
HAL Id: hal-01303816
https://hal.science/hal-01303816v1

Submitted on 18 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling CSPs: A Complexity Map of
(Non-Deterministic) Multivalued Decision Diagrams

Jerome Amilhastre, Hélène Fargier, Alexandre Niveau, Cédric Pralet

To cite this version:
Jerome Amilhastre, Hélène Fargier, Alexandre Niveau, Cédric Pralet. Compiling CSPs: A Complex-
ity Map of (Non-Deterministic) Multivalued Decision Diagrams. International Journal on Artificial
Intelligence Tools, 2014, 23 (4), pp.1460015. �10.1142/S021821301460015X�. �hal-01303816�

https://hal.science/hal-01303816v1
https://hal.archives-ouvertes.fr

To link to this article : DOI : 10.1142/S021821301460015X
URL : http://dx.doi.org/10.1142/S021821301460015X

To cite this version : Amilhastre, Jerome and Fargier, Helene and
Niveau, Alexandre and Pralet, Cedric Compiling CSPs: A Complexity
Map of (Non-Deterministic) Multivalued Decision Diagrams. (2014)
International Journal on Artificial Intelligence Tools, Vol. 23 (n° 4).
ISSN 0218-2130

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15480

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

COMPILING CSPs: A COMPLEXITY MAP OF

(NON-DETERMINISTIC) MULTIVALUED DECISION DIAGRAMS∗

JÉRÔME AMILHASTRE HÉLÈNE FARGIER
Cameleon Software, 185 rue Galilée

F-31670 Labège, France
jamilhastre@cameleon-software.com

IRIT–CNRS, Université Paul Sabatier

F-31062 Toulouse Cedex 9, France
fargier@irit.fr

ALEXANDRE NIVEAU† CÉDRIC PRALET
CRIL–CNRS, Université d’Artois

F-62307 Lens Cedex, France

niveau@cril.fr

ONERA—The French Aerospace Lab

F-31055, Toulouse, France

cpralet@onera.fr

Constraint Satisfaction Problems (CSPs) offer a powerful framework for representing a

great variety of problems. The difficulty is that most of the requests associated with CSPs

are NP-hard. When these requests have to be addressed online, Multivalued Decision

Diagrams (MDDs) have been proposed as a way to compile CSPs.

In the present paper, we draw a compilation map of MDDs, in the spirit of the NNF

compilation map, analyzing MDDs according to their succinctness and to their tractable

transformations and queries. Deterministic ordered MDDs are a generalization of ordered

binary decision diagrams to non-Boolean domains: unsurprisingly, they have similar ca-
pabilities. More interestingly, our study puts forward the interest of non-deterministic

ordered MDDs: when restricted to Boolean domains, they capture OBDDs and DNFs

as proper subsets and have performances close to those of DNNFs. The comparison to

classical, deterministic MDDs shows that relaxing the determinism requirement leads to

an increase in succinctness and allows more transformations to be satisfied in polynomial
time (typically, the disjunctive ones). Experiments on random problems confirm the gain

in succinctness.

Keywords: Knowledge Compilation; CSP; MDD.

1. Introduction

The powerful framework of Constraint Satisfaction Problems (CSPs) allows the rep-

resentation a great variety of problems. Different kinds of requests can be posted

∗This is a revised, detailed version of the eponymous paper published in the proceedings of the
24th International Conference on Tools with Artificial Intelligence (ICTAI 2012). Note that this

revision features a change in terminology, saving the name “MDD” for syntactically deterministic

structures, and introducing a dedicated name for non-deterministic ones.
†Corresponding author.

on a CSP, such as the classical extraction of a solution, but also enforcement of

global inverse consistency for the domains,1 dynamic addition of new constraints,

solutions counting, and even combinations of these requests. For instance, the inter-

active solving of a configuration problem amounts to a sequence of unary constraints

additions, while maintaining global inverse consistency.2,3

Most of these requests are NP-hard; however, they must sometimes be addressed

online. A possible way of solving this contradiction consists in representing the set

of solutions of the CSP as a Multivalued Decision Diagram (MDD),4,5,6 that is,

as a graph the nodes of which are labeled with variables and the edges of which

represent assignments of the variables. In such diagrams, each path from the root to

the sink represents a solution of the CSP. MDDs allow several operations, like those

previously cited, to be achieved in time polynomial in the size of the diagram. This

size can theoretically be exponentially higher than the size of the original CSPs,

but it remains low in many applications. Indeed, as they are graphs, MDDs can

take advantage of the (conditional) interchangeability of values, and save space by

merging identical subproblems. As a matter of fact, decision diagrams have been

used in various contexts, e.g., in product configuration,3 in recommender systems,7

or, in their original Boolean form, in planning8,9 and diagnosis10.

Up to our knowledge, these applications always consider (syntactically) deter-

ministic MDDs, that is, MDDs in which edges going out of a node have mutually

exclusive labels. However, this assumption is probably not compulsory for many

operations, notably the aforementioned ones. Non-deterministic structures could

thus be appealing, depending on what is lost and gained when assuming or relaxing

the determinism assumption. To evaluate the interest of this relaxation, we propose

to draw a compilation map of MDDs, in the spirit of the NNF knowledge compi-

lation map.11 Such a map provides a way to identify the most succinct language

supporting in polynomial time the operations needed for a given application. In this

purpose, we conducted a general complexity analysis on MDDs with respect to a

variety of requests, coming either from reasoning-oriented problems or from CSP

(decision-oriented) applications.

The next section presents the framework of multivalued variable diagrams

(MVDs), which correspond to “non-deterministic MDDs”; it includes several sub-

languages, yielded from the application of the decision and ordering properties.

In Section 3, we study the case of Boolean domains, in order to picture MDDs

and MVDs in the NNF knowledge compilation map: we show that, beyond ordered

MDDs, which somehow correspond to OBDDs, the language of non-deterministic

ordered MVDs is strictly more succinct than both OBDDs and DNFs. Section 4 is

devoted to the MVD knowledge compilation map, including a succinctness analysis

of the different languages of the family of MVDs, as well as a complexity analysis

of many queries and transformations. Section 5 then presents our first experimen-

tal results about the relative succinctness of deterministic and non-deterministic

MDDs. Last, all proofs are gathered in the appendix.

2. Compiling Constraint Satisfaction Problems

2.1. Constraint satisfaction problems

We consider variables with finite domains of values. For a variable x, Dom(x) denotes

the domain of x. For a set of variables X = {x1, . . . , xk}, Dom(X) denotes the set

of assignments of variables from X, or X-assignments, that is to say, Dom(X) =

Dom(x1)× · · ·×Dom(xk), and ~x denotes an X-assignment: ~x ∈ Dom(X). When X

and Y are disjoint sets of variables, ~x . ~y is the concatenation of ~x and ~y. Last, for

an X-assignment ~x and a set of variables Z, ~x|Z denotes the restriction of ~x to the

variables in Z, and ~x|xi
the value assigned to xi in ~x.

Definition 2.1 (Constraint satisfaction problem). A Constraint Satisfaction Prob-

lem (CSP) is an ordered pair P = 〈X,C〉, where X = {x1, . . . , xn} is a finite set of

finite-domain variables and C is a finite set of constraints. Each constraint c ∈ C

has an associated scope, denoted Scope(c) and included in X, and consists of a set

of Scope(c)-assignments: these are the assignments allowed by the constraint.

A solution of P is an X-assignment ~x compatible with every constraint in C,

that is, ∀c ∈ C, ~x|Scope(c) ∈ C. The set of solutions of P is denoted Sol(P).

In this paper, we study the compilation of the solution set of CSPs. To this

end, we consider a solution set as a Boolean function on the CSP’s variables X,

mapping each X-assignment ~x to ⊤ if ~x is a solution, and to ⊥ otherwise. We

will consider several target compilation languages representing Boolean functions

on finite-domain variables.

Definition 2.2 (Target compilation language). Let X be a finite set of finite-

domain variables; a target compilation language on X is a set LX of graph structures,

together with an interpretation function ILX , mapping each graph φ to a Boolean

function ILX (φ) : Dom(X) → {⊤,⊥}, called its interpretation, and a size function

‖·‖
LX

. A subset of a language LX is called a sublanguage of LX .

In the following, we omit the X subscript when there is no ambiguity. We denote

languages using a typewriter font, as usual in the knowledge compilation map.11

2.2. Multivalued variable diagrams

Languages used to compile CSPs have been given various names in the literature;

sometimes the same name has been used to denote slightly different languages,

yielding ambiguity. We will adopt an explicit terminology here, formally defining

one “root” language (that of “multivalued variable diagrams”), and retrieving sev-

eral sublanguages by the application of structural restrictions. We will discuss in

Section 2.3 the other names and forms of the languages we define.

Definition 2.3 (Multivalued variable diagram). A Multivalued Variable Diagram

(MVD) φ on a finite set of finite-domain variablesX (denoted Scope(φ)) is a directed

acyclic graph φ = 〈N , E〉 where N is a set of nodes containing at most one root and

at most one leaf (the sink, denoted Sink(φ)). Each non-sink node N ∈ N is labeled

with a variable Var(N) in X, and each edge going out of N is labeled with a value

in the domain of Var(N).

We denote by Out(N) (resp. In(N)) the set of outgoing (resp. incoming) edges

of N . An edge E ∈ E is often denoted by the triple 〈N,N ′, a〉 of its source node N ,

denoted Src(E), its destination node N ′, denoted Dest(E), and its associated value

a, denoted Lbl(E).

Multivalued diagrams constitute a generalization of well-known binary decision

diagrams,12 which represent Boolean functions of Boolean variables. In the same

fashion, multivalued diagrams represent Boolean functions of multivalued variables.

Definition 2.4 (Semantics of MVDs). An MVD φ on X represents a function I(φ)

from Dom(X) to {⊤,⊥}, called the interpretation of φ and defined as follows: for

every X-assignment ~x, I(φ)(~x) = ⊤ if and only if there exists a path p from the

root to the sink of φ such that for each edge E = 〈N,N ′, a〉 along p, ~x|Var(N) = a.

We say that ~x is a model of φ whenever I(φ)(~x) = ⊤; Mod(φ) denotes the set of

models of φ. Figure 1 shows examples of MVDs. To check whether an assignment

~x = 〈a1, . . . , an〉 ∈ Dom(X) belongs to Mod(φ), one only has to traverse the MDD

from the root to the sink and, at every node N labeled with variable xi, to follow

an edge labeled with ai, if there exists one; ~x is a model if and only if the sink is

reached.

We define the target compilation language of MVDs using this semantics, to-

gether with a size function taking domains into account, since some operations rely

on values that are not mentioned in the graph itself.

Definition 2.5 (The MVD language). The MVDX language is the set of all MVDs

on X, together with the interpretation function I of Definition 2.4, and the size

function associating every MVD φ with the sum of its number of edges and of the

cardinalities of all domains of variables from X.

Note that MVDs are non-deterministic, in the sense that edges going out of

a node are not necessarily disjoint: starting from the root, choosing a value for

each variable does not impose one to follow a single path. In other words, a given

assignment can correspond to several complete paths in the graph.

This is not the case in existing proposals referring to the compilation of

CSPs4,3,6: they use multivalued decision diagrams (MDDs), that are (syntactically)

deterministic. We define the MDD language as the restriction of MVD to syntactically

deterministic graphs; we call this restriction the decision property,13 refraining from

using “determinism” for the sake of consistency with the NNF knowledge compilation

map,11 in which determinism is a semantic property.

Definition 2.6 (Decision). A node N in an MVD is a decision node if and only

if values labeling edges going out of N are pairwise distinct. An MVD satisfies the

x3

x2

x2

x2

x1

x1

x1

x1

x1

x1

x3

x2

x2

x2

x1

x1

x1

x1x2

6=
x3

6=

1

2

3

1

2

3

1

2

3

1

2

3

2, 3

3

1, 3

2

1

1, 2

1, 2

1, 3

2, 3

1, 2

1, 3

2, 3

3

2

1

Fig. 1. The coloring problem on a star graph (3 variables, 3 colors), an OMVD and a OMDD
representing its set of solutions (both for x3 < x2 < x1).

decision property, and is called a multivalued decision diagram (MDD), if and only

if all its nodes are decision nodes. The language MDD is the sublanguage of MVD

containing all and only MVDs satisfying the decision property.

We also define another syntactic restriction, that of “ordering”, which is gener-

ally assumed in the literature about CSP compilation,4,3,6 but was only an option

in the original definition of MDDs.14

Definition 2.7 (Ordering). Let < be a strict total order over a set X of variables.

An MVD on X is said to be ordered with respect to < if and only if for every pair

of nodes 〈N,M〉 such that N an ancestor of M , Var(N) < Var(M) holds.

We call for short “ordered MVD (OMVD) on <”, an MVD that is ordered with

respect to <. Decision and ordering are the basis for several sublanguages of MVD.

Definition 2.8 (Family of OMVDs). We define the following languages:

• OMVD is the sublanguage of MVD containing all and only ordered MVDs;

• OMVD< is the sublanguage of OMVD containing all and only MVDs that are

ordered with respect to a given <;

• OMDD (resp. OMDD<) is the sublanguage of OMVD (resp. OMVD<). containing

all and only OMVDs that satisfy the decision property.

In other words, OMVD is the union of all OMVD< (for any <), and OMDD (resp.

OMDD<) is the intersection of OMVD (resp. OMVD<) with MDD. It obviously holds that

OMDD< ⊆ OMDD ⊆ MDD and that OMVD< ⊆ OMVD ⊆ MVD.

Similarly to binary decision diagrams, we suppose that MVDs are in reduced

form, that is, (i) isomorphic nodes (labeled with the same variable and pointing to

the same children with the same labels) have been merged, (ii) redundant nodes

(having a unique child and one edge per value in the variable’s domain) have been

skipped, and (iii) nodes with no parent (except for the root) or no successor (except

for the sink) have been removed. Assuming that MVDs are reduced is harmless,

because reduction can be done in time polynomial in the size of the diagram.

Proposition 2.9 (Reduction). Let L be one of the languages we defined. There

exists a polynomial algorithm that transforms any φ in L into a reduced φ′ in L such

that I(φ′) = I(φ) and ‖φ′‖ ≤ ‖φ‖.

2.3. Related languages

The MVD framework covers several languages that have been used to compile CSPs;

we discuss them in this section and show how they can come down as MVDs.

2.3.1. Finite-state automata

Up to our knowledge, the first paper about CSP compilation is due to Vempaty,4

who used deterministic finite-state automata (DFAs) from computability the-

ory. The idea is to represent X-assignments as words over an alphabet ΣX =
⋃

x∈X Dom(x); for example, the word abc corresponds to the {x, y, z}-assignment

in which x = a, y = b, and z = c (considering the variable order x < y < z). The

solution set of any CSP then corresponds to a set of words, i.e., to a finite formal

language; any finite formal language being regular, this solution set can thus be

represented by a deterministic finite-state automaton accepting this language.

Remark that the usual notion of DFA is more general than the one used in

CSP compilation. For instance, all paths in a DFA representing a CSP must have

the same (finite) length; it is obviously not the case for general DFAs, which can

recognize even infinite languages. In the context of CSP compilation,4,3,15 the use

of the term “DFA” is metonymic.

These structures are very close to ordered multivalued decision diagrams. Except

for the differences in terminology, the main distinction, as shown by Hadzic et al.,15

is the fact that a path in an OMDD needs not mention all the CSP variables in the

scope, whereas automata cannot “skip” a variable, since it would change the formal

language they accept. However, this restriction is harmless: in an OMDD φ, the

number of “skipped” edges is bounded by e× d× |X| edges, where e is the number

of edges and d the cardinal of the largest domain (at worst, we have to add |X|

nodes with d edges for each edge already in the graph). This number being bounded

by ‖φ‖3, adding all “skipped” edges in φ makes it only polynomially larger.

Deterministic finite-state automata thus correspond to OMDD; similarly, using

non-deterministic finite-state automata (NFAs) to compile CSPs would correspond

to using OMVD. Finally, note that by using a different kind of alphabet (such as

Σ′
X = {〈x, a〉 : x ∈ X, a ∈ Dom(x)}), it is possible to cast non-ordered MDDs and

MVDs as specific DFAs and NFAs, respectively.

2.3.2. MDDs with two leaves

In their original definition,14 MDDs are not necessarily ordered, and can have several

leaves (to represent functions with several output values). However, in the literature,

it is often assumed that MDDs are ordered and that they have exactly two leaves,

in the manner of BDDs—a ⊤-leaf, indicating assignments that are models of the

function represented, and a ⊥-leaf, indicating countermodels.

Yet, since two-leaf MDDs are syntactically deterministic, each assignment cor-

responds to exactly one complete path from the root to a leaf; such a path leads

either to the ⊤-leaf or to the ⊥-leaf. Consequently, the ⊤-leaf plays the role of the

sink in our definition of MDDs, whereas the ⊥-leaf is actually redundant: removing

it, and reducing the graph to remove dangling edges and nodes, we get exactly our

(single-leaf) MDDs. Moreover, adding a ⊥-leaf to a single-leaf MDD φ is also easy:

for each node N , and each value a ∈ Dom(Var(N)) for which N has no outgoing

edge, add an edge 〈N,⊥, a〉. The number of added edges is bounded by n×d, where

n is the number of nodes in φ and d the cardinal of the largest domain. Both n and

d being bounded by ‖φ‖, the number of added edges is at most polynomial.

Consequently, our choice (also made by Hadzic et al.15) to define the MDD lan-

guage as containing single-leaf MDDs rather than two-leaf MDDs, is harmless from

the point of view of the knowledge compilation map, while offering a consistent

notation for non-deterministic structures (in which the ⊥-leaf is meaningless, since

a given assignment can be associated with several paths).

3. MVDs in the Boolean Knowledge Compilation Map

In this section, we study the relationship between MVDs and languages in the

Boolean knowledge compilation map, notably BDDs. Let us start by defining con-

cepts allowing a formal comparison of target languages. The first one concerns the

“translation” of elements of some language into another language; when this trans-

lation is tractable, the first language inherits many properties of the second one.16

Definition 3.1 (Translatability). A target language L2 is polynomially translatable

(resp. linearly translatable) into another target language L1, which we denote L1 ≤P

L2 (resp. L1 ≤L L2), if and only if there exists a polynomial (resp. linear) algorithm

AL2 7→L1
mapping any element in L2 to an element in L1 with the same interpretation.

When translations AL1 7→L2
and AL2 7→L1

are linear and stable, i.e., when AL1 7→L2
=

A−1
L2 7→L1

, we say that L1 and L2 are linearly equivalent, denoted L1 ≡L L2. Linearly

equivalent languages are so close that they can somehow be considered as identical;

the complexity of operations is the same for both languages.

Another important concept is succinctness, that compares languages with re-

spect to their ability to represent data in a compact manner.17,11

Definition 3.2 (Succinctness). A target language L1 is at least as succinct as an-

other target language L2 (denoted L1 ≤s L2) if and only if there exists a polynomial

P (·) such that for each element φ of L2, there exists an element ψ of L1 having the

same interpretation and verifying ‖ψ‖ ≤ P (‖φ‖).

Relation ≤s is a preorder. We denote ∼s its symmetric part, and <s its asym-

metric part. Of course, L1 ≤L L2 ⇒ L1 ≤P L2 ⇒ L1 ≤s L2.

To highlight the relationship between MVDs and the NNF knowledge compilation

map,11 let us consider the Boolean case. For any sublanguage L of MVD, let LB be

the sublanguage of L obtained when restricting it to Boolean variables.

The BDD and MDDB languages are linearly equivalent: to transform a BDD into

a Boolean MDD, remove the ⊥-leaf and reduce the graph. To transform a Boolean

MDD into a BDD, add a ⊥-leaf, and for any node that has only one outgoing edge

E, add an edge pointing to the ⊥-leaf, labeled by 0 if Lbl(E) = 1 and by 1 otherwise.

Proposition 3.3. MDDB ≡L BDD, OMDDB ≡L OBDD, and OMDDB< ≡L OBDD<.

As they are not necessarily deterministic, multivalued variable diagrams capture

fragments beyond the BDD family. DNFs, for instance, can be represented as OMVDs

in linear time, although some DNFs have no polynomial OBDD (and thus OMVD)

representation. OMVD can hence be seen as a proper “superset” of DNF.

Proposition 3.4. It holds that OMVDB< ≤L DNF and OMVDB< 6≥s DNF.

Finally, it holds that OMDDB ⊆ d-DNNF and OMVDB ⊆ DNNF; moreover, d-DNNF <s

OMDDB (since OMDDB ≡L OBDD). Figure 2 summarizes our results: OMVDB appears

as a new fragment in the NNF succinctness map, that takes place below DNNF and

above DNF and OBDD. Deciding whether OMVDB and DNNF coincide, and more generally

extending MVDs to DNNF-like forms, is a work left to further research.

DNNF

OMVD
B

OMVD
B
<

d-DNNF

OMDD
B
<
≡L OBDD<DNF

OMDD
B ≡L OBDD

Fig. 2. OMVD
B and its sublanguages in the DNNF succinctness map. An edge L1 → L2 indicates

that L1 is strictly more succinct than L2. Dashed edges indicate incomplete results. Relations

deducible by transitivity are not represented, which means that two fragments not being ancestors
to each other are incomparable with respect to succinctness.

4. The Knowledge Compilation Map of MVDs

4.1. Succinctness

The results of our succinctness analysis are depicted in Table 1 (see also Figure 2

for the Boolean case).

Table 1. Results about succinctness.

L MVD MDD OMVD OMDD OMVD< OMDD<

MVD ≤s ≤s ≤s ≤s ≤s ≤s

MDD ? ≤s ? ≤s ? ≤s

OMVD 6≤s 6≤s ≤s ≤s ≤s ≤s

OMDD 6≤s 6≤s 6≤s ≤s 6≤s ≤s

OMVD< 6≤s 6≤s 6≤s 6≤s ≤s ≤s

OMDD< 6≤s 6≤s 6≤s 6≤s 6≤s ≤s

Theorem 4.1. The results in Table 1 hold.

Some of these results are not surprising and directly follow from the fact that

OMDD and OMDD< collapse into OBDD and OBDD< when domains are Boolean: OMDD< 6≤s

OMDD is a straightforward consequence of OBDD< 6≤s OBDD. Some other results are

derived from the NNF map in a less immediate way; for instance OMDD 6≤s OMVD<

holds since OMVDB< ≤L DNF and OBDD ∼s OMDDB: if OMDD ≤s OMVD< were true, we

could derive OBDD ≤s DNF, which has been proven false.11

Some results are harder to get. For instance, in order to prove that OMVD 6≤s MDD,

we used the n-coloring problem of a clique containing n vertices. On the one hand,

it can be shown that the set of solutions Sol of this problem can be represented

as an MDD of size polynomial in n. On the other hand, it is possible to prove

that any OMVD representing Sol contains at least 2n nodes. Figure 3 shows the

corresponding blow-up on a small instance.

We get OMVD< 6≤s OMDD by generalizing the classical proof of OMDD< 6≤s OBDD:

we can show that when compiling the CSP
∧n

i=1[yi = zi], non-determinism cannot

x1 x2

x2

x2

x3

x3

x3

x
1

x
2

x
3

6=

6= 6=
1

2

3

2

3

1

3

2

3

2

1

1

Fig. 3. The “Alldifferent” coloring problem on a complete graph (3 variables, 3 colors) and an

OMDD representing its set of solutions (x1 < x2 < x3).

compensate for the exponential blow-up caused by ordering all yi before all zi.

We also get a direct proof of OMDD< 6≤s OMVD< by considering another CSP, the

problem of n-coloring a star graph with n vertices (see Figure 1 for an example with

n = 3). Let x1 be the center of the star, and consider the order xn < · · · < x2 < x1:

the OMDD on < representing this problem contains at least 2n nodes and n · 2n−1

edges, whereas it can be shown that this CSP can be represented by an OMVD on

the same order < and of size polynomial in n.

4.2. Queries and transformations

As outlined by Darwiche and Marquis,11 evaluating the suitability of a target com-

pilation language for a particular application consists in balancing its succinctness

against the set of requests that it supports in polynomial time. The requests iden-

tified by Darwiche and Marquis are oriented towards applications in knowledge

management, yet most of them are still meaningful in some applications targeted

by the CSP framework. We enrich this set by a few new requests, raised by more

decision-oriented applications.

• The most usual requests are checking the consistency of the CSP (CO), ex-

tracting one solution (MX), enumerating all solutions (ME), and counting

(CT) the number of solutions.

• The “context extraction” query (CX) aims at providing the user with all

possible values of a variable of interest.

• The “conditioning” operation (CD) assigns values to some variables. More

generally, the “term restriction” transformation (TR) restricts the possible

values of some variables to a subset of their domains. TR, CD and CX are

often used in sequence in interactive CSP solving, where users iteratively

look for the possible values of the next variables and restrict them according

to their preferences.3

• “Clausal entailment” (CE) is a request coming from reasoning problems:

it consists in determining whether all the solutions of a problem satisfy

a disjunction of elementary conditions (unary constraints). Reasoning AI

applications raise other requests, like VA (is a formula valid?) and ¬C

(compute the negation of a given formula).

• The equivalence (EQ) and sentential entailment (SE) requests come from

model checking. They can be useful for CSP modeling problems: SE corre-

sponds to checking whether a set of constraints is a semantic relaxation of

another one (whether the assignments satisfying the latter also satisfy the

former); EQ is the equivalence test.

• Interactive modeling applications can also involve the manipulation of com-

piled constraints, with conjunction (∧C), disjunction (∨C) and the afore-

mentioned negation (¬C), so as to build composed constraints from a few

operators. This interactive modeling process can also rely on other oper-

ations to check the resulting constraint (or problem), e.g., by projecting,

through a CX operation, the constraint on one of its variables.

• The forgetting operation (FO) allows one to eliminate some (intermediate)

variables from the problem—this amounts to an existential projection of the

problem. Its dual operation, ensuring (EN), performs a universal variable

elimination. The forgetting and ensuring operations are notably relevant for

compilation-based approaches of planning, such as the “planning as model

checking” paradigm.8

All these operations are often performed in sequence. Conditioning (CD) fol-

lowed by model extraction (MX) can for instance be useful in planning under

uncertainty: if we suppose that a decision policy π associating decisions with states

has already been compiled, CD allows π to be conditioned by the current state,

whereas MX allows a valid decision for that state to be extracted. Another example

is given by online diagnosis applications: the (compiled) model of the system is first

conditioned by the observations (CD), then CX can give the possible failure modes

of each component in the system. More complex failure hypotheses can be checked

via clausal entailment (CE) queries.

Let us now adopt a more formal stance. In a compilation map, the ability of

a language L to efficiently achieve operations defines properties of L, which L can

satisfy or not. These properties serve as criteria for deciding whether L is appropriate

as a target compilation language for a given problem. More precisely, the operations

mentioned above can be partitioned into two sets, viz., the transformations and the

queries. Transformations take as input a (compiled) problem and return another

one (e.g., the conditioning of a CSP by some assignment produces a CSP with less

variables). Queries do not modify the problem, but simply answer a question (e.g.,

checking the consistency of a CSP).

We formally define the queries and transformations described above; while some

are straightforward generalizations of the Boolean case,11 some others need to be

carefully adapted. Let us begin with queries.

Definition 4.2 (Queries). Let L denote a sublanguage of MVD.

• L satisfies CO (resp. VA) if and only if there exists a polynomial algo-

rithm that maps every MVD φ in L to 1 if φ has a model (resp. has no

countermodel), and to 0 otherwise.

• L satisfies MC if and only if there exists a polynomial algorithm that maps

every MVD φ in L and any Scope(φ)-assignment ~x to 1 if ~x is a model of φ

and to 0 otherwise.

• L satisfies CE (resp. IM) if and only if there exists a polynomial algorithm

that maps any MVD φ in L, any set of variables {x1, . . . , xk} ⊆ Scope(φ),

and any sequence 〈A1, . . . , Ak〉 of finite sets of integers such that ∀i ∈

{1, . . . , k}, Ai ⊆ Dom(xi), to 1 if Mod(φ)) ⊆ Mod([x1 ∈ A1]∨· · ·∨[xk ∈ Ak])

(resp. Mod([x1 ∈ A1] ∧ · · · ∧ [xk ∈ Ak]) ⊆ Mod(φ)) and to 0 otherwise.

• L satisfies SE (resp. EQ) if and only if there exists a polynomial algorithm

that maps every pair of MVDs 〈φ, ψ〉 in L such that Scope(φ) = Scope(ψ),

to 1 if Mod(φ) ⊆ Mod(ψ) (resp. Mod(φ) = Mod(ψ)), and to 0 otherwise.

• L satisfies MX if and only if there exists a polynomial algorithm that maps

every MVD φ in L to a model of φ if there exists one, and that stops without

returning anything otherwise.

• L satisfies CX if and only if there exists a polynomial algorithm that out-

puts, for any φ in L and any y ∈ Scope(φ), the set of all values taken by y

in at least one model of φ.

• L satisfies CT if and only if there exists a polynomial algorithm that maps

every MVD φ in L to its number of models |Mod(φ)|.

• L satisfies ME if and only if there exists a polynomial P (·, ·) and an algo-

rithm that enumerates, for every MVD φ in L, its set of models Mod(φ), in

time P (‖φ‖, |Mod(φ)|).

Before defining transformations, we present the semantic operations on which

they are based.

Definition 4.3. Let I and J be the interpretation functions of some MVDs.

• Given a set of variables Y ⊆ Scope(I), the forgetting of Y in I is the function

Forget(I, Y) of scope Z = Scope(I) \ Y , such that Forget(I, Y)(~z) = ⊤ if

and only if there exists a Y -assignment ~y verifying I(~z . ~y) = ⊤.

• Given a set of variables Y ⊆ Scope(I), the ensuring of Y in I is the function

Ensure(I, Y) of scope Z = Scope(I) \ Y , such that Ensure(I, Y)(~z) = ⊤ if

and only if for all Y -assignment ~y, it holds that I(~z . ~y) = ⊤.

• The restriction of I to J, denoted I |J, is defined by I |J =

Forget(I∧ J, Scope(J)).

• Given an assignment ~y of some set of variables Y ⊆ Scope(I), the condi-

tioning of I by ~y is the function I |~y of scope Z = Scope(I) \ Y , defined by

I |~y(~z) = I(~y . ~z).

Definition 4.4 (Transformations). Let L denote a sublanguage of MVD.

• L satisfies CD if and only if there exists a polynomial algorithm that maps

every MVD φ in L and every assignment ~x of X ⊆ Scope(φ) to an MVD φ′

in L such that I(φ′) = I(φ)|~x.

• L satisfies TR if and only if there exists a polynomial algorithm mapping

any MVD φ in L, any set of variables {x1, . . . , xk} ⊆ Scope(φ) and any se-

quence 〈A1, . . . , Ak〉 of finite sets of integers such that ∀i ∈ {1, . . . , k}, Ai ⊆

Dom(xi), to an MVD φ′ in L verifying I(φ′) = I(φ)|[x1∈A1]∧···∧[xk∈Ak].

• L satisfies FO (resp. EN) if and only if there exists a polynomial algorithm

that maps every MVD φ in L and every Y ⊆ Scope(φ) to an MVD φ′ in L

such that I(φ′) = Forget(I(φ), Y) (resp. I(φ′) = Ensure(I(φ), Y)).

• L satisfies SFO (resp. SEN) if and only if it satisfies FO (resp. EN) when

limited to a single variable (i.e., |Y | = 1).

• L satisfies ∨C (resp. ∧C) if and only if there exists a polynomial algorithm

that maps every finite tuple 〈φ1, . . . , φk〉 of MVDs in L to an MVD φ′ in L

such that I(φ′) =
∨k

i=1 I(φi) (resp. I(φ
′) =

∧k
i=1 I(φi)).

• L satisfies ∨BC (resp. ∧BC) if and only if it satisfies ∨C (resp. ∧C) when

limited to a pair of MVDs (i.e., k = 2).

• L satisfies ¬C if and only if there exists a polynomial algorithm that maps

every MVD φ in L to an MVD φ′ in L such that I(φ′) = ¬ I(φ).

The results of our analysis of the complexity of queries and transformations are

depicted in Tables 2 and 3.

Theorem 4.5. The results in Tables 2 and 3 hold.

Results for MDD, OMDD, and OMDD< are generally known or follow directly from

previous works.14,5,11 OMDDs have almost the same capabilities as OBDDs, which

is not surprising, given how strong their relationship is. However, note that single

Table 2. Results about queries.

L CO VA MC CE IM EQ SE MX CX CT ME

MVD ◦ ◦ √ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
MDD ◦ ◦ √ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
OMVD

√ ◦ √ √ ◦ ◦ ◦ √ √ ◦ √

OMDD
√ √ √ √ √ √ ◦ √ √ √ √

OMVD<

√ ◦ √ √ ◦ ◦ ◦ √ √ ◦ √

OMDD<

√ √ √ √ √ √ √ √ √ √ √

DNF
√ ◦ √ √ ◦ ◦ ◦ √ √ ◦ √

DNNF
√ ◦ √ √ ◦ ◦ ◦ √ √ ◦ √

d-DNNF
√ √ √ √ √

? ◦ √ √ √ √

OBDD
√ √ √ √ √ √ ◦ √ √ √ √

OBDD<

√ √ √ √ √ √ √ √ √ √ √

Note:
√

means “satisfies”, and ◦ means “does not satisfy, unless P = NP”. Most results for

DNF, DNNF, d-DNNF, OBDD, and OBDD< are from the NNF map and are given here as a baseline.

Table 3. Results about transformations.

L CD TR FO SFO EN SEN ∨C ∨BC ∧C ∧BC ¬C
MVD

√ ◦ ◦ √ ◦ √ √ √ √ √
?

MDD
√ ◦ ◦ √ ◦ √ √ √ √ √ √

OMVD
√ √ √ √ ◦ ◦ ? ? ◦ ◦ ◦

OMDD
√ • • • • • • ◦ • ◦ √

OMVD<

√ √ √ √ ◦ ◦ √ √ ◦ √ ◦
OMDD<

√ • • • • • • √ • √ √

DNF
√ √ √ √ ◦ √ √ √ • √ •

DNNF
√ √ √ √ ◦ ◦ √ √ ◦ ◦ ◦

d-DNNF
√ √ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ?

OBDD
√ • • √ • √ • ◦ • ◦ √

OBDD<

√ • • √ • √ • √ • √ √

Note:
√

means “satisfies”, • means “does not satisfy”, and ◦ means “does not satisfy, unless
P = NP”. Most results for DNF, DNNF, d-DNNF, OBDD, and OBDD< are from the NNF map and are

given here as a baseline.

forgetting and single ensuring, while satisfied by OBDD, are not satisfied by OMDD;

this is due to the domain sizes being unbounded.

More interestingly, Theorem 4.5 puts forward the attractiveness of non-

deterministic OMVDs with respect to transformations. Indeed, OMVD< satisfies more

transformations than OMDD<, “losing” only the negation transformation; yet it is

strictly more succinct than OMDD<. Similarly, OMVD< is strictly more succinct than

DNF, and yet they satisfy the same transformations; the only exception is SEN, but

DNF only satisfies it because it is limited to Boolean variables (it does not satisfy it

when extended to finite-domain variables).

As for performances with respect to queries, OMVD and OMVD< are less interesting

than their deterministic counterparts. However, “only” CT, VA, EQ, IM, and

SE are lost when determinism is relaxed (remark that the same requests are lost

when comparing DNNF to d-DNNF)—hence the interest of these languages for many

applications that do not involve these requests, such as planning, in which one

needs to often check consistency, forget variables and extract models, or online

configuration, which relies essentially on conditioning and context extraction.

5. Experimental Results

Table 4 reports some results18 obtained on randomly generated CSPs containing 15

variables whose domain size is equal to 6. For each line, 50 random problems are

generated. For each of these problems, the order < on the variables used in the com-

piled forms is built via the MCSInv heuristics,19 which iteratively chooses a variable

connected to the greatest number of remaining variables in the constraint graph.

The OMDD compiler we use follows the bottom-up approach4: each constraint is

compiled as an OMDD, and the elementary OMDDs obtained are then combined

Table 4. Results for randomly generated binary CSPs (15
variables, domain size equal to 6).

%T %C #SOL #N OMVD #N OMDD

10 290888073 80 81

20 136056826 1338 1558

70 30 5006576 5662 8132
40 95131 3315 5005

50 2367 737 897

20 1581648506 2572 2932
30 189551100 12223 16370

80 40 11557737 20501 35486

50 1035884 13815 25240
60 70185 5776 9253

70 4662 1719 2246

80 229 54 401

Note: %T denotes the percentage of tuples satisfying each

constraint; %C the density of the constraint graph; #SOL
the number of solutions of the CSP; #N the number of nodes

in the compiled form.

by conjunction. The compilation can be pursued by using additional compacting

operations, which generalize the merging of isomorphic nodes without preserving

determinism20; in the end, an OMVD is obtained.

It appears that the interest of non-deterministic structures is not limited to a few

specific problems like those used in proofs: indeed, even on random CSPs, allowing

non-deterministic compacting operations can sometimes divide by 2 or more the

number of nodes in the graph.

6. Conclusion

Both theoretical complexity results and experiments show that relaxing the deter-

minism requirement in ordered decision diagrams can improve succinctness. Re-

laxing determinism also allows more transformations to be achieved in polynomial

time: typically, all transformations (except for SEN, which depends on the do-

main size) satisfied by DNF are also satisfied by OMVD<. This includes forgetting

and disjunction, which are not satisfied by deterministic languages. The price to

pay when putting determinism away is the loss of the negation transformation, and

of the counting, validity, equivalence, and implication queries (note that the same

operations are lost when going from deterministic to non-deterministic DNNFs).

As a result, OMVD< is especially appealing for applications relying on transforma-

tions (with the exception of negation) and on basic consistency queries (CO, MX,

ME, CX), such as planning and online configuration. From the theoretical point of

view, we also established that, when restricted to Boolean domains, OMVD< is a new

fragment in the NNF map, below DNNF and above DNF and OBDD. Moreover, OMVD<
satisfies more queries and transformations than DNNF does.

The next step is to introduce decomposable AND nodes in the MVD framework.

This should allow AND/OR graphs to be captured, and also new fragments to be

defined, such as non-deterministic AND/OR graphs.

Acknowledgements

This work is partially supported by the project BR4CP ANR-11-BS02-008 of the

French National Agency for Research.

References

1. E. C. Freuder and C. D. Elfe, “Neighborhood inverse consistency preprocessing,” in

Proceedings of the National Conference on Artificial Intelligence (AAAI), 1996, pp.
202–208.

2. E. Gelle and R. Weigel, “Interactive configuration using constraint satisfaction tech-

niques,” in Second International Conference on Practical Application of Constraint
Technology (PACT). Menlo Park, AAAI Press, 1996, pp. 37–44.

3. J. Amilhastre, H. Fargier, and P. Marquis, “Consistency restoration and explanations

in dynamic CSPs—Application to configuration,” Artificial Intelligence Journal, vol.
135, no. 1–2, pp. 199–234, 2002.

4. N. R. Vempaty, “Solving constraint satisfaction problems using finite state automata,”

in Proceedings of the National Conference on Artificial Intelligence (AAAI), 1992, pp.
453–458.

5. T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Multi-valued de-

cision diagrams: Theory and applications,” Multiple-Valued Logic, vol. 4, no. 1–2, pp.
9–62, 1998.

6. H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann, “A constraint store based

on multivalued decision diagrams,” in Proceedings of the International Conference on
Principles and Practice of Constraint Programming (CP), 2007, pp. 118–132.

7. H. Cambazard, T. Hadzic, and B. O’Sullivan, “Knowledge compilation for itemset

mining,” in Proceedings of the European Conference on Artificial Intelligence (ECAI),
2010, pp. 1109–1110.

8. F. Giunchiglia and P. Traverso, “Planning as model checking,” in Proceedings of the
European Conference on Planning (ECP), 1999, pp. 1–20.

9. J. Hoey, R. St-Aubin, A. J. Hu, and C. Boutilier, “SPUDD: Stochastic planning

using decision diagrams,” in Proceedings of the Conference on Uncertainty in Artificial
Intelligence (UAI), 1999, pp. 279–288.

10. P. Torasso and G. Torta, “Model-based diagnosis through OBDD compilation: A com-

plexity analysis,” in Reasoning, Action and Interaction in AI Theories and Systems,
2006, pp. 287–305.

11. A. Darwiche and P. Marquis, “A knowledge compilation map,” Journal of Artificial
Intelligence Research (JAIR), vol. 17, pp. 229–264, 2002.

12. R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Transactions on Computers, vol. 35, no. 8, pp. 677–691, 1986.

13. H. Fargier and P. Marquis, “On the use of partially ordered decision graphs in knowl-

edge compilation and quantified Boolean formulae,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 2006.

14. A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton, “Algorithms for discrete function

manipulation,” in Proceedings of the International Conference on Computer Aided
Design (ICCAD), Nov. 1990, pp. 92–95.

15. T. Hadzic, E. R. Hansen, and B. O’Sullivan, “On automata, MDDs and BDDs in

constraint satisfaction,” in Proceedings of the ECAI Workshop on Inference methods
based on Graphical Structures of Knowledge (WIGSK), 2008.

16. H. Fargier and P. Marquis, “Extending the knowledge compilation map: Krom, Horn,

affine and beyond,” in Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2008, pp. 442–447.

17. G. Gogic, H. A. Kautz, C. H. Papadimitriou, and B. Selman, “The comparative linguis-

tics of knowledge representation,” in Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 1995, pp. 862–869.

18. J. Amilhastre, “Représentation par automate d’ensemble de solutions de problèmes

de satisfaction de contraintes,” Ph.D. dissertation, Université Montpellier II, 1999.

19. R. E. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test chordality

of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,”

SIAM Journal on Computing, vol. 13, no. 3, pp. 566–579, 1984.
20. J. Amilhastre, P. Janssen, and M.-C. Vilarem, “FA minimisation heuristics for a class

of finite languages,” in International Workshop on Implementing Automata (WIA),
1999, pp. 1–12.

21. A. Niveau, H. Fargier, and C. Pralet, “Representing CSPs with set-labeled diagrams: A

compilation map,” in Proceedings of the International Workshop on Graph Structures
for Knowledge Representation and Reasoning (GKR)2011 — Revised Selected Papers,

ser. Lecture Notes in Computer Science, vol. 7205. Springer, 2012, pp. 137–171.

22. C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI Design: OBDD
— Foundations and Applications. Springer, 1998.

Appendix A. Proofs

This appendix gathers all proofs of propositions and theorems in the paper. Note

that most results are already known, straightforward, or inherited from the BDD

framework; we tried to be exhaustive to save the reader the need to refer to nu-

merous sources while checking proofs. These sources include, as far as we know, the

original knowledge compilation map,11 works about MDDs,14,5 and our knowledge

compilation map of set-labeled diagrams21 (from which a number of the following

proofs are directly taken or lightly adapted).

As usual with compilation maps, several proofs use the fact that all languages

presented allow Boolean terms and clauses to be represented in linear time and

space. The proof is taken from the Boolean case.11

Lemma A.1. Given an order < between variables, any term or clause in proposi-

tional logic can be expressed in the OMDDB< language in linear time.

Proof. In order to represent a term t = ℓ1 ∧ · · · ∧ ℓk or a clause c = ℓ1 ∨ · · · ∨ ℓk
as an OMDD, let us order its literals in such a way that i < j if and only if

Var(ℓi) < Var(ℓj). Then, let us build a chain of nodes N1, . . . , Nk, Nk+1, where for

each i ∈ {1, . . . , k}, Var(Ni) = Var(ℓi) and where Nk+1 is a sink.

For the term, edges are as follows: each non-sink node Ni has one child Ni+1,

and the edge label is ⊤ if ℓi is a positive literal and ⊥ if ℓi is a negative literal.

For the clause, edges are as follows: each node Ni for i < k has two children,

Ni+1 and the sink Nk+1. If ℓi is a positive literal, the edge pointing to Ni+1 is

labeled ⊥ and the one pointing to Nk+1 is labeled ⊤. If ℓi is a negative literal, it is

the opposite. Finally, Nk has the sink as unique successor, via an edge labeled ⊤ if

ℓk is a positive literal, and ⊥ otherwise.

A.1. MVDs in the NNF map

Proof of Proposition 3.4. We first show that OMVDB< ≤L DNF. Let φ be a DNF, and

< a strict total order on Scope(φ). First, let us transform each term in φ into a

Boolean-variable OMDD, ordered with respect to <; thanks to Lemma A.1, we

know that this process is in linear time, and thus that the term-OMDDs we obtain

are of size linear in the size of φ. Let x be the smallest variable (for <) mentioned

in any of the term-OMDDs. Note that x can only appear in a root node; merge all

the roots labeled with x into a single root node R. Then, for each term-OMDD that

does not mention x, denoting N its root, add two edges 〈R,N,⊤〉 and 〈R,N,⊥〉.

The resulting graph, denoted ψ, is an element of OMVDB< (it does not satisfy the

decision property when φ contains at least two terms), and has been obtained in

time linear in the size of φ. We now show that φ and ψ have the same interpretation.

Let ~y ∈ Mod(φ); ~y satisfies at least one term in φ. If this term contains x, then the

root of the corresponding term-OMDD has been merged into the root of ψ; if it

does not contain x, by construction, there exists an edge labeled with ~y|x between

the root of ψ and the root of the corresponding term-OMDD. In both cases, there

exists a path from the root to the sink of ψ that is compatible with ~y.

Reciprocally, let ~y ∈ Mod(ψ). There exists a path from the root to the sink of ψ

that is compatible with ~y. This path traverses one of the term-OMDDs, so ~y satisfies

one of the terms in φ, therefore it is a model of φ. All in all, we can translate any

DNF into OMVDB< in linear time, hence OMVDB< ≤L DNF.

We now show that OMVDB< 6≥s DNF. It is clear that OMDDB< ≥s OMVDB<, since any

OMDD is an OMVD. If OMVDB< ≥s DNF held, we could infer that OMDDB< ≥s DNF, and

since OMDDB< ≡L OBDD (Prop. 3.3), that OBDD ≥s DNF. However, this is false,
11 hence

OMVDB< 6≥s DNF holds.

A.2. Succinctness proofs (Theorem 4.1)

Proposition A.2. OMVD< 6≤s OMDD.

Proof. Let X be a set of 2n Boolean variables, and let <b be a total strict order on

X. We are going to show that there exists a family Γn of Boolean functions over

X, and a total strict order <a on X, such that

• Γn can be represented as an OMDD on <a of size polynomial in n;

• all representations of Γn as OMVDs on <b are of size exponential in n.

Let us consider that X is partitioned into two sets, Y = {y1, . . . , yn} and Z =

{z1, . . . , zn}, such that the total strict order <b on X verifies

y1 <
b y2 <

b . . . <b yn <b z1 <
b z2 <

b . . . <b zn.

Let Γn be the Boolean function
∧n

i=1[yi = zi]. We consider the total strict order <a

on X, defined as

y1 <
a z1 <a y2 <

a z2 <a . . . <a yn <
a zn.

Γn can be represented as an OMDD on <a of size polynomial in n: each con-

straint xi = yi can be represented as an OMDD with only 3 nodes and 4 edges

(recall variables in X are Boolean), and since they do not share variables, these

small OMDDs can be chained (replacing the sink of each one by the root of the

next one) into an OMDD respecting the order <a, which we denote as φan.

Now, we show that the size of any OMVD on <b representing Γn is exponential

in n. Let φbn be an OMVD on <b representing Γn. Consider an edge E〈N,N ′, a〉

in φbn, representing the assignment of some variable yi (that is, an edge in the first

half of the graph).

Let us consider a path p from the root the sink of φbn including E. On this path,

the value of zi must be a, by definition of Γn. Therefore, there can be no path from

the root to N on which yi is assigned a different value than a.

More generally, any two paths from the root to N ′ correspond either to identical

or to completely disjoint assignments of y1, . . . , yi, Each of the possible assignments

of variables from Y is thus represented by (at least) one path pointing to a distinct

z1-node. Since there are 2n assignments of variables from Y , there are at least 2n

nodes labeled z1. Hence ‖φbn‖ ≥ 2n: all representations of Γn as OMVDs on <b are

of size exponential in n.

All in all, for any total strict variable order <, there exists a family Γn of Boolean

functions that have polynomial representations as OMDDs but no polynomial rep-

resentation in OMVD<: OMVD< 6≤s OMDD.

Proposition A.3. OMVD 6≤s MDD.

Proof. Let n ∈ N
∗. Let Zn be a set of n variables {z1, . . . , zn} of domain {1, . . . , n}.

Let Σn be the Boolean function defined as Σn ≡ alldiff(z1, . . . , zn), or equivalently:

Σn ≡
n
∧

i=1

i−1
∧

j=1

[zi 6= zj].

There exists an MDD of size polynomial in n representing Σn. Indeed, each

constraint [zi 6= zj] can be represented as an MDD of n2 edges (n edges for zi, and

for each one, a zj-node with n − 1 outgoing edges). Chaining these small MDDs

(replacing the sink of each one by the root of the next one), we obtain an MDD of

size polynomial in n.

Now, let φ be an OMVD representing of Σn; we consider, without loss of general-

ity, that its variable order < verifies z1 < · · · < zn. We prove that ‖φ‖ is exponential

in n.

Let i ∈ {1, . . . , n− 1}; consider two distinct subsets S and S′ of {1, . . . , n} such

that |S| = |S′| = i. Let a ∈ {1, . . . , n} such that a ∈ S and a /∈ S′. Let ~zS and ~zS′

be two {z1, . . . , zi}-assignments that cover all values in S and S′, respectively. We

consider two paths pS and pS′ from the root to the sink of φ, compatible with ~zS
and ~zS′ , respectively. Suppose they go through a same zi+1-node N ; pS assigns a

to some variable before encountering N , and pS′ assigns a to some variable after

having encountered N . Then, the path obtained by joining the first part of pS (from

the root to N) and the second part of pS′ (from N to the sink) is a consistent path

assigning a to two different variables. Since such a path violates the “alldifferent”

constraint, it is impossible, so pS and pS′ must go through two different zi+1-nodes.

Hence, there are at least one zi+1-node for each S ⊆ {1, . . . , n} of cardinal i;

since there are
(

n
i

)

such subsets, there are at least
(

n
i

)

zi+1-nodes. The number of

nodes in φ is thus greater than
∑n−1

i=1

(

n
i

)

= 2n − 2.

All in all, family Σn has polynomial representations as MDDs, but only expo-

nential representations as OMVDs, which proves OMVD 6≤s MDD.

Proposition A.4. OMDD 6≤s OMVD<.

Proof. Proposition 3.4 states that OMVDB< ≤s DNF. If OMDD ≤s OMVD<, it would hold

that OMDD ≤s DNF. Since the edges in OMDDs representing propositional formulæ

are only labeled with 0 or 1, this would imply that OMDDB ≤s DNF. But thanks to

Proposition 3.3, it would mean that OBDD ≤s DNF—yet it is false.11

Proof of Theorem 4.1. All positive results come directly from simple language in-

clusions (if L ⊇ L′, then surely L ≤s L
′).

All negative results stem from Propositions A.2, A.3 and A.4, and from the fact

that if L1 6≤s L2, then every L such that L1 ≤s L verifies L 6≤s L2, and every L such

that L ≤s L2 verifies L1 6≤s L, or we could derive L1 ≤s L2 by transitivity.

A.3. First proofs of transformations (Theorem 4.5)

In this section, we prove the satisfaction of several transformations on some lan-

guages; these results are used in subsequent proofs.

Lemma A.5. Algorithm 1 runs in time polynomial in the size of its input MVD.

When given an MVD ordered with respect to its input order <, the output MVD is

also ordered with respect to <.

Proof. Let us consider an MVD φ, a set X = {x1, . . . , xk} of variables in Scope(φ), a

sequenceA = 〈A1, . . . , Ak〉 of sets of values such that ∀i ∈ {1, . . . , k}, Ai ⊆ Dom(xi),

and a strict total order < on Scope(φ). Let d = max1≤i≤k|Ai|.

Complexity. The number of iterations of the loop starting on line 5 is

bounded by the number of edges in φ, and thus by ‖φ‖. Reduction (line 9) is poly-

nomial (Prop. 2.9). On line 10, it is well known that indexing nodes in a DAG in

ascending order can be done in time polynomial. Note that r is simply the number

of non-sink nodes.

Next, on line 15, it should be noted that the number of incoming edges of a

node is always bounded by dr (in the worst case, there is one edge per node and per

value); this is independant from the fact that the algorithm adds edges as the loop

goes. Moreover, on line 16, the number of children of a node is obviously always

bounded by r. All in all, on line 20, we only add at most dr2 edges to the graph;

note that there can be no duplicate edges in a graph (edges having the same source,

the same destination, and the same label), so if an edge is already present, it is

not “added again”. In the loop that starts on line 12, the number of added edges is

bounded by dr3.

Finally, the root merging process on line 23 is linear in dr, and the loop starting

on line 25 adds at most dr edges to the new root node R.

To conclude, the algorithm runs in time polynomial in ‖φ‖, d, and r. Since

∀i ∈ {1, . . . , k}, |Ai| ≤ |Dom(xi)| ≤ ‖φ‖, it holds that d ≤ ‖φ‖, and since there

cannot be more non-sink nodes than edges (every non-sink node has at least one

outgoing edge), r ≤ ‖φ‖. Consequently, the algorithm is polynomial in ‖φ‖.

Ordering. Let us suppose that φ is ordered with respect to <, the order

given as input to the algorithm. In the first part (until line 21), edges and nodes are

Algorithm 1 Syntactic restriction of an MVD to a “multivalued term”.

1: input: an MVD φ

2: input: a set X = {x1, . . . , xk} of variables in Scope(φ)

3: input: a sequence A = 〈A1, . . . , Ak〉 of sets of values, such that ∀i ∈

{1, . . . , k}, Ai ⊆ Dom(xi)

4: input: a strict total order < on Scope(φ)

5: for each edge E = 〈N,N ′, a〉 in φ such that Var(N) ∈ X do

6: let xi := Var(N)

7: if a /∈ Ai then

8: remove E from φ

9: reduce φ

10: associate with each node an index i, such that N0 is the sink, and if there is an

edge from Ni to Nj , then i > j

11: let r be the index of the root

12: for i := 1 to r − 1 do

13: if Var(Ni) ∈ X then

14: let E := ∅

15: for each E ∈ In(Ni) do

16: for each N ′ ∈ Ch(Ni) do

17: let E′ := 〈Src(E), N ′,Lbl(E)〉

18: let E := E ∪ {E′}

19: remove Ni, In(Ni), and Out(Ni) from φ

20: add all edges in E to φ

21: if Var(Nr) ∈ X then

22: let R be the set of children of the root that are labeled with a variable x

minimal for <

23: create a new node R that results from the merging of all nodes in R

24: remove from φ all nodes in R and their incoming and outgoing edges

25: for each N ′ ∈ Ch(Nr) do

26: for each a ∈ Dom(x) do

27: add an outgoing edge 〈R,N ′, a〉 to R

28: remove Nr and its outgoing edges, and add R as the new root

29: remove from Scope(φ) all variables in X

removed from φ, but no nodes are added; the resulting MVD is thus still ordered

with respect to <. Now, if the procedure enters the test on line 21, it removes the

former root Nr and adds a new one R. However, this new root is labeled by the

smallest variable x (with respect to <) labeling any child of Nr; and all children

of Nr labeled with x have been merged into R. Hence, R has no child the label of

which is larger or equal to x; and since the remainder of the graph is not modified,

the resulting MVD is still ordered with respect to <.

Proposition A.6. MVD and its subclasses satisfy CD.

Proof. We will use Algorithm 1, showing that when the size of each input Ai is 1,

it computes a conditioning, and moreover maintains the decision property.

Let us consider an MVD φ, a set X = {x1, . . . , xk} of variables in Scope(φ),

and an X-assignment ~x. We will show that when given φ, X, the sequence A =

〈{~x|xi
}〉1≤i≤k of the singletons of assigned values in ~x, and any variable order <,

Algorithm 1 outputs an MVD φ′ such that I(φ′) = I(φ)|~x.

Let us denote Z = Scope(φ) \ X = Scope(φ′) (line 29), and let ~z be any Z-

assignment. By definition of the conditioning, we must prove that

I(φ′)(~z) = ⊤ ⇐⇒ I(φ)(~x . ~z) = ⊤.

Sufficient Condition. Suppose I(φ)(~x . ~z) = ⊤; there exists at least one

path from the root to the sink of φ that is compatible with ~x . ~z. The loop over

edges, starting on line 5, only removes X-edges that are not compatible with ~x, so

all compatible paths remain. Let us consider one of these paths p, and let us consider

two subsequent edges along p, denoted E1 = 〈N,N ′, a1〉 and E2〈N
′, N ′′, a2〉, such

that Var(N ′) ∈ X.

In the loop over nodes, N ′ is removed, together with its incoming and outgoing

edges—thus E1 and E2 are removed. However, a new edge 〈N,N ′′, a1〉 is added;

consequently, there still exists at least one path p′ compatible with ~x . ~z.

Finally, if the root of φ is labeled by a variable in X, it is replaced by a new

root R. Let 〈Nr, N
′, a〉 be the first edge in p′. If VarN ′ is minimal for <, then the

new root R is labeled by VarN ′ and all outgoing edges of N ′ are outgoing edges

of R: removing the first edge of p′, and replacing N ′ by R in the next edge, we get

a path from the root to the sink of φ′ that is compatible with ~x . ~z. If VarN ′ is

not minimal for <, then the new root R has one outgoing edge leading to N ′ per

value in Dom(Var(R)): surely, one is compatible with ~x. Adding this edge at the

beginning of p′, we get a path from the root to the sink of φ′ that is compatible

with ~x . ~z.

In all cases, there exists in φ′ a path from the root to the sink that is compatible

with ~x . ~z; since all X-nodes have been removed, the path is compatible with ~z.

Hence I(φ′)(~z) = ⊤.

Necessary Condition. Suppose I(φ′)(~z) = ⊤; let p be a path from the root

to the sink of φ′ that is compatible with ~z, and thus with ~x . ~z, since φ′ does not

mention any variable from X. Even if the root of φ′ has been modified (lines 21–28),

we know that there was a path compatible with ~x . ~z before the modification, since

the new root R then was a child of the former root, via an edge compatible with ~x

(all edges incompatible with ~x have been removed from φ in the loop starting on

line 5).

Let E = 〈N,N ′, a〉 be an edge along p; either E was already in φ, or it has

been added on line 20 to bypass an X-node Nx (with Var(Nx) = x), in which

case it corresponds to two edges in the MVD of the previous loop, 〈N,Nx, a〉 and

〈Nx, N
′, ax〉, with ~x|x = ax (all edges incompatible with ~x had been removed). Since

it is the case for any E along p, p results from the transformation of at least one

path p′ in φ, that is compatible with ~x . ~z. This proves that I(φ)(~x . ~z) = ⊤.

Decision Property. Let us suppose φ is an MDD; we prove that φ′ also

is an MDD. First, remark that removing nodes or edges does not compromise the

decision property. Let us study the two moments when the procedure actually adds

edges, viz., lines 20 and 25–27.

Now, note that the loop over edges (starting from line 5) removes any edge

incompatible with ~x; since φ is an MDD, there can be at most one outgoing edge

per node that is compatible with ~x. Consequently, after this loop, every X-node has

at most one outgoing edge—and thus at most one child; and on line 9, reduction

removes those that have no child at all.

Therefore, on line 20, we simply replace each incoming edge 〈N,Ni, a〉 of Ni by a

single edge 〈N,N ′, a〉, with N ′ the unique child of Ni. Since no other edge is added

at this step, it preserves the decision property.

Finally, in the root replacement step, we know that the former root Nr has

exactly one child N ′, and thus the new root R is simply a copy of N ′. Since N ′ is

removed from φ, the procedure does not even enter the loop on line 25. Once again,

this step maintains the decision property.

Proposition A.7. OMVD and OMVD< satisfy TR, FO, and SFO.

Proof. We show that Algorithm 1, when given an ordered graph, computes a term

restriction. Let us consider an OMVD φ on some variable order <, a set X =

{x1, . . . , xk} of variables in Scope(φ), and a sequence A = 〈A1, . . . , Ak〉 of sets of

values such that ∀i ∈ {1, . . . , k}, Ai ⊆ Dom(xi). Let φ
′ be the output of Algorithm 1

when given as input φ, X, A, and <. We show that I(φ′) ≡ I(φ)|[x1∈A1]∧···∧[xk∈Ak].

Let us denote Z = Scope(φ) \ X = Scope(φ′) (line 29), and let ~z be any Z-

assignment. By definition of restriction and forgetting, we must prove that

I(φ′)(~z) = ⊤ ⇐⇒ ∃~x ∈ Dom(X), (I(φ) ∧ [x1 ∈ A1] ∧ · · · ∧ [xk ∈ Ak])(~z . ~x) = ⊤

Sufficient Condition. Suppose that there exists an X-assignment ~x such

that (I(φ) ∧ [x1 ∈ A1] ∧ · · · ∧ [xk ∈ Ak])(~z . ~x) = ⊤. Consequently, for any xi ∈ X,

it must hold that ~x|xi
∈ Ai; and there must be at least one path p from the root to

the sink of φ that is compatible with ~x . ~z. Since the loop over edges, starting on

line 5, only removes X-edges that are not compatible with ~x, p remains.

In a fashion similar to the sufficient condition in the proof of Proposition A.6,

we can show that p corresponds to a path from the root to the sink of φ′ that is

compatible with ~x . ~z, and since all X-nodes have been removed, compatible with

~z. Hence I(φ′)(~z) = ⊤.

Necessary Condition. Suppose I(φ′)(~z) = ⊤; let p be a path from the root

to the sink of φ′ that is compatible with ~z. In a fashion similar to the necessary

condition in the proof of Proposition A.6, we can show that p corresponds to at

least one path from the root to the sink of φ that is compatible with ~z. Let us

consider one of these paths, p′; there necessarily exists at least one X-assignment ~x

that is compatible with p′, because φ is ordered, and thus, each variable can only be

encountered once along p′; each variable can be assigned at most once, there is no

contradiction. Moreover, along p′, all edges 〈N,N ′, a〉 such that Var(N) = xi ∈ X

verify a ∈ Ai, because edges that do not verify this are removed in the first loop

(line 5), and we know that the procedure transforms p′ into p. Hence, there exists at

least one X-assignment ~x compatible with p′ and verifying ∀i ∈ {1, . . . , k}~x|xi
∈ Ai;

such an assignment is a model of [x1 ∈ A1]∧· · ·∧ [xk ∈ Ak], and p
′ being compatible

with both ~z and ~x, ~z . ~x is a model of I(φ): (I(φ) ∧ [x1 ∈ A1] ∧ · · · ∧ [xk ∈ Ak])(~z .

~x) = ⊤.

In conclusion, Algorithm 1 computes a term restriction, and since we know by

Lemma A.5 that it runs in polynomial time and maintains the ordering property

(but not the decision property), it holds that OMVD and OMVD< satisfy TR, and thus

FO (forgetting a variable x amounts to restricting it the term [x ∈ Dom(x)]) and

SFO.

Proposition A.8. MDD, OMDD, and OMDD< satisfy ¬C.

Proof. Using the two-leaf form of MDDs (Section 2.3.2), “negating” an MDD is

very simple: it is sufficient to swap its two leaves. Since any assignment corresponds

to exactly one path from the root to a leaf, an assignment is a model of the original

MDD if and only if it is not a model of the resulting MDD. This procedure is done

in constant time, and obviously preserves ordering.

Proposition A.9. OMDD< and OMVD< satisfy ∧BC.

Proof. We can use the algorithm in Figure 2, adapted from that on OBDDs.12 It

applies on non-empty OMVDs of a same variable order (if one OMVD is empty, it is

trivial to compute the conjunction). A cache is maintained to avoid computing twice

the same pair of nodes, thus conjunct step is not called more than ‖φ1‖·‖φ2‖ times.

The procedure is polynomial and it maintains determinism when the inputs are

deterministic. For each execution of conjunct step, each value of a given variable’s

domain is explored once, and the size of the domain is lower than either ‖φ1‖ or ‖φ2‖

(by definition of the size function). The procedure is hence in polynomial time.

A.4. Proofs of queries (Theorem 4.5)

Proposition A.10. Every sublanguage of MVD we defined satisfies MC.

Proof. Since these languages satisfy CD (Proposition A.6), we can test whether ~x is

a model of φ by conditioning the MVD by ~x; indeed, we get either the empty MVD

(then the assignment is not a model) or the sink-only MVD (then ~x is a model).

Hence all these languages satisfy MC.

Algorithm 2 conjunct step(N1, N2): returns an OMVD< that is the conjunction

of the two OMVDs< of which N1 and N2 are roots.

1: if the cache contains the key (N1, N2) then

2: return the OMVD corresponding to this key in the cache

3: if Out(N1) = ∅ (the sink of N1 is reached) then

4: return a copy of the OMVD rooted at N2

5: if Out(N2) = ∅ (the sink of N2 is reached) then

6: return a copy of the OMVD rooted at N1

7: if Var(N1) = Var(N2) then

8: Let x := Var(N1) = Var(N2)

9: Create a node N ′ labeled by x

10: for each ω ∈ Dom(x), E1 ∈ Out(N1), E2 ∈ Out(N2) do

11: if ω = Lbl(E1) = Lbl(E2) then

12: Let φω := conjunct step(Dest(E1),Dest(E2))

13: Add an edge coming out of N ′, labeled by ω and pointing to the root of

φω
14: return the OMVD rooted at N ′

15: Ni = Argmin<(Var(N1),Var(N2)),

16: Nj = Argmax<(Var(N1),Var(N2))

17: Create a node N ′
i labeled by Var(Ni)

18: for each E ∈ Out(Ni) do

19: Let φE := conjunct step(Dest(E), Nj)

20: Add an edge coming out of N ′
i , labeled by Lbl(E) and pointing to the root

of φE
21: return N ′

Proposition A.11. MVD and MDD do not satisfy any query we defined, besides MC,

unless P = NP.

Proof. Proposition 3.3 states that BDD ≡L MDDB, and MDDB ⊆ MDD ⊆ MVD, so MDD

and MVD cannot satisfy any query that BDD does not satisfy. We know from the

Boolean knowledge compilation map11 that BDD does not satisfy CO or VA unless

P = NP, therefore neither MDD nor MVD satisfies CO or VA unless P = NP. Since

the satisfaction of CE, MX, CX, or ME implies the satisfaction of CO, and the

satisfaction of IM, EQ, SE, or CT implies the satisfaction of VA, none of these

queries can be satisfied by MDD or MVD unless P = NP.

A.4.1. Ordered languages

Proposition A.12. OMVD and OMVD< do not satisfy VA, IM, EQ, SE, or CT,

unless P = NP.

Proof. Proposition 3.4 states that OMVDB< ≤L DNF. If OMVD or OMVD< satisfied VA,

it would be the case for OMVDB< by inclusion: we could check in time polynomial the

validity of any DNF, yet it is impossible unless P = NP.

Since the satisfaction of IM, EQ, SE, or CT implies the satisfaction of VA,

OMVD and OMVD< cannot satisfy any of them unless P = NP.

Proposition A.13. OMVD and its sublanguages satisfy MX and CO.

Proof. In an OMVD, every path from the root to the sink corresponds to at least one

model. Indeed, the ordering property imposes that no variable can be encountered

twice on a given path. Let φ be an OMVD, and p be a path from the root to the

sink of φ. Denoting 〈N1, N2, a1〉, 〈N2, N3, a2〉, . . . , 〈Nk, Nk+1, ak〉 the edges along this

path, any Scope(φ)-assignment ~x in which Var(Ni) is assigned to ai (for 1 ≤ i ≤ k)

is a model of φ, by construction.

Consequently, extracting a model of an OMVD boils down to choosing a path,

retrieving the associated assignment, and complete it by assigning random values to

variables in Scope(φ) that are not mentioned along the chosen path. The only case

when it does not work is when there is no path to choose, i.e., when the graph is

empty; in this case the OMVD is inconsistent, and there is no model to find. Hence,

OMVD satisfies MX, and thus CO. Any MVD in a sublanguage of OMVD is obviously

an OMVD, so the procedure also works for OMVD<, OMDD, and OMDD<.

Proposition A.14. OMVD and its sublanguages satisfy CE.

Proof. Checking whether I(φ) entails [x1 ∈ A1] ∨ · · · ∨ [xk ∈ Ak] is equivalent to

checking whether I(φ) ∧ [x1 /∈ A1] ∧ · · · ∧ [xk /∈ Ak] is inconsistent. Clearly enough,

[x /∈ A] = [x ∈ Dom(x) \A]; and using the definition of restriction, we get that I(φ)

entails [x1 ∈ A1]∨· · ·∨[xk ∈ Ak] if and only if I(φ)|[x1∈Dom(x1)\A1]∧···∧[xk∈Dom(xk)\Ak]

is inconsistent. Since OMVD satisfies TR (Prop. A.7) andCO (Prop. A.13), it satisfies

CE. By inclusion, OMVD<, OMDD, and OMDD< also satisfy CE.

Proposition A.15. OMVD and its sublanguages satisfy CX.

Proof. Let φ be an OMVD and X be a set of variables in Scope(φ). The context

of a variable x is the set of values that are part of at least one model of I(φ).

To check whether a value a is in the context of x in φ, it is thus sufficient to

assign x to a, which amounts to a conditioning, and to check whether the result is

consistent. Since OMVD satisfies CD (Prop. A.6) and CO (Prop. A.13), this process

is polynomial. Applying it for every value in Dom(x), we obtain the context of x;

since |Dom(x)| ≤ ‖φ‖, the process is also polynomial. Last, |X| ≤ |Scope(φ)| ≤ ‖φ‖,

so retrieving the context of all variables in X is polynomial. Hence OMVD satisfies

CX, and by inclusion, OMVD<, OMDD, and OMDD< also satisfy CX.

Proposition A.16. OMVD and its sublanguages satisfy ME.

Proof. This holds because OMVD satisfies CD (Prop. A.6) and CO (Prop. A.13).

Enumerating models can be done by exploring the entire assignment tree, as done

in the Boolean case11 (checking consistency after each branching avoids having to

backtrack, so the size of the search tree is polynomial in the size of the output).

A.4.2. Decision diagrams

Proposition A.17. OMDD and OMDD< satisfy CT and VA.

Proof. Let φ be an OMDD, and p a path from the root to the sink of φ. Denot-

ing 〈N1, N2, a1〉, 〈N2, N3, a2〉, . . . , 〈Nk, Nk+1, ak〉 the edges along p, any Scope(φ)-

assignment ~x in which Var(Ni) is assigned to ai (for 1 ≤ i ≤ k) is compatible with

p, by construction, and is thus a model of φ. However, it cannot be compatible with

any other path in φ: if it were the case, φ would be non-deterministic.

All in all, each path in φ can be associated with the set of models of φ that

are compatible with it, and these models are not compatible with any other path:

models are partitioned among all paths. Counting the models of φ thus amounts to

counting the models associated with each path.

The number of models associated with a given path p depends on the variables it

mentions: if it mentions all variables in Scope(φ), then it is compatible with exactly

one model; if it mentions all variables but one, denoted x, then it is associated with

|Dom(x)| models; etc.

Given a node N in an OMDD φ on <, let us denote Scope(N) the set of all vari-

ables greater or equal to Var(N) with respect to <. To count the number of models

of φ, we will associate with each node N , the number nN of Scope(N)-assignments

that are compatible with any path from N to the sink. We start by noticing that

nSink(φ) = 1: indeed, Scope(Sink(φ)) = ∅, and the unique ∅-assignment is compati-

ble with all paths from the sink to itself (there is none). Then, the outgoing edges of

an internal node N cannot be compatible with a same Scope(N)-assignment, (recall

that models are partitioned among paths, since φ satisfies the decision property).

Hence

nN =
∑

E∈Out(N)

nE ,

with nE the number of Scope(N)-assignments compatible with E. Denoting D =

Dest(E), this number is simply nD, multiplied by
∏

Var(N)<x<Var(D)|Dom(x)|, to

take into account all variables not mentioned in this subgraph.

The number nRoot(φ) is then the number of Scope(Root(φ))-assignments that

are compatible with some path from the root to the sink of φ; to obtain

the number of models of φ, we once again have to multiply it, this time by
∏

x∈Scope(φ)\Scope(Root(φ))|Dom(x)|, to take into account the variables that are

smaller than the root variable (with respect to <).

This number can be inductively computed, by traversing the graph from the

sink to the root. The whole process being polynomial in ‖φ‖ (each edge is crossed

(backwards) once), OMDD satisfies CT.

From CT, we can test in polynomial time whether the number of models is equal

to the number of possible assignments of the variables, i.e., whether the OMDD is

valid, thus OMDD supports VA.

Proposition A.18. OMDD and OMDD< satisfy IM.

Proof. Let φ be an MVD; checking whether [x1 ∈ A1] ∧ · · · ∧ [xk ∈ Ak] entails I(φ)

is equivalent to checking whether ¬ I(φ)∧ [x1 ∈ A1]∧ · · · ∧ [xk ∈ Ak] is inconsistent;

now, it is consistent if and only if (¬ I(φ))|[x1∈A1]∧···∧[xk∈Ak] is consistent. Since OMDD

satisfies ¬C (Prop. A.8), TR (Prop. A.31), and CO (Prop. A.13), this verification

can be done in time polynomial, and OMDD hence satisfies IM. By inclusion, OMDD<
also satisfies IM.

Proposition A.19. OMDD< satisfies SE and EQ.

Proof. Let φ and ψ be two MVDs; Checking whether I(φ) entails I(ψ) is equiv-

alent to checking whether I(φ) ∧ ¬ I(ψ) is inconsistent. Since OMDD< satisfies ¬C

(Prop. A.8), ∧BC (Prop. A.9), and CO (Prop. A.13), this verification can be done

in time polynomial, and OMDD< hence satisfies SE. This implies that it also satisfies

EQ, since checking whether I(φ) is equivalent to I(ψ) amounts to checking whether

I(φ) entails I(ψ) and I(ψ) entails I(φ).

Proposition A.20. OMDD does not satisfy SE unless P = NP.

Proof. Let φ and ψ be two MVDs; checking whether I(φ) ∧ I(ψ) is consistent is

equivalent to checking whether I(φ) does not entail ¬ I(ψ). Since OMDD satisfies

¬C (Prop. A.8), if it also satisfied SE, we would have a polynomial algorithm for

checking the consistency of the conjunction of two OMDDs, and in particular, of two

OBDDs (possibly on different variable orders), since OMDDB ≡L OBDD (Prop. 3.3).

However, Meinel and Theobald showed in Lemma 8.14 of their book about OBDDs22

that checking the consistency of the conjunction of two OBDDs is NP-complete.

Therefore OMDD cannot satisfy SE unless P = NP.

Proposition A.21. OMDD satisfies EQ.

Proof. The procedure described in Algorithm 3 is adapted from the proof of Theo-

rem 8.11 of the OBDD book by Meinel and Theobald.22

The procedure is based on the following equation, holding for any variable x ∈

Scope(Φ) ∪ Scope(Ψ):

I(Φ) ≡ I(Ψ) ⇐⇒ ∀a ∈ Dom(x), I(Φ)|x=a ≡ I(Ψ)|x=a. (A.1)

Now, the procedure keeps a list L of pairs of subgraphs from Φ and Ψ respectively.

We show that this list has the following property:

I(Φ) ≡ I(Ψ) ⇐⇒ ∀〈φ, ψ〉 ∈ L, I(φ) ≡ I(ψ). (A.2)

Algorithm 3 Given two OMDDs Φ and Ψ, checks whether I(Φ) ≡ I(Ψ) holds.

1: let L := {〈Φ,Ψ〉}

2: for each node N in Φ, ordered from the root to the sink, except the sink do

3: let φ be the subgraph rooted at N

4: let ψ be one of the OMDDs such that 〈φ, ψ〉 ∈ L

5: for each ψ′ such that 〈φ, ψ′〉 ∈ L do

6: if ψ′ 6≡ ψ then

7: return false

8: remove 〈φ, ψ′〉 from L

9: let x := Var(N)

10: for each a ∈ Dom(x) do

11: if there exists E ∈ Out(N) such that Lbl(E) = a then

12: let φE be the OMDD rooted at Dest(E)

13: else

14: let φE be the empty OMDD

15: add the pair 〈φE , ψ|x=a〉 to L

16: remove the pair 〈φ, ψ〉 from L

17: for each pair 〈φ, ψ〉 ∈ L do

18: if I(φ) 6≡ I(ψ) then

19: return false

20: return true

L is initialized with 〈Φ,Ψ〉, so this is trivially true at the beginning. On line 8, we

remove only redundant pairs. On line 16, we have replaced the last pair 〈φ, ψ〉 by a

set of pairs according to the decomposition scheme (A.1). Hence, while the procedure

runs, we know that I(Φ) ≡ I(Ψ) holds if and only if ∀〈φ, ψ〉 ∈ L, I(φ) ≡ I(ψ), q.e.d.

(A.2).

We use this equivalence to show that the algorithm is sound and complete. On

line 6, we encounter two inconsistent pairs: it is impossible that φ be equivalent

to both ψ and ψ′. Thus there exists a pair in L such that I(φ) 6≡ I(ψ), and hence

I(Φ) 6≡ I(Ψ). We can return false. At the end of the algorithm, we have tested the

equivalence of all pairs in L (lines 17–19), we can thus return true.

Let us now show that the algorithm is polynomial. Each node of Φ is treated

once. For a given node N , we add exactly dN = |Dom(Var(N))| pairs to L (line 15),

dN being bounded by ‖Φ‖. We also remove one pair (line 16). Hence L contains at

most d · |NodesΦ| pairs, with d = maxN dN .

For each node, we make at most d · |NodesΦ| equivalence tests at line 6; equiv-

alence tests being on OMDDs of the same variable order, they can be done in time

polynomial (Prop. A.19). The traversal of the graph (lines 2–16) is thus polynomial.

Once we have traversed the entire Φ, we know by construction that the only

pairs 〈φ, ψ〉 left in L are such that φ is either the sink-only or the empty OMDD, so

φ is an OMDD of the same variable order as Ψ: all the equivalence tests of line 18

(there can be at most d · |NodesΦ| of them) can be done in polynomial time. All in

all, OMDD satisfies EQ.

A.5. Proofs of transformations (Theorem 4.5)

Proposition A.22. OMVD< and OMVD do not satisfy ¬C unless P = NP.

Proof. The negation of a CNF is a DNF, which is linearly translatable into an

OMVD of any order (Proposition 3.4). Thus, if OMVD< or OMVD satisfied ¬C, we

would have a polynomial algorithm translating any CNF into an equivalent OMVD

(take the negation of the CNF, translate the resulting DNF into an OMVD, and

take the negation of the result). As OMVD< and OMVD satisfy CO (Prop. A.13), we

would have a polynomial algorithm for deciding whether a CNF is consistent, which

is impossible unless P = NP.

Proposition A.23. MVD and MDD satisfy ∧C and ∧BC.

Proof. To make the conjunction of k MVDs φ1, . . . , φk, replace the sink of φi by

the root of φi+1, for all i in {1, . . . , k − 1}. Then the obtained MVD, rooted at the

root of φ1 and using the sink of φk, represents
∧k

i=1 φi. This procedure is linear in

k, so MVD satisfies ∧C, and thus ∧BC.

Applying the previous procedure on MDDs, the result also is an MDD, since

no edge is modified or added: it maintains the decision property. Hence MDD also

satisfies ∧C and ∧BC.

Proposition A.24. OMVD and OMDD do not satisfy ∧BC or ∧C unless P = NP.

Proof. Thanks to Proposition 3.3, any OBDD can be turned into an equivalent

OMVD in linear time. If OMVD (resp. OMDD) satisfied ∧BC, we would have a poly-

nomial algorithm deciding whether the conjunction of two OBDDs (the variable

order being possibly different in each OBDD) is consistent, since OMVD (resp. OMDD)

supports CO (Prop. A.13); yet, this problem is NP-complete, as shown by Meinel

and Theobald in Lemma 8.14 of their book about OBDDs.22 Therefore OMVD (resp.

OMDD) does not support ∧BC, and thus ∧C, unless P = NP.

Proposition A.25. OMDD and OMDD< do not satisfy ∧C.

Proof. Lemma A.1 states that any propositional clause can be represented in the

form of an OMDD on any order < in linear time; if OMDD (resp. OMDD<) satisfied ∧C,

we could thus translate in polynomial time any propositional CNF into OMDD (resp.

OMDD<). Since the edges in OMDDs representing propositional formulæ can only be

labeled with 0 or 1, it would mean that OMDDB ≤P CNF (resp. OMDDB< ≤P CNF).

But thanks to Proposition 3.3, OMDDB ≡L OBDD (resp. OMDDB< ≡L OBDD<); yet we

know from the Boolean map11 that OBDD 6≤s CNF (resp. OBDD< 6≤s CNF). Hence OMDD

(resp. OMDD<) cannot satisfy ∧C.

Proposition A.26. OMVD< does not satisfy ∧C unless P = NP.

Proof. Lemma A.1 states that any propositional clause can be represented in the

form of an OMVD on any order < in linear time; if OMVD< satisfied ∧C, we could

thus translate any propositional CNF into OMVD<, and it would be possible to check

whether it is consistent, as OMVD< satisfies CO (Prop. A.13). Yet it is impossible,

unless P = NP.

Proposition A.27. MVD satisfies ∨C and ∨BC.

Proof. To make the disjunction of k MVDs φ1, . . . , φk, add to the root of φi an edge

per value in the domain of Var(Root(φ), pointing to the root of φi+1. Then merge

all the sinks into a single one.

Proposition A.28. MDD satisfies ∨C and ∨BC; OMDD and OMDD< do not satisfy

∨C; OMDD does not satisfy ∨BC unless P = NP; and OMDD< satisfies ∨BC.

Proof. Let L be a sublanguage of MVD satisfying ¬C; L verifies ∨C (resp. ∨BC) if

and only if it satisfies ∧C (resp. ∧BC). Indeed, to make the disjunction of φ1, . . . φk,

it is enough to compute the negation of each disjunct, then build their conjunction,

and again compute the negation of the result.

MDD, OMDD, and OMDD< satisfy ¬C (Prop. A.8) so this property applies to them.

We get the result since MDD satisfies ∧C and ∧BC (Prop. A.23), OMDD and OMDD< do

not satisfy ∧C (Prop. A.25), OMDD does not satisfy ∧BC unless P = NP (Prop. A.24),

and OMDD< satisfies ∧BC (Prop. A.9).

Proposition A.29. OMVD< satisfies ∨C and ∨BC.

Proof. Implied by the fact that OMVD< satisfies SFO (Prop. A.7): indeed, given k

OMVDs φ1, . . . , φk on the same order <, by joining them thanks to a new root

node labeled with a new variable and forgetting this variable, we get an OMVD

on < that represents
∨k

i=1 I(φi). The joining algorithm is linear in k, forgetting is

polynomial, therefore OMVD< satisfies ∨C and thus ∨BC.

Proposition A.30. MVD and MDD do not satisfy FO or TR unless P = NP.

Proof. Given any MVD φ, φ is consistent if and only if Forget(I(φ), Scope(φ)) ≡ ⊤.

The only MVDs that do not mention any variable are the empty and the sink-

only graph, and testing whether an MVD is empty is done is constant time. If MVD

(resp. MDD) satisfied FO, we would have a polynomial algorithm for deciding the

consistency of any MVD (resp. MDD), yet MVD (resp. MDD) does not satisfy CO

unless P = NP (Prop. A.11).

Hence, neither MVD nor MDD satisfies FO unless P = NP, and since TR implies

FO (forgetting a variable x amounts to restricting it the term [x ∈ Dom(x)]) we

get the result.

Proposition A.31. OMDD and OMDD< do not satisfy SFO, FO, or TR.

Proof. Suppose OMDD satisfied SFO. Then we could obtain in polynomial time an

OMDD representing the disjunction of an arbitrary number of OMDDs on the same

order <, by joining them thanks to a new root node labeled with a new variable, and

forgetting this variable. Since any term can be represented as a polysize OMDD on

< (Lemma A.1), we could transform in polynomial time any DNF into an OMDD

(possibly on a different order than <). It would hence imply that OMDDB ≤P DNF,

since edges in OMDDs representing propositional formulæ can only be labeled with

0 or 1. Since OMDDB ≡L OBDD (Prop. 3.3), we would have OBDD ≤P DNF, yet we know

from the Boolean map11 that OBDD 6≤s DNF. Hence, OMDD cannot satisfy SFO.

If OMDD< satisfied SFO, it would also be the case for OMDD, so OMDD< does not

satisfy SFO. Finally, since TR implies FO (forgetting a variable x amounts to

restricting it the term [x ∈ Dom(x)]) and thus SFO, we get the result.

Proposition A.32. MVD and MDD satisfy SFO, SEN.

Proof. First, we show that

Forget(I, {x}) =
∨

~x∈Dom({x})

I |~x and Ensure(I, {x}) =
∧

~x∈Dom({x})

I |~x.

It is straightforward from the definition: let W = X \ {x}. Forget(I, {x}) = I↓W .

Then Forget(I, {x})(~w) = ⊤ if and only if there exists ~x ∈ Dom({x}) such that

I(~w . ~x) = ⊤. Hence Forget(I, {x}) =
∨

~x∈Dom({x}) I |~x.

Similarly, letW = X\{x}. Ensure(I, {x}) = I⇓W . Then Ensure(I, {x})(~w) = ⊤ if

and only if for all ~x ∈ Dom({x}), it holds that I(~w . ~x) = ⊤. Hence Ensure(I, {x}) =
∧

~x∈Dom({x}) I |~x.

Now, let φ be an MVD, and x ∈ Scope(φ). Let d = |Dom(x)|. To obtain an MVD

of interpretation Forget(I(φ), {x}) (resp. Ensure(I(φ), {x})), it is sufficient to make

d copies of φ, to condition each of them by one of the possible assigment of x and

to make d− 1 disjunctions (resp. conjunctions). Any sublanguage of MVD satisfying

CD and ∨C (resp. CD and ∧C) thus satisfies SFO (resp. SEN). Both MVD and

MDD satisfy CD (Prop. A.6), ∨C (Prop. A.27, Prop. A.28), and ∧C (Prop. A.23),

so they satisfy SFO and SEN.

Proposition A.33. MVD, MDD, OMVD, and OMVD< do not satisfy EN unless P = NP.

Proof. Given any MVD φ, φ is valid if and only if Ensure(I(φ), Scope(φ)) ≡ ⊤.

The only MVDs that do not mention any variable are the empty and the sink-only

graphs. If MVD (resp. MDD, OMVD, OMVD<) satisfed EN, we would have a polynomial

algorithm for deciding the validity of any MVD (resp. MDD, OMVD, OMVD on <),

yet MVD (resp. MDD, OMVD, OMVD<) does not support VA unless P = NP (Prop. A.11

and A.12).

Proposition A.34. OMDD and OMDD< do not satisfy EN or SEN.

Proof. This is a consequence of the fact that OMDD< (resp. OMDD) supports ¬C

and does not support SFO (Prop. A.31). Indeed, for any interpretation function I

and any set of variables X ⊆ Scope(I), Forget(I, X) = ¬Ensure(¬ I, X). If OMDD<
(resp. OMDD) satisfied SEN, we would have a polynomial algorithm for performing

a forgetting of some variable x in φ: compute a negation of φ, ensure x in this

negation, and return a negation of the result. Hence OMDD< (resp. OMDD) does not

satisfy SEN, and thus EN.

Proposition A.35. OMVD and OMVD< do not satisfy SEN unless P = NP.

Proof. We prove that if OMVD or OMVD< satisfied SEN, we could translate any CNF

into one of these languages in polynomial time, and thus check its consistency, which

is impossible unless P = NP.

Let φ be a propositional CNF, and let < be a total strict order on Scope(φ).

All clauses in φ can be transformed in polynomial time into OMVDs ordered with

respect to < (Lemma A.1). If OMVD satisfied SEN, we could obtain in polynomial

time an OMVD, possibly on a different order, representing the conjunction of all

these OMVDs (that is, the original CNF), by joining them with a new root node

labeled with a new variable, and ensuring this variable. Since OMVD satisfies CO

(Prop. A.13), we would have a polynomial algorithm for checking the consistency

of any CNF, yet this is impossible unless P = NP. We extend the result to OMVD<,

since if OMVD< satisfied SEN, then OMVD also would.

A.6. Final proof

Proof of Theorem 4.5. All results from this theorem have been proved in previous

propositions. The proposition corresponding to each result is indicated in Table 5.

Table 5. Results about queries and transformations.

MVD MDD OMVD OMDD OMVD< OMDD<

CO ◦ A.11 ◦ A.11
√

A.13
√

A.13
√

A.13
√

A.13
VA ◦ A.11 ◦ A.11 ◦ A.12

√
A.17 ◦ A.12

√
A.17

MC
√

A.10
√

A.10
√

A.10
√

A.10
√

A.10
√

A.10

CE ◦ A.11 ◦ A.11
√

A.14
√

A.14
√

A.14
√

A.14
IM ◦ A.11 ◦ A.11 ◦ A.12

√
A.18 ◦ A.12

√
A.18

EQ ◦ A.11 ◦ A.11 ◦ A.12
√

A.21 ◦ A.12
√

A.19
SE ◦ A.11 ◦ A.11 ◦ A.12 ◦ A.20 ◦ A.12

√
A.19

CX ◦ A.11 ◦ A.11
√

A.15
√

A.15
√

A.15
√

A.15

MX ◦ A.11 ◦ A.11
√

A.13
√

A.13
√

A.13
√

A.13

CT ◦ A.11 ◦ A.11 ◦ A.12
√

A.17 ◦ A.12
√

A.17

ME ◦ A.11 ◦ A.11
√

A.16
√

A.16
√

A.16
√

A.16

CD
√

A.6
√

A.6
√

A.6
√

A.6
√

A.6
√

A.6

TR ◦ A.30 ◦ A.30
√

A.7 • A.31
√

A.7 • A.31

FO ◦ A.30 ◦ A.30
√

A.7 • A.31
√

A.7 • A.31
SFO

√
A.32

√
A.32

√
A.7 • A.31

√
A.7 • A.31

EN ◦ A.33 ◦ A.33 ◦ A.33 • A.34 ◦ A.33 • A.34

SEN
√

A.32
√

A.32 ◦ A.35 • A.34 ◦ A.35 • A.34

∨C √
A.27

√
A.28 ? • A.28

√
A.29 • A.28

∨BC
√

A.27
√

A.28 ? ◦ A.28
√

A.29
√

A.28

∧C √
A.23

√
A.23 ◦ A.24 • A.25 ◦ A.26 • A.25

∧BC
√

A.23
√

A.23 ◦ A.24 ◦ A.24
√

A.9
√

A.9

¬C ?
√

A.8 ◦ A.22
√

A.8 ◦ A.22
√

A.8

Note:
√

means “satisfies”, • means “does not satisfy”, and ◦ means “does

not satisfy, unless P = NP”.

