
HAL Id: hal-01303829
https://hal.science/hal-01303829

Submitted on 18 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Constraint Satisfaction Problems and
Difference Decision Diagrams: A Compilation Map

Hélène Fargier, Frédéric Maris, Vincent Roger

To cite this version:
Hélène Fargier, Frédéric Maris, Vincent Roger. Temporal Constraint Satisfaction Problems and
Difference Decision Diagrams: A Compilation Map. 27th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2015), Nov 2015, Vietri sul Mare, Italy. pp.429-436, �10.1109/IC-
TAI.2015.71�. �hal-01303829�

https://hal.science/hal-01303829
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15483

The contribution was presented at :
http://www.cril.univ-artois.fr/SAT-CSP-IEEE-ICTAI2015/

URL: http://dx.doi.org/10.1109/ICTAI.2015.71

To cite this version : Fargier, Hélène and Maris, Frédéric and Roger, Vincent
Temporal Constraint Satisfaction Problems and Difference Decision Diagrams:
A Compilation Map. (2015) In: 27th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2015), 9 November 2015 - 11 November 2015
(Vietry sul mare, Italy).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Temporal Constraint Satisfaction Problems

and Difference Decision Diagrams:

a Compilation Map
Hélène Fargier, Frédéric Maris, Vincent Roger

IRIT (Institut de Recherche en Informatique de Toulouse)

University of Toulouse

France

Abstract—The frameworks dedicated to the representation
of quantitative temporal constraint satisfaction problems, as
rich as they are in terms of expressiveness, define difficult
requests - typically NP-complete decision problems. It is therefore
adventurous to use them for an online resolution. Hence the
idea to compile the original problem into a form that could be
easily solved. Difference Decision Diagrams (DDDs) have been
proposed by [1] as a possible way to cope with this difficulty,
following a compilation-based approach. In this article, we draw
a compilation map that evaluates the relative capabilities of these
languages (TCSP, STP, DTP and DDD) in terms of algorithmic
efficiency, succinctness and expressiveness.

Keywords-Temporal Constraint Satisfaction Problems; Differ-
ence Decision Diagrams; Knowledge Compilation; Computa-
tional Complexity.

I. INTRODUCTION

In constraint-based reasoning, a model is built by means

of a set of constraints restricting the combinations of values

of the variables. Soon enough, [2] proposed a formalism to

represent temporal problems which derives from the defini-

tions developed in the classical CSP framework, namely the

TCSP (Temporal Constraint Satisfaction Problem) formalism.

In a TCSP, each variable represents an instant at which an

event (start or end of an action, expiration of a milestone)

occurs, and the domains are continuous (equal to R
+). Binary

constraints represent the possible time intervals between two

events; for instance, this allows to express that a task must

take place before or after another (by a constraint of the form

start2−end1 ∈]−∞,−duration1−duration2]∪ [0,+∞[),
or that the beginning of two tasks must be synchronized

(start1 − start2 ∈ [0, 0]).
A TCSP whose constraints are not disjunctive (i.e. problems

with only one interval per constraint) is called a STP (Simple

Temporal Problem). Unlike the resolution of TCSP instance,

which defines a NP-hard problem, that of STP instances can

be performed in polytime.

The STP framework has been extended by [3] yielding

the framework of generalized disjunctive temporal problems

(DTP): while in a TCSP each constraint is a disjunction of

elementary constraints on the same pair of variables (it is a

disjunction of literal of the form x−y ∈ I bearing on the same

x and y), this restriction is dropped in the DTP formalism: the

“literals” in a single constraint may relate different variables.

The difficulty is that TCSP and DTP problems can not be

solved online with the guarantee that the response will be

given in polynomial time: checking the consistency of this

type of network defines a NP-complete problem [2], [3].

Hence, the idea of a preprocessing, a “compilation” of the

original problem by its translation into a form that allows

an efficient treatment of the queries. It is an emerging idea

in different areas of IA, like constraint-based reasoning [4],

[5], product configuration [6], planning under uncertainty [7]

or automated reasoning [8]. Technically, this compilation is

performed offline, before the online query phase: this relaxes

the constraints on its temporal complexity1.

This idea has already been proposed for temporal problems

with the introduction of Difference Decision Diagrams (DDDs)

[1]. The purpose of the present paper is to draw a complexity

study of DDDs, TCSPs, STPs and DTPs that enables the com-

parison of the different languages in terms of expressiveness,

succinctness and ability to address in polynomial time some

queries and transformations, e.g. the consistency checking

query or the conditioning transformation (that corresponds to

the assignment of one (interval) of value(s) to some difference

x− y); in other term, to draw a compilation map in the sense

of [9].

After introducing in the next Section the definitions and

notations that we need, we present in Section 3 the formalisms

studied in this work: TCSP, STP, DTP and DDD. Then, Section

4 and 5 present our results, namely a first compilation map

for these languages: the former is devoted to the relative

succinctness and expressivity of these languages, while the

latter studies their ability to address the requests of interest in

polytime.

II. PRELIMINARIES

Let χ = {x1, ..., xn} be a finite set of variables. Let Dxi
be

the domain of variable xi, with i = 1..n. For any subset X ⊆
χ, −→x is an assignment of the variables in X . val(xi,

−→x) is the

value assigned to xi ∈ X by −→x . DX is the cartesian product

of the domains of the variables of X . The concatenation of

1But obviously the compiled form may have a spatial complexity exponen-
tial in the worst case.

two assignments −→x and −→y of two disjoint sets of variables

X and Y is an assignment of X
⋃

Y ; it is denoted −→x .−→y . For

any function f on χ and any assignment −→x of a subset of χ,

we denote by f
|−→x the restriction of f to −→x , i.e. f

|−→x (−→y) =

f(−→x .−→y).
Following [10], [11], a representation language L on a set

of variables χ is a tuple
〈

CL, V arL, f
L, sL

〉

where:

• CL is a set of data structures (also called “formulas” or

“L-representations”);

• V arL : CL → 2χ is a scope function associating each

L-representation the subset of X it depends on

• fL is an interpretation function associating each L-

representation α a mapping fL
α from the set of all

assignments over V arL(α) to ν (typically ν = {⊤,⊥},
i.e. fL

α (
−→x) is a boolean value);

• sL is a size function from CL to N that provides the size

of any L-representation.

In other words, a data structure α represents a function fL
α ;

data structures in the same language obey the same syntax,

and are interpreted using the same interpretation function fL.

For example, let χ be a set of boolean variables, CL defines

all the CNF on χ; each CNF α is interpreted according to the

principles of propositional logic and for any assignment −→x of

χ, fL
α (
−→x) is the truth value of α according to −→x .

A L-representation α and a L′-representation β are said to

be equivalent if for every −→x , fL
α (
−→x) = fL′

β (−→x), i.e. if they

represent the same function. A language L is “canonical” if

the same function can not be represented by two different L-

representations. For example, OBDD> is a canonical language,

while CNF is not. The property of canonicity is important in

a graph-based language like the one of decision diagrams,

for practical reasons: by a caching process, it allows to

merge equivalent sub-formulas (i.e. isomorphic sub-graphs)

and therefore to compact the data structure - to save space.

When the interpretation functions take their values in

{⊥,⊤} - typically, when considering constraint satisfaction

problems, clauses bases, etc - −→x is a solution (or model) of

α iff fL
α (
−→x) = ⊤; we denote by sol(α) the set of its solutions.

III. REPRESENTING TEMPORAL PROBLEMS

In the sequel, we focus on representation languages dedi-

cated to quantitative temporal problems. The set χ of variables

correspond to instants, events, milestones, etc, and therefore

domains are equal to R
+.

A. Constraint-based languages

1) The TCSP language: As a data structure, a temporal

constraint satisfaction problem is a directed acyclic graph α =
(Nα,Aα) whose nodes are bijectively labelled by variables of

χ (var(N) denotes the variable labeling node N) and arcs by

intervals in R. Interv((N,N ′)) denotes the set of (disjoint)

intervals labelling (N,N ′): (N,N ′) represents the temporal

constraint var(N ′)− var(N) ∈
⋃

I∈Interv((N,N ′)) I .

CTCSP is the set of graphs that can be built

over χ; varTCSP (α) is the set of labels of

nodes in the graph; sTCSP (α) = Card(Nα) +

Σ(N,N ′)∈Aα
Card(Interv((N,N ′))) measures the size

of the data structure by the number of intervals and

variables carried by the graph; finally, an assignment
−→x is a solution of TCSP α iff it satisfies all its

constraints. Formally, if for arc (N,N ′) in Aα,

val(var(N),−→x) − val(var(N ′),−→x) ∈
⋃

I∈Interv((N,N ′)) I

then fTCSP
α (−→x) = ⊤, and fTCSP

α (−→x) = ⊥ otherwise.

In the original model, the intervals carried by a TCSP

are closed intervals; in this paper open intervals are allowed

(which does not make the problems more difficult: determining

the consistency of such a TCSP remains an NP-complete

problem).

c)a) b)

Fig. 1. (a) a TCSP, (b) a DTP and (c) a STP. The STP (c) represents a
sequence of events compatible with (a) and (b).

2) The STP language: Simple temporal constraints satis-

faction problems (STP) are TCSP in which each edge carries

one interval only. The functions varSTP , sSTP and the inter-

pretation function fSTP are the same as those defined for the

TCSP language; the STP language is therefore a sublanguage

of the TCSP one, obtained by a restriction on the “syntax”.

The STP language is incomplete with respect to the TCSP

language: the set of solutions of TCSP with two nodes labeled

x and y and carrying constraint “x−y ∈ I∪J”, I and J being

two disjoint intervals, can not be represented by a single STP

on these two variables.
3) The DTP language: The framework of Disjunctive Tem-

poral Problems is a generalization of the STP one proposed

by [3]. As a data structure, a DTP is a set of clauses α =
{C1, . . . , Cm}. Each clause is a set of literals Ci = {l1, . . . lmj

}
and a literal lj is a tuple (x, y,., c) which represents the

constraint x− y . c where:

• x ∈ χ, y ∈ χ, x 6= y (var(lj) denotes the ordered pair

(x, y) of variables associated to literal lj);

• c is a constant (which will be denoted const(lj));
• . (which will be denoted op(lj)) belongs to {<,≤};
CDTP is the set of sets of clauses that can be built in this

way over χ; varDTP (α) is the set of variables associated

with the literals of α; sDTP (α) = ΣCi∈αCard(Ci) measures

the size of the data structure; finally, an assignment of −→x is a

solution of a DTP iff it satisfies all its clauses, which results

in the following interpretation function: fDTP
α (−→x) = ⊤ if −→x

satisfies at least one literal (on difference constraint) in each

clause of α and ⊥ otherwise. The set sol(α) of assignments
−→x such that fDTP

α (−→x) = ⊤ is the set of solutions of DTP in

the usual sense of the term.

B. Difference Decision Diagrams

Difference Decision Diagrams [1] constitute an attempt of

extending of Ordered Decision Diagram to temporal problems.

The idea is basically to label the nodes by difference con-

straints, rather than by propositional variables.

1) The DDD language: A DDD over χ is a directed acyclic

graph α = (Nα,Aα) with a single root, denoted root(α)
and two terminal nodes, labeled by ⊥ and ⊤ respectively-

see Figure 2 for an example.

Fig. 2. DDD ordered according to the order z ≻ y ≻ x; it represents the
solutions of the system of inequalities (x−y > 5)∨(x−y ≤ 3∧z−x < 1)

Each non-leaf node N has exactly two children, low(N) and

high(N), and is labeled by a constraint of the form xi−xj .

c, where:

• xi ∈ χ (denoted pos(N), the positive variable) and xj ∈
χ (denoted neg(N), the negative variable) are such that

i 6= j

• c is a constant (denoted const(N))
• . (which will be denoted op(N)) belongs to {<,≤}

... ...

Fig. 3. Illustration of basic notations for a non-leaf node v

[1] propose the following notations:

• high(v) (respectively low(v)) is the first child (respec-

tively the second child) of N ; this function selects the

constraints to be satisfied by an assignment −→x when the

label of N evaluates to true (respectively false).

• var(v) = (pos(v), neg(v))
• bound(v) = (const(v), op(v))
• cstr(v) = (var(v), bound(v))
• attr(v) = (cstr(v), high(v), low(v))

The size of a DDD is its number of arcs and nodes:

sDDD(α) = Card(Nα) + Card(Aα); varDDD(α) is obvi-

ously the set of variables involved in at least one node of α.

The interpretation function of α is defined as follows:

• For any node N and any assignment −→x (covering at least

the two variables that label the node), fnode
N (−→x) returns

the value ⊤ if −→x satisfies the constraint labelling N and

⊥ otherwise. Formally, iff:

(val(pos(N),−→x)− val(neg(N),−→x)) op(N) const(N).
• if α is a leaf, then fDDD

α (−→x) is equal to the value carried

by this node. So we either have fDDD
α (−→x) = ⊤ or

fDDD
α (−→x) = ⊥.

• otherwise the root N of α is a non-leaf node and

fDDD
α (−→x) = fDDD

high(N)(
−→x) if fDDD

N (−→x = ⊤ and

fDDD
α (−→x) = fDDD

low(N)(
−→x) otherwise.

A DDD is in locally reduced form if it does not have

isomorphic nodes, nonselective nodes nor stammering nodes

- see Figure 4. Formally, if any pair of non-leaf nodes u and

v satisfies the following properties:

1) (attr(u) = attr(v))⇒ u = v

2) low(u) 6= high(u)
3) (var(v) = var(low(v))) and bound(v) ≤

bound(low(v))⇒ (high(v) 6= high(low(v)))

Fig. 4. An example of applications of the three rules for obtaining a locally
reduced DDD . Top to down: isomorphic nodes are merged; then stammering
nodes are merged; finally a non-selective node is removed.

It is always possible to transform a DDD representation into

an equivalent locally reduced representation in polynomial

time (the fusion of isomorphic nodes can in particular be

performed implicitly using a “unique table”). This property

remaining satisfied for any kind of DDD, it is assumed in the

following that the DDD considered are locally reduced.

2) Ordered Difference Decision Diagrams: In the DDD

framework like in the BDD framework, it can be required

that the diagrams respect an order that determines how the

variables are met along the paths of the graph; Let ≻ be a

total order on χ; ≻ extends to pairs of variables (and thus to

nodes) by means of a lexicographic extension: (x, y) ≻ (x′, y′)
if y ≻ y′ or if y = y′ and x ≻ x′; to rank-order two nodes

bearing the same variables, it is required that the one who

carrying the more restrictive constraint is met first on the paths

(see Figure 2). Formally, α obeys ≻ if and only if for every

node N we have:

1) pos(N) ≻ neg(N)
2) var(high(N)) ≻ var(N)
3) var(low(N))) ≻ (var(N)∨

(var(N) = var(low(N)) ∧ bound(low(N)) ≻
bound(N))

Let us denote DDD≻ the language defined by the DDD

representations on χ that are ordered by ≻.

3) Path-reduced and Tight Difference Decision Diagrams:

[1] then proposes several restrictions on DDD thus several sub

languages eg, P-DDD, the language of path-feasible DDDs and

PT-DDD, that of path-feasible and minimal DDDs.

A path p in a DDD represents a set [p] of constraints: for

any pair of consecutive nodes N and N ′ of p, [p] contains a

constraint cons(N,N ′) of the form x − y ≤ c or x − y < c

if N ′ = high(N), or a constraint of the form x − y > c or

x − y ≥ c if N ′ = low(N). A path is feasible (consistent)

if and only if there is an assignment −→x over χ which

satisfies all the constraints of [p]. A DDD α is said to be

path-feasible if each of its paths is feasible. [1] shows that

any DDD representation can be transformed into an equivalent

and path-feasible one, but the procedure proposed in this

seminal paper is exponential in the worst case (assuming that

P 6= NP), as shown in the following Section. We denote

P-DDD the language of path feasible DDDs, and P-DDD≻ its

ordered variant.

Fig. 5. A non path-feasible DDD (left) and a path-feasible version (right) of
this latter

The P-DDD language allows only one possible representa-

tion for tautologies (the node ⊤) and only one representation

for unsatisfiability (the node ⊥) - [1] calls this property “semi

canonicity”. However, the usual property of canonicity does

not hold, neither for path-feasible DDD, nor for path-feasible

ordered DDDs (P-DDD≻): consider the order z > y > x,

the set of solutions of the system of equalities {x − y =
0, y−z = 0, x−z = 0} can be represented by four different

(but equivalent) path-feasible DDD which carry respectively

the constraints sets {x − y = 0, y − z = 0, x − z = 0},
{x − y = 0, y − z = 0}, {x − y = 0, x − z = 0},
{y − z = 0, x− z = 0}.

[1] then propose to make the constraints of the diagram

as restrictive as possible, in a sense close to the notion of

minimality proposed in the TCSP framework. To this extend

they introduce the concept of dominant constraint: xi−xj . c

is a dominant constraint in a path p (and more broadly in a set

of constraints, such as [p]) if and only if any other constraints

(xi−xj .
′ c′) bearing on the same variables is less restrictive

(i.e. (c,.) < (c′,.′)). The idea is to require that such

dominant constraints are as restrictive as possible, without

changing the set of solutions: a constraint β = xi − xj . c

is tight in a path p = p1 ∧ β ∧ p2 if there is no constraint

β′ = xi − xj .′ c′ such that (c′,.′) < (c,.) and that

[p1]∪{β
′}∪[p2] ≡ [p]. Hence, a path is tight iff all its dominant

constraints are tight and a P-DDD is tight if and only if all the

paths that compose it are tight. We call PT-DDD the language

of tight and path-feasible DDDs, and PT-DDD≻ its ordered

variant.

Fig. 6. A non tight DDD (left) and a tight version (right) of this latter

IV. A COMPILATION MAP

We have described in the previous Section a number of

languages devoted to the representation temporal problems

with numeric variables. The objective of the preliminary

compilation map presented in this paper is to define their

respective merits in terms of efficiency with respect to a

number of tasks, be they queries (e.g. ”does the problem have

a solution ?”) or transformations (e.g. ”make the conjunction

of two representations representing the constraints of the

planner for the former, the objectives of the customer for

the latter”). The question is also to evaluate the respective

representational capacity of the languages in terms of

expressiveness and of succinctness.

A. Expressiveness, polynomial translation and succinctness

The languages TCSP, STP, DTP and DDD (and sub lan-

guages) defined on a given χ do not have the same power of

representation; e.g. a TCSP representing the solutions of the

constraint (x− y ≤ 0) ∨ (x− y ≥ 1) can not be transformed

into an equivalent STP. In a compilation map, this capability

is captured by the notion of expressiveness.

Formally, considering two languages L and L′ defined on

the same variables (on χ) targeting the same output set (in

our context, {⊥,⊤}), we say that L can be compiled into L′

(that L′ is at least as expressive as L), and denote L′ �e L,

iff for any L representation α there is a L′-representation β

such that α ≡ β; we write L′ ≺e L when the compilation is

possible from L to L′ only and L ∼e L
′ when possible in both

directions. L′ is said to be as least as succinct as L iff for any L

representation α there is an equivalent L′-representation β the

size of which is polynomial with respect to the one of α; this

is denoted L′ �s L. If this compilation can be performed in

polytime, i.e. if there exists a polynomial algorithm which, for

any L-representation α computes a L′-representation β such

that α ≡ β, we write L′ �p L. L ≺≻e L′ (resp. L ≺≻s L′)

means that L and L′ are incomparable in terms of expressivity

(resp. succinctness).

Any STP representation can trivially be transformed into

an equivalent DTP representation the clauses of which are

singletons; this STP is also a TCSP with unary constraints

only; moreover, it is clear that any STP representation can be

transformed in linear time into an equivalent DDD representa-

tion (or ordered DDD, or P-DDD or PT-DDD representation);

however, we have seen that STP is less expressive than the

other three languages - i.e. TCSP ≺e STP, PT-DDD≻ ≺e STP

and DTP ≺e STP etc; and TCSP ≺p STP, PT-DDD≻ ≺p STP

and DTP ≺p STP. Similarly, the TCSP language is incomplete

with respect to the DTP language: the set of solutions of

the DTP with three variables x, y and z and one constraint

(x− y ≤ 0)∨ (z − x ≤ 0) can not be represented by a TCSP

on these three variables. It is possible to encode a DTP as a

TCSP, but this requires the addition of a (linear) number of

variables [12].

Our results in terms of succinctness are based on the

following Propositions:

Proposition 1: Let ≻ be a total order over χ. Any TCSP

representation on χ can be translated, in polynomial time and

space, into an equivalent DTP representation on χ.

Indeed, consider an arc of a TCSP between a variable y

and a variable x carrying the set of intervals: {I1, ..., Im} =
{[a1, b1], ..., [am, bm]}; it represents the binary constraint

Txy = (a1 ≤ x− y ≤ b1)∨ ...∨ (am ≤ x− y ≤ bm). We can

assume without loss of generality that intervals are pairwise

disjoints: ∀i ∈ {1..m−1}, bi < ai+1. In order to encode Txy in

the DTP formalism, we first add two constraints y−x ≤ −a1
and x−y ≤ bm in order to prevent the assignment of x−y to be

lower than I1 or greater Im. Then for each i ∈ {1..m−1}, we

add the disjunctive constraint (x−y ≤ bi)∨ (y−x ≤ −ai+1);
this prevents the assignments of x− y to be between the end

of Ii and the beginning of Ii+1. Hence, in the DTP, x − y

is required to belong exactly to the set of intervals defining

constraint Txy in the TCSP (see Figure 7 for an example).

Fig. 7. Compilation of TCSP as a DTP representation

Proposition 2: Let ≻ be a total order over χ. It holds that:

(i) Any TCSP representation on χ can be translated, in

polynomial space and time, into an equivalent DDD≻

representation.

(ii) Any DTP representation on χ can be translated, in poly-

nomial space and time, into an equivalent DDD represen-

tation on χ.

(iii) Any DDD representation on χ can be translated, in

polynomial space and time, into an equivalent DTP

representation on χ.

The principle of the proofs are the following:

(i) Consider a TCSP and any of its constraints Txy = (a1 ≤
x−y ≤ b1)∨...∨(am ≤ x−y ≤ bm) (for instance the one

of Figure 8). Each elementary pair of inequations ai ≤
x− y ≤ bi can be directly compiled into a small DDD≻.

Let γ be the one corresponding to the first disjunct; we

iteratively add the next one, say, β as follows: all the

arcs of γ pointing to the leaf ⊥ point now to root(β);
the ⊤ sinks of γ and β are merged.We thus get a DDD≻
for each constraint. The conjunction of these diagrams is

performed as follows: let γ be the one corresponding to

the first of them; we iteratively add the next one, say, β

by redirecting all the arcs of γ pointing to the leaf ⊤ to

root(β); the ⊥ sinks of γ and β are merged. We thus

get in polynomial time a DDD≻ equivalent to the original

TCSP. If the constraints are considered in accordance to

the order ≻ on the variables / constraints, the resulting

structure is an instance of DDD≻. Then, the diagram will

be transformed into a path-feasible one, or a tight one, but

these operations are not necessarily polynomial neither in

time nor in space.

(ii) Similarly, a DTP is a conjunction of disjunctions of

literals of the form x − y ≃ a; each literal can be

directly transcribed into a small DDD. Binary operations

∧ and ∨ between these DDD are applied as for the

TCSP compilation in the previous proof. This DDD is

not necessarily ordered.

(iii) To prove this point, simply enumerate the paths of the

DDD from the ⊤ node to the root; we obtain a disjunction

of conjunctions, which may be (by distributivity) trans-

formed into a conjunction of disjunctions.

Fig. 8. Compilation of an inconsistent TCSP as a DDD≻ representation

Proposition 3: Let ≻ be a total order over χ. There

are PT-DDD≻ representations which have no equivalent

DTP representation of polynomial size and there are DTP

representations that have no equivalent P-DDD representation

of polynomial size, nor any equivalent DDD≻ representation

of polynomial size.

The incomparability in terms of succinctness of DTP and

DDD≻ come from the fact that one can always convert a CNF

into a DTP and an OBDD≻ into a PT-DDD≻: just consider

for any propositional variable p, the pair of variables xp, yp;

the positive literal p leads to the constraint xp − yp ≥ 1 and

the negative literal ¬p to the constraint xp − yp ≤ 0. The

incomparability of DTP and PT-DDD≻ then derives from the

one of CNF and OBDD≻. The proof of the incomparability

of DTP and P-DDD is similar: we can always transform a

CNF into a DTP and a FBDD into a PT-DDD (using the same

encoding of literal by difference constraints) while CNF and

FBDD are incomparable in terms of succinctness.

Proposition 4: Let ≻ be a total order over χ.

(i) Any P-DDD representation on χ can be translated into

an equivalent DDD≻, but there are P-DDD representations

that have no equivalent DDD≻ representation of polyno-

mial size.

(ii) Any DDD representation on χ can be translated into an

equivalent P-DDD representation on χ, but under the

assumption P 6= NP , this compilation can not be done

in polynomial time.

The proof first item relies on the fact that any FBDD can

be transformed into a P-DDD: to each variable p of the

FBDD correspond two variables xp and yp; nodes labeled

by p in FBDD are labeled by xp − yp ≥ 0: we obtain a

P-DDD; if it were possible to transform this P-DDD into

a DDD≻ of polysize, we could recover an OBDD; but there

are FBDD representations which have no equivalent OBDD

representations of polynomial size.

For proving the second item, recall that [1] propose algo-

rithms to transform a DDD (resp. P-DDD) into an equivalent

P-DDD (resp a PT-DDD). The non polynomiality of these

algorithms (assuming that P 6= NP) is trivial since any TCSP

can be transformed into an equivalent DDD in polynomial

time, while (i) the test of consistency is NP-complete for the

TCSP language and (ii) it is an easy problem for P-DDD and

sublanguages.

These propositions yield the following results about the

relative expressiveness and succinctness of the temporal

languages (summarized in Tables I, II and III):

Theorem 1 (Expressiveness):

• DDD ∼e DTP ≺e TCSP ≺e STP

• DDD ∼e DDD≻ ∼e P-DDD≻ ∼e PT-DDD≻ ∼e DDD≻

∼e P-DDD ∼e PT-DDD

We can now compare the succinctness of equally expressive

languages:

Theorem 2 (Succinctness):

• For all L ∈ {DDD≻,P-DDD≻,PT-DDD≻,P-DDD,
PT-DDD}, L ≺≻s DTP

• DDD ≺s P-DDD ≺s P-DDD≻,

• DDD ≺s PT-DDD ≺s PT-DDD≻

B. Compilation map: queries and transformations

A direct consequence of the previous results is that consis-

tency cannot be checked in polytime for DDD nor for DDD≻,

assuming P 6= NP . Indeed, if it were the case, it could be

possible to test the consistency of a TCSP representation α by

compiling it as a DDD α′ (which is polytime) then to test the

consistency of α′ in polynomial time.

ր STP TCSP DTP

STP X X X
TCSP ! X X
DTP ! ! X
DDD ! ! •
DDD≻ ! ! •
P-DDD ! ! •
P-DDD≻ ! ! •
PT-DDD ! ! •
PT-DDD≻ ! ! •

TABLE I
EXPRESSIVITY AND SUCCINCTNESS OF STP, TCSP AND DTP. XMEANS

“COMPILATION IN POLYNOMIAL TIME”, • MEANS “NO POLYNOMIAL

COMPILATION ALGORITHM” (NOT ALL REPRESENTATIONS IN THE SOURCE

LANGUAGE ARE REPRESENTABLE IN POLYSIZE IN THE TARGET

LANGUAGE); ! MEANS “THE COMPILATION IS NOT ALWAYS FEASIBLE”
(INCOMPLETE TARGET LANGUAGE)

.

ր DDD P-DDD PT-DDD

STP X X X
TCSP X ◦ ◦
DTP X ◦ ◦
DDD X ◦ ◦
DDD≻ X ◦ ◦
P-DDD X X ?

P-DDD≻ X X ?

PT-DDD X X X
PT-DDD≻ X X X

TABLE II
EXPRESSIVITY AND SUCCINCTNESS OF NON ORDERED DIFFERENCE

DECISION DIAGRAMS. XMEANS “COMPILATION IN POLYNOMIAL TIME”, ◦
MEANS “NO POLYNOMIAL COMPILATION ALGORITHM UNLESS P = NP”; ?

MEANS “DON’T KNOW”

.

ր DDD≻ P-DDD≻ PT-DDD≻

STP X X X
TCSP X ◦ ◦
DTP • • •
DDD • • •
DDD≻ X ◦ ◦
P-DDD • • •
P-DDD≻ X X ?

PT-DDD • • •
PT-DDD≻ X X X

TABLE III
EXPRESSIVITY AND SUCCINCTNESS OF ORDERED DIFFERENCE DECISION

DIAGRAMS. XMEANS “COMPILATION IN POLYNOMIAL TIME”, ◦ MEANS

“NO POLYNOMIAL COMPILATION ALGORITHM UNLESS P = NP”, • MEANS

“NO POLYNOMIAL COMPILATION ALGORITHM”;? MEANS “DON’T KNOW”

.

The DDD and DDD≻ languages are actually comparable

to BDD (which do not guarantee consistency checking in

polynomial time) and not to FBDD nor to OBDD. The class that

could be close to the FBDD one is the class path-feasible DDD

(where all paths are feasible) and the one that could correspond

to ordered boolean decision diagram is P-DDD≻.

Beyond the query of consistency, we describe in this Section

a number of requests, and we analyze the ability of the studied

languages to address them efficiently.

1) Definitions: Let us first recall some basic queries of

transformation that are worthwhile studying for temporal ap-

plication (typically, for planning problems):

• CO:, L satisfies consistency if and only if there exists

a polytime algorithm that maps any L-representation α

to 1 if it has a solution (if ∃−→x , fL
α (
−→x) = ⊤) and to 0

otherwise.

• EQ: L satisfies equivalence if and only if there ex-

ists a polytime algorithm that maps every pair of L-

representations 〈α, β〉 to 1 if fL
α = fL

β and to 0 otherwise.

• MX: L satisfies model extraction if and only if there

exists a polytime algorithm that maps L-representation α

to an assignment −→x such that fL
α (
−→x) = ⊤ if any and

stops without returning anything otherwise.

• CE: L satisfies clausal entailment if there exists a poly-

time algorithm that maps any L-representation α and any

temporal clause β to 1 if sol(α) ⊆ sol(β), and to 0
otherwise.

And for transformations:

• CD: L satisfies conditioning if and only if there is a

polytime algorithm that maps any L-representation α,

any pair of variables (x, y) ⊆ χ and any w ∈ R to a

L-representation of
∨

u,v s.t u−v=w fL
α|x←u.y←v

.

• ∧BC: L satisfies bounded conjunction if and only if there

exists a polytime algorithm that maps any pair of L-

representations α and β to a L-representation of fL
α ∧f

L
β

• ∧C: L satisfies conjunction if and only if there exists

a polytime algorithm that maps any set {α1, ..., αn} of

L-representations to a L-representation of ∧ni=1f
L
αi

• ∨BC: L satisfies bounded disjunction if and only if there

exists a polytime algorithm that maps any pair of L-

representations α and β to a L-representation of fL
α ∨f

L
β

• ∨C: L satisfies disjunction if and only if there exists a

polytime algorithm that maps any set {α1, ..., αn} of L-

representations to a L-representation of ∨ni=1f
L
αi

Many planners use DTP or TCSP solvers to schedule events

in time. The task of the planner is then to build the plan

by selecting actions, and the handling of time is left to the

temporal solver. Consistency checking (CO) is used to know

if selected actions can lead to an admissible plan, and model

extraction (MX) to order actions and/or fix their start date. A

set of admissible plans (all composed by the same actions,

but possibly different in their scheduling) is memorized; At

execution, when a temporal contingent event occurs that breaks

the plan chosen (for example, because the user learns that

an action has begun), a replanning phase is entered, that

conditions the set of plans according to the new information,

i.e. performs a CD transformation and then extracts a new

(temporally consistent) plan - again, a MX request.

It is worthwhile noticing that the definition of conditioning

we propose does not correspond to the usual one, which

assigns a given value to one single variable, because the

classical definition of “conditioning” would be of no use in the

current context: it would lead to formula that are beyond the

language. E.g. the conditioning of the STP x1−x2 ∈ [3, 8] by

x1 ← 4 can not be represented by a STP over χ = {x1, x2} (or

by any of the languages described in this article). In general, in

temporal reasoning, there is a distinguished variable, say x0,

which represents the beginning of time - in our example, we

would have χ = {x0, x1, x2}; assigning a value to an instant

xi yields assigning a value to the difference xi − x0 (in our

example, we would choose x1 − x0 ← 4).

Other requests (typically, ∧- and ∨- based transformations,

and the EQ query on which the caching mechanism rely)

are crucial when building a compiled form in a bottom up

approach.

2) Results: As to queries, we have obtained the following

results:

Theorem 3: The results of Table IV hold.

CO EQ MX CE

STP X X X X
TCSP ◦ ◦ ◦ ◦
DTP ◦ ◦ ◦ ◦
DDD ◦ ◦ ◦ ◦
DDD≻ ◦ ◦ ◦ ◦
P-DDD X ◦ X ?

P-DDD≻ X ◦ X ?

PT-DDD X ◦ X ?

PT-DDD≻ X (? ◦) ? ?

TABLE IV
MAP OF QUERIES. XMEANS “SATISFIES IN POLYNOMIAL TIME”, ◦: “DO

NOT SATISFY IN POLYNOMIAL TIME, UNLESS P = NP”, •: “DO NOT

SATISFY”, ?: “DON’T KNOW”; (?) DENOTES A CONJECTURE

Let us briefly sketch the proofs of these results:

• CO: easy on STP and hard on TCSP [2]; hard on DTP

[3]; hard on DDD≻ and thus on DDD because any TCSP

can be transformed in polytime into an equivalent DDD≻;

easy on P-DDD and subclasses by definition.

• EQ: easy on STP (compute the distance matrices and

compare them: they must be equal); hard on TCSP and

DTP, DDD and DDD≻: if EQ were satisfied, it would pro-

vide a way to satisfy CO (by testing the equivalence be-

tween the formula and the unsatisfiable one, represented

by the sink labeled by ⊥) - and we have seen that the

languages do not satisfy CO; hard on P-DDD since every

FBDD can be encoded as a P-DDD and EQ is hard on

FBDD. We conjecture hardness on PT-DDD≻ because it is

not a canonical language (x−y = 3, y−z = 4, x−z = 7
may be represented by several PT-DDD≻).

• MX: easy on STP (by computing the distance matrix);

hard on the TCSP and DTP, DDD and DDD≻ languages

since they do not satisfy CO; easy on P-DDD and sub-

languages (P-DDD, P-DDD≻, PT-DDD, PT-DDD≻): it is

enough to choose the path from the ⊤ sink to the root -

because the paths are feasible, we get a consistent STP

the solutions of which are solutions on the DDD.

• CE: easy on STP, by computing the corresponding dis-

tance matrix and applying a Floyd-Warshall pass on it

before testing the literals of the clause iteratively until

getting a one that is a consequence of the STP; hard on

TCSP and DTP, DDD and DDD≻ languages since they

do not satisfy CO. We conjecture that it is also hard on

PT-DDD≻ and on its superclasses.

As to transformations, we obtained:

Theorem 4: The results of Table V hold.

CD ∧BC ∧C ∨BC ∨C

STP X X X ! !

TCSP X X X ! !

DTP X X X X •
DDD X X X ? ?

DDD≻ X ? • ? •
P-DDD • • • ◦ •
P-DDD≻ • • • ? •
PT-DDD • • • ◦ •
PT-DDD≻ • • • ? •

TABLE V
MAP OF TRANSFORMATIONS. X: “SATISFIES IN POLYNOMIAL TIME”, ◦:
“DOES NOT SATISFY IN POLYNOMIAL TIME, UNLESS P = NP”, •: “DOES

NOT SATISFY”, !: “THE TRANSFORMATION IS NOT ALWAYS FEASIBLE”; ?:
“DON’T KNOW”

The surprising result is that conditioning is hard on the

DDD languages; to show that, consider a P-DDD on χ =
{x, z1, . . . , zn, y} representing the constraint set {x − z1 ∈
[1, 1] ∪ [0, 0], z1 − z2 ∈ [1, 1] ∪ [0, 0], . . . , zn − zn−1 ∈
[1, 1]∪ [0, 0], y−zn[1, 1]∪ [0, 0]} and whose nodes are labeled

x−z1, z1−z2, zn−1−zn, y−zn. This diagram is path-feasible

and tight. It implies that x−y ∈ [0, n]. If it is now conditioned

by x − y = [n2 ,
n
2], the size of the representation of the

corresponding function by a P-DDD explodes (it is not enough

to add x−y ∈ [n2 ,
n
2] at the end). The operation of conditioning

is exponential for P-DDD and all its sub languages.

The other proofs are easy:

• The satisfaction of CD, ∧BC and ∧C is immediate on

STP, TCSP, DTP.

• DTP satisfies ∨BC because disjunction is distributive

on conjunction. Finally, we get a • regarding ∨C on

DTP because any CNF of propositional logic can be

encoded by a DTP whose “literals” are of the form

xp − yp ∈]−∞,−1] ∪ [1,+∞[(each p corresponding

to a propositional variable of the original CNF) and ∨C

is not satisfied on CNF language.

• the hardness of ∧BC (and therefore of ∧C) on P-DDD

and sublanguages results from hardness of conditioning

on these languages.

• the hardness of ∨BC (and therefore of ∨C) on P-DDD

and PT-DDD results from the correspondence between

these languages and FBDD, and on the hardness of ∨BC

on FBDD.

• the hardness of ∧C on P-DDD and sub-languages results

from the correspondence between these languages and

OBDD / FBDD for which unbounded conjunction is expo-

nential in space in the worst case.

The situation is thus not so good for the DDD languages: as

soon as CO is required, almost all transformations are hard;

even worst: conditioning, which is the basic transformation for

planification as for many other applications, may lead to an

exponential explosion.

V. CONCLUSION

In this article we presented preliminary results for the

building of a compilation map of temporal problems. We

looked at the efficiency of several representation languages,

namely TCSP, DTP and different types of decision diagrams -

ordered DDDs, path-feasible DDDs and path-feasible and tight

DDDs.

It appears that, from a theoretical point of view at least,

basic ordered difference decision diagram are disappointing:

they do not satisfy any of the considered requests. And this

despite the fact than an order on the variables is required: in

the DDD framework, this assumption does not provide any

good property, contrarily to what happens in the classical

decision diagram one. The language of path-feasible DDD (and

its sub languages) is more interesting from the perspective

of queries. Unsurprisingly, compiling a temporal constraints

satisfaction problem (a TCSP or a DTP instance) as a path-

feasible decision diagram is hard, and the compiled form can

be exponentially more space-consuming than the original one.

The bad news is that even the most basic transformation,

namely conditioning, is not satisfied by any kind of path-

feasible DDD.

These conclusions are rather pessimistic regarding the for-

malism proposed in [1] when compared to the classical,

non compiled, ones. This does not mean that efficient target

languages do not exist for temporal problems; sets of “convex”

Horn-type constraints seem for instance worthwhile studying.

The compilation of temporal problems simply remains an open

question.

REFERENCES

[1] J. B. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard, “Differ-
ence decision diagrams,” in Proceedings of the 8th Annual Conference

of the EACSL, 1999, pp. 111–125.
[2] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”

Artificial Intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.
[3] K. Stergiou and M. Koubarakis, “Backtracking algorithms for disjunc-

tions of temporal constraints,” Artificial Intelligence, vol. 120, no. 1, pp.
81–117, 2000.

[4] N. R. Vempaty, “Solving constraint satisfaction problems using finite
state automata,” in AAAI’1992, 1992, pp. 453–458.

[5] R. Weigel and B. Faltings, “Compiling constraint satisfaction problems,”
Artificial Intelligence, vol. 115, no. 2, pp. 257–287, 1999.

[6] J. Amilhastre, H. Fargier, and P. Marquis, “Consistency restoration and
explanations in dynamic csps application to configuration,” Artificial

Intelligence, vol. 135, no. 1-2, pp. 199–234, 2002.
[7] J. Hoey, R. St-Aubin, A. J. Hu, and C. Boutilier, “SPUDD: stochastic

planning using decision diagrams,” in UAI ’99, 1999, pp. 279–288.
[8] M. Cadoli and F. M. Donini, “A survey on knowledge compilation,” AI

Communications, vol. 10, no. 3-4, pp. 137–150, 1997.
[9] A. Darwiche and P. Marquis, “A knowledge compilation map,” JAIR,

vol. 17, pp. 229–264, 2002.
[10] G. Gogic, H. Kautz, and C. P. F, “The comparative linguistics of

knowledge representation,” in IJCAI’95, 1995, pp. 862–869.
[11] H. Fargier, P. Marquis, A. Niveau, and N. Schmidt, “A knowledge

compilation map for ordered real-valued decision diagrams,” in AAAI’14,
2014, pp. 1049–1055.

[12] L. R. Planken, “Temporal reasoning problems and algorithms for solving
them (literature survey),” Master’s thesis, Delft University of Technol-
ogy, October 2007.

