

Web-based collaboration is particularly present in sci-

entific visualization [JFM+08][GGCP11][CSK+11],

cultural heritage [DBPM+14] and CAE (Computer-

Aided Engineering) applications [CCW06]. This last

one offers many online collaborative and distributed

modelers like GradCAD, ThinkerCAD, Sunglass.io,

Clara.io [HLL+13] or Verold Studio. However, most

of these popular systems are client-server based and

rely on full transfer of large 3D data for each client.

2.2 Web-based networking

2.2.1 Client-Server

The client-server network topology puts the different

clients in relation via the server that manages, trans-

1 http://unity3d.com/5
2 http://www.khronos.org/webgl/
3 World Wide Web Consortium – http://www.w3.org/

forms and stores the modifications and the data using a

persistent database. This type of network offers secu-

rity and easy management of information.

In 2011, Gutwin and al. [GLG11] has exposed the

increasing role of web browsers as “a platform for

delivering rich interactive applications” and details the

different web-based networking approaches. They are

all client-server types: HTTP-based communication

(sending/getting server requests), AJAX with XHR

(requesting without page reloading) and WebSockets

[Rak14] (keeping an open connection with the server

and communicate through messages). The works of

Marion [MJ12] and Grasberger and al. [GSWG13] are

based on the WebSocket protocol [FM11]. [MJ12]’s

proposition transfers scientific data to and between

clients to visualize with WebGL. The users can work

on the data concurrently but they cannot edit it unlike in

[GSWG13] where a BlobTree functional representation

method requiring small memory footprint messages is

also used to store, transfer, visualize and edit data.

2.2.2 Peer-to-peer

The P2P topology network allows each peer to be client

and server simultaneously and to communicate directly

with each other. The P2P network topology offers bet-

ter resilience in case of a system crash or incongruous

network disconnection using the autonomy of the peer

(and data replication in the mesh). This induces higher

efficiency in communication between team members

(direct communication like in the real world).

a. Full mesh topology

b. Star Topology

c. Partial mesh topology

Figure 1: Peer-to-peer topologies

Full mesh topology (Figure 1.a) connects each nodes

to every other one. It requires that every time a new

peer join the network, the other peers establish a

connection with the new peer. The increase in the

number of connection is exponential and it does not

scale well, saturating the bandwidth.

Star topology (Figure 1.b) uses a star node that dis-

tributes the data to the others. That node is a very

high bandwidth consumer and could be a dedicated

server. This client-server like topology removes the

advantage of P2P distribution but keeps the benefit

of having reliable messages.

Partial mesh topology (Figure 1.c) connects the

nodes “indirectly” to each others: one device

maintains multiple connections to others without

being fully meshed. Partial mesh topology provides

redundancy by having several alternative routes and

needs good recovery mechanism to maintain the

data transmission in the mesh.

The development of P2P communication between

browsers arrived in 2011 with the drafts of WebRTC

(Web Real-Time Communication) API [BBJN12] of

the W3C and IETF R©4. Many projects with WebRTC

technology [BBJN12] are interested in the MediaS-

tream API (audio and video streaming) but only a

few are using the DataChannel part. Services like

PubNub5, very popular to set up real-time applications

with WebSockets, are just starting to support WebRTC.

[WV14] presents the WebRTC architecture foundations

for decentralized content-publishing facility between

browsers with concerns about security and privacy.

ROCCAD [CT07] is a prototype providing a 2D/3D

graphics interchanges in real-time during a develop-

ment process for synchronous design collaboration. It

offers distributed mechanisms to handle data transmis-

sion, data access policy and conflict resolutions, users

management based on Tree First P2P overlay network

over TCP/IP. The communication architecture exposed

in [KVaD14], is very powerful and scalable using a

client manager to abstract and synchronize the different

devices communicating in P2P, where the servers are

supporting the LODs (Level Of Details) management.

Chen and al.[CH14] presented an asynchronous online

collaboration for BIM generation using hybrid client-

server and P2P network based on a hierarchical topol-

ogy: a peer team appointed a local server to trans-

mit data to the global server. This architecture of-

fers a good scalability in collaboration with parallel

modeling (intra-disciplinary) to achieve a single multi-

disciplinary task. Moreover, design team members can

share their work in modeling and cooperate while work-

ing concurrently. The critical points are the servers: the

local server could be overloaded (it is the only proxy

to reach the global server) and if the global server

suddenly goes down, the inter-collaboration is broken

due to conflict generation between sub-models avoid-

ing (teams) to communicate.

4 The Internet Engineering Task Force –

https://www.ietf.org/
5 http://www.pubnub.com/

3 HYBRID ARCHITECTURE FOR 3D

MODELING COLLABORATION

Our collaborative design environment (CoDE) requires

an appropriate network model. The two main types of

communication networks on the web are client-server

and P2P. Even if client-server is more common, P2P is

coming more and more attractive because of its charac-

teristics of decentralized control and self-organisation

although its web standards are still on progress.

To set up our CoDE, we developed a full web-based

communication architecture for a 3D modeling plat-

form. This work is lead in the context of a small amount

of users (small teams max 7/8 people) which means full

mesh topology is adapted (direct reachability) and its

exponential growth is negligible. Indeed, with more

users a partial mesh topology should fit better to relieve

the network congestion. In such a virtual workspace,

the contributions of each user is directly transmitted to

others and they can observe the doings of others in real-

time. The network model is mixing conventional client-

server architecture, mostly used for persistence, and a

full mesh P2P network for the real-time data transmis-

sion between the clients.The users are working together

on a scene where they can add, remove and update 3D

models.

3.1 Web-based 3D editor

The 3D rendering framework is based on WebGL which

is pluginless. The framework is able to handle 3D data

stored locally and on an external server for persistence

and synchronization. The 3D viewport editor allows

users to view and interact with the model. The interac-

tions offered to the user are:

Viewing, navigating and using transformations tools

The user can lean on commons commands from

known CAD programs to interact with the view

and the camera. It uses classic handles for object

translation, rotation and scaling, and conventional

CAD navigation.

Uploading 3D models, textures The editor handles

the most used of open 3D file formats in CAD

[Bou12] (OBJ, PLY, DAE, JSON. . .) via user

friendly interaction: drag and drop importation.

Referential modification The modification of the ref-

erence coordinate system from local to global for

transformation can be helpful for designer.

Grip snapping The definition of the grid can be modi-

fied by the user to get a specific resolution. It is also

possible to use it to align models on the grid points.

Switching point of view The user can switch from his

camera to other’s users point of view.

Assembled 3D models (textured or not) are available to

every users (viewers, collaborators, editors). The inter-

face is designed to be easy and clear to provide a bet-

ter user experience (non-repulsive) particularly for the

non-experts users for enhancing the accessibility of the

application.

A content access policy for the objects is necessary to

avoid modification conflicts during the collaboration.

We use a lock/unlock mechanism with a visual feed-

back associated to represent that the object is in use (se-

lection state) by a user to prevent concurrent edition of

the same object.

3.2 Server: RESTful architecture

The client-server part is based on a REST (Representa-

tional State Transfer) architecture [TV10] that benefits

from distributed hypermedia systems such as our. The

responsibilities are separated between the client (user

interface) and the server (data storage interface). Each

request from client to server contains all the neces-

sary information to let the server understand the request

without context dependency stored on the server. With

its uniform interface, each resource is unitarily iden-

tified with defined representations and auto descrip-

tive messages. Also, the caching exempts many client-

server interactions.

Table 1: REST architecture summary

Pros Cons

Easier to maintain; Bandwidth increasing

and latency: client

needs to keep locally

all the necessary data

to send the request.

No need to keep an open

connection permanently;

Web context: HTTP

protocol, URI as resource

representative, caching.

Table 1 resumes the advantages and the drawbacks of a

RESTful system. It fits well for web distributed systems

even if mobile devices should have limited performance

due to back and forth energy consuming requests.

NoSQL database

The rise of the web as a platform encourages the change

in data storage for new needs like supporting large vol-

umes of data (such as 3D data). NoSQL database pro-

vides dynamic schema and a rich query language API

for data manipulation. Therefore the records can add

new information on-the-fly facilitating the enrichment

of the (3D) objects. In our application the NoSQL

database is mainly used to maintain persistence of the

state of the scenes while a user is absent. When the user

returns, he/she receives the entire scene document. It

provides robustness to the system and better experience

to the user.

3.3 P2P communication

3.3.1 Topology

We propose to automatically connect users on a scene

with a WebRTC connection. As each user send their ID

to the database at their arrival, they also retrieve those

which where already present on the scene. We are able

to create a full mesh topology network in order to make

them communicate the updates.

Figure 2: P2P topology of our model: a star node for

message broadcasting inside a full mesh network.

Even if we have a full mesh topology, the P2P message

layer is more similar the star topology. The Figure 2

shows the path of a sent message operation on the con-

nection and it is only sent to the one-degree neighbors

of the original broadcaster (“B” node on the Figure 2).

3.3.2 WebRTC and DataChannels

Web Real-Time-Communication (WebRTC) is a collec-

tion of standards, protocols (Figure 3) and JavaScript

APIs specifying media transport and data sharing be-

tween browsers (peers)[Gri13]. P2P communication

with “WebRTC still needs servers for signaling” and

“to cope with NAT and firewall” [Ris14]. The signal-

ing mechanism (Figure 4) allows peers to send control

messages to each other in order to establish the commu-

nication protocol, the canal and the connection API.

Figure 3: WebRTC protocol stack [Gri13]

We use the DataChannel protocol through the RTC-

DataChannel API to exchange arbitrary data between

peers with customizable delivery properties (reliable or

partially reliable, in-order or out-of-order) of the under-

lying transport [Gri13]. We choose to keep reliable and

in order delivery for now. The RTCDataChannel API

supports many data types (strings, binary types: Blob,

ArrayBuffer. . .). These types are helpful in a 3D multi

user environment to broadcast messages including the

objects and their transformations. We tried to limit the

amount of sent data with granularity choices (see Sec-

tion 4) to prevent channel overfeeding.

Figure 4: System overview

Some issues remain in RTCDataChannel API: the com-

patibility and interoperability is still not complete be-

tween browsers6, some browsers (like Chrome) im-

pose a send limit (about 6MB) for the data transmitting

through DataConnections and the security of the com-

munication is still vulnerable7. The system overview

(Figure 4) illustrates the communication architecture

topology between the peer clients, the web server and

database (plus signaling server).

4 IMPLEMENTATION

As illustrated in the Figure 5, when a user arrives on the

workspace editor the clients retrieves the scene from the

server database. Each object is added to the Three.JS

scene graph and rendered in the viewport. The connec-

tion to the P2P network with WebRTC is initiated by

the assignation of an ID to the peer client which cor-

responds to the signaling mechanism. With this ID,

the server automatically builds the full mesh topology

by creating bi-directional connections between the new

peer and the others. This action updates the list of con-

nected users and their relations. Now that the scene is

loaded and the P2P mesh is built, the user can freely

interact with the scene with CRUD (Create, Read, Up-

date, Delete) operations and synchronize the updates

with the server and the other peers. For each operation,

the type and the data are stored in a message according

to the granularity of the transmission defined as follow:

6 WebRTC compatibility between web browsers from

http://iswebrtcreadyyet.com/
7 https://github.com/diafygi/webrtc-ips

• on import: all meshes and materials (such as tex-

tures) are sent.

• on transformation (translation, rotation, scale): the

id of the transformed object and matrix of the trans-

formation are sent.

• on delete: the id of the object to delete is sent.

• on lock/unlock: the id of the object is sent.

Once the message sent through the P2P mesh, the other

peers can update their scene graph with the new val-

ues. It is also sent to the server through XMLHttpRe-

quest for database persistence. When the client leaves

the workspace editor, a flag is raised on the WebSocket

server therefore it can broadcast the peers to update

their list of connected peers to avoid useless sendings.

The implementation has a strong dependence on our ar-

chitecture and the browser-based rendering constraints.

WebGL is a JavaScript API provided by the Khronos

Group. It is completely integrated into all the web stan-

dards allowing the browsers to use the GPU acceler-

ated usage of image processing and effects as part of the

web page. The choice of the 3D rendering framework

has been oriented on an imperative solution: Three.JS

[cab10]. It is a cross-platform solution that has already

been widely adopted by the 3D community [MR10].

Our application is event-driven because of the nature

of the manipulations of the users in a 3D environment.

The event model is characterized by the event loop,

event handlers and asynchronous processes. We based

the message layer for user interface on a custom even-

t/messaging system library called js-signals8. Each sig-

nal has its own controller, which allows easy control

of the event broadcaster and subscriber, avoiding the

wrong objects reacts to the event. When a Signal in-

stance is defined, procedures can be added to it. The

signal will be intercepted anywhere in the scope of the

application, the associated procedures will be triggered

as well. A very interesting property of the event loop

model is that JavaScript (unlike a lot of other languages)

never blocks. A Signal is typically performed via events

and callbacks, therefore when the application is wait-

ing for a WebRTC message or an asynchronous XHR

request to return, it can still process things like clicks.

As an asynchronous server-side run time environment,

Node.JS replicates this model by using continuations:

it keeps a stack of functions waiting to be run when

the right event comes along. It is ideal for a data in-

tensive real-time application that runs across distributed

machines or a fast file upload client. Furthermore, with

Node.JS we have JavaScript both client and server side,

simplifying the understanding and the maintenance of

8 http://millermedeiros.github.io/js-signals/

!"#$%& $'#&()

*+',&$
-.$%$/' *-$)-

0&(),1$
23 (45$.&-

*+',&$
-.$%$/' *-$)-

"((+

67() (&8$)/' #% *-$)-/'9

0$):$) ,%' 23

!
(
"",
4
(
),
&#
:
$
$
'
#&
#%
1
-
&$
+
+
)(
.
$
-
-
#%
1

;&8$) ."#$%&- 0#1%,""#%1 0$):$)<-$)<-$)

Figure 5: Sequence diagram of collaborative communication process

the environment. We use the micro-framework Ex-

pressJS9 to build the Node.JS web application.

To ensure a persistent track of the world state of the

user’s scene modifications, we choose the NoSQL (Not

Only SQL) database MongoDB10 over a conventional

relational database. MongoDB is based on the doc-

ument database technology11 that stores and retrieves

documents (relevant data stored together). A document

is self-describing and can nest values in a hierarchi-

9 http://expressjs.com/
10http://www.mongodb.org/
11http://www.mongodb.com/nosql-explained

cal tree data structure. A collection is a grouping of

documents, the equivalent of a relational database ta-

ble. Our database contains two collections: scenes and

objects. The scenes’s collection contains the scenes

descriptions with their IDs and their metadata of the

virtual workspace including a label and the connected

users. This last information is crucial for the creation

of the P2P mesh described in the Section 3.3. In the ob-

jects collection, the database stores the object with the

ID of the scene it is attached to, its own ID and the full

3D object export in JSON format. The query param-

eters for the fundamental database operations (CRUD)

on collections are fully supplied by the REST request.

Because of the youth of WebRTC, browser’s compat-

ibility is still incomplete and some features are not

yet implemented. That is why our application is only

compatible with Chrome(v42+) and Firefox (v39+).

PeerJS [MB13] is an open source library that wraps the

browser’s WebRTC implementation to provide a peer-

to-peer connection API. The peer client, equipped with

a clientID by the signaling server, can connect to a re-

mote peer. In any case to establish a WebRTC session,

a signaling protocol is needed such as WebSocket Pro-

tocol [LPR12]. We use the PeerJSServer implementa-

tion, based on a WebSocket server, provided by PeerJS

to help broker connection between PeerJS clients.

Table 2: Summary of implementation choices

Platform/Service Library (version)

WebGL Rendering

Event manager

Three.JS (r69)

signal-js (v1.0.0)Client

WebRTC PeerJS (v0.3.9)

Node.JS (v0.10.32) ExpressJS (v4.9.0)

WebSocket PeerJSServer (N/A)Server

NoSQL database MongoDB (v2.6.8)

We use many different technologies in our model, as re-

flected in the technical choices for implementation re-

sumed in Table 2. The modules of our implementation

are communicating through APIs which is a benefit for

modularity and maintenance. These choices were done

with scalability perspectives.

As a result of this implementation we proposed a web

platform for users where they can access to the list of

the scenes’ links and then the scene editor where the 3D

collaboration starts.

3D Editor interface

The scene editing is done with the editor presented in

Figure 6. The user can access to the list of the scenes

from the menu and the “Back to scenes” link. The scene

editor is titled with the scene’s name, and the users con-

nected to the scenes are shown by their ID (the bold one

is the active user’s). The editing part contains the tools,

the viewport and the relative info. The tools are repre-

sented by the actions buttons translate, rotate and scale

that trigger the associated helper. The grid integer in-

put is for changing the resolution of the grid helper; the

checkboxes: snap is for snapping the selected object to

the grid; local is for changing the referential from world

to local; show grid is for showing/hiding the grid helper.

The key s allows to switch to the other users’ cameras.

The user can see the point of view shown by the cam-

era helper representing the other’s one. The viewport is

where the 3D scene is represented. We can see that the

user has selected the wheel of the plane and intents to

translate it on the X,Y axis. The viewport info contains

Figure 6: Editor interface

the information relative to the scene such as the num-

ber of objects (including light, cameras. . .), the number

of vertices and triangles. Finally, the client information

are displayed.

5 EXPERIMENTAL SETUP

We developed a prototype of the the web-based multi-

user collaborative modeling to demonstrate the feasibi-

lity of our model architecture focusing on the user ex-

perience.

Table 3: Model descriptions for the experiments

Experiment objects size users

Wind turbine 6 1.0 MB 2

Pick up 8 1.3 MB 4

Castle from server 35 1.3 MB 4

Castle from peer 35 1.3 MB 4

In one hand, the visualization was based on the We-

bGL technology using Three.JS to visualize 3D mod-

els online and offline without plugins. On the other

hand, the real-time interactive collaboration relied on

the hybrid architecture model exposed in the previous

section. The Node.JS server platform allowed us to run

a WebSocket server that handled the signaling mech-

anism for the WebRTC user connections creating the

P2P mesh. The resources of the client were used in

terms of graphics, storage, WebRTC capabilities in or-

der to share the scene information between the users.

We propose four experiments with three different mod-

els experiments (Table 3) to evaluate our system in the

following criteria: user-friendly interface and the qual-

ity of the collaboration mechanisms (feedbacks, robust-

ness and latency). A the end of each experiment, qual-

Table 4: Form distributed for each experiment and global results for 14 forms

Questions Answers* (results in %)

General

Do you understand the goal? No (0%) Yes (100%)

Did you reach the goal?** 0 (0%) 1 (0%) 2 (14%) 3 (86%)

Collaboration satisfaction ? 0 (0%) 1(14%) 2 (72%) 3 (14%)

Type(s) of communication?*** None (0%) Oral (100%) Virtual (15%)

User

interface

quality

3D interface expertise 0 (7%) 1 (14%) 2 (50%) 3 (29%)

Tools usage 0 (0%) 1 (0%) 2 (71%) 3 (29%)

Object manipulation 0 (14%) 1 (14%) 2 (57%) 3 (14%)

Global quality 0 (7%) 1 (21%) 2 (64%) 3 (7%)

The collaboration is: Interactive (21%) Real-time (79%)

Open

questions

Practice (define your practice: difficulties or frustration).

Collaborative rendering (define :latency, consistency, recovery)?

What improvements should you suggest?

*Rates: 0 (bad), 1 (poor), 2 (good), 3 (very good). **Not asked for Castle experiments. ***Could use more than one channel.

Results have been rounded to the unit.

itative feedback was asked to the users via a form (see

Table 4). For the experiments, the users were on the

same local network as the server.

The Wind Turbine and Pick Up experiments had the

same goal: assemble a model with multiple pieces

apart. We showed a picture of the final assembly to

the users, showing them the different parts of it. We

distributed the pieces arbitrarily between the users and

they had to import them in the viewport scene. Using

the editor tools, real time information from others (ap-

plication updates or any real communication), they had

to manipulate the pieces (select, translate, rotate, scale)

collaboratively to match the final assembly in a coher-

ent way. The difference between the Wind Turbine and

the Pick Up was the number of simultaneous users con-

nected to the scene.

In the Castle from server, the goal was slightly differ-

ent: a castle kit (towers, walls, stairs. . .) was uploaded

first on the server. At connection, the users retrieved

(automatically from the server) the objects and they had

about 10 minutes to creatively, but still collaboratively,

build a castle. A variant, Castle from peer was intro-

duced with the importation of another castle kit by a

peer into the scene, broadcasting the new objects.

5.1 Results

Each experiment lasts about 5/10 minutes. We com-

piled the qualitative feedbacks of the users (see Table 4)

and our observations and deductions. The users where

not all very familiar with 3D interfaces but very familiar

with computer: we observed mutual aid between expert

users and beginners. Users were globally satisfied of

the collaborative and visual results of the experiments

(see Figure 7) because the goals were achieved: they

succeeded in the assembly of the proposed 3D models

without (too much) frustration. They even had fun on

the castle experiment because they were free to create

and they wanted to stay longer on the scene.

We noticed during the experiments that, on the lock sys-

tem, we forgot to indicate which object was used by

which user. Consequently to this lack of visual feed-

back, the external collaboration channel was mostly

oral to exchange about object prehension: what they

were doing on which piece.

The user interface was well appreciated, but maybe too

simple for expert users. The manipulation of objects

had a good evaluation except for the reception of a new

imported model caused by the size of the message and

the processing. A window frozen once during the Cas-

tle from peer on Chrome browser. The user had to quit

and come back to the scene to refresh the viewport.

This was a robustness test because the user appreciated

to retrieve all the data and the other peers connections

from the server at his/her return. The same remark was

done for the fluidity of the application on the collabora-

tion aspect.

The users did not feel latencies due to transformation

operations during the experiments so they qualify the

quality of the collaboration as real-time more than in-

teractive. The variation of the number of users between

experiments has not altered the rendering and network-

ing quality of the user experience in terms of latency.

6 CONCLUSION

This paper proposed web-based 3D modeling collab-

oration based on a hybrid communication architecture

client-server and P2P network.

The client is responsible for 3D rendering and handling

the user interactions on a scene. It also hosts the peer

connection to be able to communicate updates to other

peers. The server is used to link the client with the

NoSQL database in order to store the modifications,

and manage the users presence on a scene and automati-

cally create a P2P full mesh topology network between

them. The P2P connection relies on a WebRTC com-

munication that transmits information directly between

Figure 7: Results of 3D editor’s scenes during the experiments: Wind Turbine, Pick Up and Castle kit

browser with update messages, broadcasting according

to the P2P star topology, using a signaling server to es-

tablish the communication between two peers.

The qualitative evaluations of the experiments were

conclusive overall even if some points should be im-

proved. On model import, the broadcast causes latency

issues on client peers receivers (camera freeze). To re-

duce latency with larger scenes we consider using pro-

gressive rendering and making a better use of peer-to-

peer mesh to stream the model relying on seed peers

like in the partial mesh topology. An improvement of

interface features and visual feedback of collaborative

manipulations was asked by the users. To start we have

set focus on user experience.

The evaluation will be supplemented in future works

with a quantitative evaluation to compare our hybrid

architecture to others by selecting metrics (server logs,

FPS in client, throughput, bandwidth requirements,

number of connections supported. . .). We are now

investigating experimental WebRTC tools12 which

provides statistics and graphs on the data exchanged

between peers’ browsers and automation tools (web

automation like SeleniumHQ13), to evaluate on a set of

scenarii the global performance and scalability of the

system.

7 REFERENCES

[BBJN12] A Bergkvist, D Burnett, C Jennings, and

A Narayanan. Webrtc 1.0: Real-time

communication between browsers. w3c

working draft. World Wide Web Consor-

tium, 2012.

[Bou12] Rozenn Bouville. Interopérabilité des

environnements virtuels 3D: modèle de

réconciliation des contenus et des com-

posants logiciels. PhD thesis, INSA de

Rennes, 2012.

[cab10] Three.js - javascript 3d library, 2010.

[CCW06] Chih-Hsing Chu, Ching-Yi Cheng, and

Che-Wen Wu. Applications of the web-

12 Chrome: chrome://webrtc-internal;

Firefox: about:webrtc
13http://www.seleniumhq.org/

based collaborative visualization in dis-

tributed product development. Comput-

ers in Industry, 57(3):272–282, 2006.

[CH14] Hung-Ming Chen and Chuan-Chien Hou.

Asynchronous online collaboration in

BIM generation using hybrid client-

server and P2P network. Automation

in Construction, 45:72–85, 2014.

[CSK+11] John Congote, Alvaro Segura, Luis

Kabongo, Aitor Moreno, Jorge Posada,

and Oscar Ruiz. Interactive visualiza-

tion of volumetric data with webgl in

real-time. In Proceedings of the 16th In-

ternational Conference on 3D Web Tech-

nology, pages 137–146. ACM, 2011.

[CT07] Hung-Ming Chen and Hung-Chun Tien.

Synchronous design collaboration in a

peer-to-peer network. 2007.

[DBPM+14] Marco Di Benedetto, Federico Ponchio,

Luigi Malomo, Marco Callieri, Matteo

Dellepiane, Paolo Cignoni, and Roberto

Scopigno. Web and mobile visualiza-

tion for cultural heritage. In 3D Research

Challenges in Cultural Heritage, pages

18–35. Springer, 2014.

[ERB14] Alun Evans, Marco Romeo, and Arash

Bahrehmand. 3D Graphics on the Web:

a Survey. Computers & Graphics, 2014.

[Fle12] Cédric Fleury. Modèles de concep-

tion pour la collaboration distante en

environnements virtuels distribués: de

l’architecture aux métaphores. PhD the-

sis, INSA de Rennes, 2012.

[FM11] Ian Fette and Alexey Melnikov. The web-

socket protocol. 2011.

[GGCP11] Daniel Ginsburg, Stephan Gerhard,

John Edgar Congote, and Rudolph Pien-

aar. Realtime visualization of the connec-

tome in the browser using webgl. Fron-

tiers in Neuroinformatics, 95, 2011.

[GLG11] Carl A Gutwin, Michael Lippold, and

TC Graham. Real-time groupware in the

browser: testing the performance of web-

based networking. In Proceedings of the

ACM 2011 conference on Computer sup-

ported cooperative work, pages 167–176.

ACM, 2011.

[Gri13] Ilya Grigorik. High Performance

Browser Networking: What every web

developer should know about networking

and web performance. " O’Reilly Media,

Inc.", 2013.

[GSWG13] Herbert Grasberger, Pourya Shirazian,

Brian Wyvill, and Saul Greenberg. A

data-efficient collaborative modelling

method using websockets and the blob-

tree for over-the air networks. In Pro-

ceedings of the 18th International Con-

ference on 3D Web Technology, pages

29–37. ACM, 2013.

[HLL+13] Ben Houston, Wayne Larsen, Bryan

Larsen, Jack Caron, Nima Nikfetrat,

Catherine Leung, Jesse Silver, Hasan

Kamal-Al-Deen, Peter Callaghan, Roy

Chen, et al. Clara. io: full-featured 3d

content creation for the web and cloud

era. In ACM SIGGRAPH 2013 Studio

Talks, page 8. ACM, 2013.

[JBDW12] Yvonne Jung, Johannes Behr, Timm

Drevensek, and Sebastian Wagner.

Declarative 3d approaches for distributed

web-based scientific visualization ser-

vices. In Dec3D, 2012.

[JFM+08] Sebastien Jourdain, Julien Forest,

Christophe Mouton, Bernard Nouail-

has, Gerard Moniot, Franck Kolb, So-

phie Chabridon, Michel Simatic, Zied

Abid, and Laurent Mallet. Sharex3d, a

scientific collaborative 3d viewer over

http. In Proceedings of the 13th Inter-

national Symposium on 3D Web Tech-

nology, Web3D ’08, pages 35–41, New

York, NY, USA, 2008. ACM.

[KVaD14] Timo Koskela, Jarkko Vatjus-anttila, and

Toni Dahl. Communication architecture

for a p2p-enhanced virtual environment

client in a web browser. pages 1–5, 2014.

[LPR12] Salvatore Loreto and Simon Pietro Ro-

mano. Real-time communications in the

web: Issues, achievements, and ongoing

standardization efforts. IEEE Internet

Computing, 16(5):68–73, 2012.

[MB13] Eric Zhang Michelle Bu. The peerjs li-

brary, 2013.

[MJ12] Charles Marion and Julien Jomier. Real-

time collaborative scientific webgl visu-

alization with websocket. In Proceedings

of the 17th international conference on

3D web technology, pages 47–50. ACM,

2012.

[MR10] Anna Maria Manferdini and Fabio Re-

mondino. Reality-based 3d modeling,

segmentation and web-based visualiza-

tion. In Digital Heritage, pages 110–124.

Springer, 2010.

[MSG11] Christophe Mouton, Kristian Sons, and

Ian Grimstead. Collaborative visualiza-

tion: current systems and future trends.

In Proceedings of the 16th Interna-

tional Conference on 3D Web Technol-

ogy, pages 101–110. ACM, 2011.

[OJ10] Sixto Ortiz Jr. Is 3 d finally ready for the

web? Computer, 43(1):14–16, 2010.

[Rak14] Shruti M Rakhunde. Real time data com-

munication over full duplex network us-

ing websocket. 2014.

[Ris14] Dan Ristic. Webrtc data channels for high

performance data exchange, 02 2014.

[SKR+10] Kristian Sons, Felix Klein, Dmitri Rubin-

stein, Sergiy Byelozyorov, and Philipp

Slusallek. Xml3d: Interactive 3d graph-

ics for the web. In Proceedings of the

15th International Conference on Web

3D Technology, Web3D ’10, pages 175–

184, New York, NY, USA, 2010. ACM.

[TV10] Stefan Tilkov and Steve Vinoski. Node.

js: Using javascript to build high-

performance network programs. IEEE

Internet Computing, 14(6):0080–83,

2010.

[WV14] Max Jonas Werner and Christian Vogt.

Implementation of a browser-based p2p

network using webrtc. Hamburg Uni-

versity of Applied Sciences, Technical

Report, January, 2014.

