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1. Introduction 

In the common life, wounds can appear, due to sports activities 

or accidents in the home. Often, prostheses or implants are then 

used to restore the functional capacity of the patient [1]. The design 

of biomedical products is however constrained by many criteria 

(biocompatibility of the materials, lifespan of the implant, small 

available geometrical space. . .) and needs multi-objective optimi-

zation methods. An overview of Design Theories and Methodolo- 
gies (DTM) was already presented in a keynote paper [2]. The 

design process, morphological analysis and prescriptive models of 

the design artefacts, Suh’s Axiomatic Design and Taguchi Method). 

These DTM methods can be used to enrich the functional and 

attributive information of design solutions. Different approaches 

are then employed to characterize the Design Solution Surface 

(DSS). The proposed models can thus be classified with two 
different points of view: Global/local description and Analytical/ 

design parameters is however limited to the local domain used for 
fitting. In the third approach a single numerical simulation is 
carried out, just to check that the design constraints are satisfied 

for the given selected set of inputs. This simulation is usually based 

on a Finite Element Model (FEM). In the last approach, the 

numerical simulation is repeated many times to get a global view 

of the DSS. This method, however, only provides a discrete 

description of the DSS. In the second approach, the quality of the 

best fit is a central property for the accuracy of the optimization. In 
some works [3,4], the major components of Engineering Design 

prescriptive models for design were thus discussed (canonical Optimization (EDO) were classified in five entities: design 
variables, constraints, objective functions, problem domain and 

environment. Their uncertainties or variations are propagated to 

the optimized design solution to check the robustness of the design 

[5]. This permits also verifying that the design requirements will be 

satisfied for all manufactured products. Robust design optimiza-

tion [6–8] can be used to design biomedical products. Roy et al. 
conclude their keynote paper with this sentence: ‘‘there is a lack of 

Numerical modelling. As example, the optimization of the research in multi-objective design optimization that deals with 

deflection of a cantilever is presented in Fig. 1. The first approach 
allows calculating the design solution for any set of input 

parameters. The quality of the results also only depends on the 

accuracy of the model. Generally, the time and cost to develop a 

global analytical model are however significant. For that reason, 

empirical models are employed in the second approach to describe 

the real design constraint function. Usually, a polynomial model is 

then locally best fitted to the real DSS, using a limited number of 

numerical simulations or real experiments. A design of experiment 

(DOE) technique can therefore be employed to define the optimal 

set of input parameters of this approach. Optimization of the 
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This paper deals with the use of Statistical Confidence Boundaries (SCB) of response surfaces in robust 

design optimization. An empirical model is therefore selected to describe a real design constraint 

function. This constraint is thus approximated by a second order polynomial expansion which is fitted to 

numerical simulations that use a Finite Element Method (FEM). A technique is also proposed to analyze 

the effects of the uncertainties of the inputs of the simulations. This approach is employed to optimize the 

design of a biomedical wrist implant. A real optimized implant is then manufactured and tested to 

validate the numerical model. 
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 Fig. 1. Different approaches to characterize design solution surfaces. 

 

 

 

 



uncertainty and constraints together’’ [3]. In this context, the aim of 

our paper is to use the Statistical Confidence Boundary (SCB) of 

response surfaces in design of experiment-based optimization. 

2. Presentation of the method 

This section presents the methodology used to get the response 

surface and the related SCBs, of a DSS characterized by FEM 
simulations. As example, the approach will focus on a problem with 
two factors (U1 and U2). The response surface will be approximated 
bythe second orderpolynomial empiricalmodel described by Eq. (1). 

X X 2       2 
y ¼ bi j  xi  x j (1) 

i¼0 j¼i 

where x0 = 1. x1, x2 are the normalized values of factors U1, U2. 

The different possible shapes of response surfaces are drawn in 
Fig. 2. A DOE strategy permits defining the optimal set of inputs 

(U1, U2) to be employed for the FEM simulations. The coefficients 

of the polynomial model are then derived from the FEM results 
using the following pseudo-inverse calculation: 

ˆ 

Y ¼ X  B with X the matrix of the normalized products xi  x j 

and B : the response surface coefficients vector 
B ¼ ðXT  XÞ

ÿ1 
 XT  Y 

(2) 

B ˆ defines the best estimate of the surface response coefficients. 

A propagation method is then implemented to account for the 
uncertainties of the input parameters and the inaccuracy of the 

model. The scatter of the material properties, design parameters 
and manufacturing conditions is assumed random and normal 

distributed. It is described by standard deviations (s). 
The inaccuracy of the fitting model is characterized by the root 

mean square (Rms) of the differences between the FEM simulation 

results and the mean local polynomial used to describe the DSS. 
Variations of the environment are not taken into account in this 
study. The scheme used to propagate the different deviations to the 
SCB is presented in Fig. 3. 

2.1. Propagation of the inaccuracies of the fitting model 

The inaccuracy of the model is represented by the root mean 
square RmsðyÞ of the best fit residues R calculated through Eq. (3). 

ˆ R ¼ Y ÿ X  B (3) 

ˆ The mean square error matrix MSEðBÞ of the response surface 
coefficients is then calculated using following expression: 

ˆ 
ˆ 

MSEðBÞ ¼ MSEððXT  XÞ
ÿ1 

 XT  Y Þ 
MSEðBÞ ¼ ðXT  XÞ

ÿ1 
 MseðyÞ ¼ ðXT  XÞ

ÿ1 
 RmsðyÞ

2 
(4) 

ˆ 
ˆ 

This permits finally evaluating the mean square error MseðyÞ of 

the design solution y estimated for any set of input parameters. 
Following classical propagation method is used for that purpose: 

ˆ ˆ ˆ 
ˆ B MseðyÞ ¼ J

B 
 MSEðBÞ  JT (5) 

B ˆ with, J ˆ ; Jacobian of function y with respect to coefficients bij. 

2.2. Propagation of the uncertainties of the design parameters 

The scatter of the design parameters is usually characterized by 

Tolerance Intervals (TI) that are either imposed by the designer or 

derived from the capability of the manufacturing process. If a 
Gaussian Probability Density Function (PDF) is assumed for a given 

input parameter xi, the standard deviation sxi can be derived from 

the tolerance interval TIi through following expression: 

s ¼ 
TIi 

xi 
6 

(6) 

Assuming the independence of the two parameters x1, x2, the 

standard deviations are then propagated to the response surface, 

using Eq. (7). 

ˆ T 
VarðyÞ ¼ Jxi  VARðxiÞ  Jxi (7) 

ˆ 

1 0 
0 2 

VARðxiÞ ¼ 
TI2=36     

TI
2

=36

 

is the covariance matrix of xi. 

2.3. Propagation to load and stress, of the scatter of the material 
properties, in the case of a pure elastic behaviour 

Mechanical tests (tensile tests) are usually carried out to 

characterize the material properties. They allow defining the mean 
Young’s modulus E of the material, and the related standard 

deviation sE. Common constrains imposed in design optimization 

are the maximum stress (S) or applied load (L) to which the 
structure must resist. In the case of imposed displacements, and 

pure elastic behaviour of the material, the resulting applied Load 

and stress are proportional to Young’s modulus. This leads to 
following relationships: 

2 2 2 L ¼ kL  E) VarðLÞ ¼ kL  VarðEÞ)sL ¼ ðL=EÞ
2 

 sE (8) 

S S E S ¼ kS  E ) VarðSÞ ¼ k2  VarðEÞ)s2 ¼ ðS=EÞ
2 

 s2 (9) 

2.4. Response surface and Statistical Confidence Boundary 

ˆ 

ˆ ˆ ˆ 
ˆ B X E 

Previous calculations are used to evaluate the design solution y 

for any set of input parameters and estimate its mean square error 

(Eq. (10)). 

MseðyÞ ¼ J
B 

 MSEðBÞ  JT þ JXi  VARðXiÞ  JT
i þ 

L or S
2

 

 VarðEÞ (10) 

With smooth design solution surfaces, the model inaccuracy 

remains small in comparison to the random perturbations of 

the inputs that are assumed to be normal distributed. The 
global distribution is therefore close to a Gaussian. The SCBs of 

Fig. 2. Principle of D.O.E based optimization. with, Jxi, Jacobian of function y with respect to xi 
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Fig. 3. Uncertainty and Error Propagation scheme. 

 



the response surface can thus be approximated in the following 
way: 

ˆ ˆ 
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

SCB ¼ y  k     MseðyÞ;     k  2 for a confidence level of 95%: (11) 

3. Application to the design of a biomedical wrist implant 

The function of the studied biomedical implant is to substitute 

the natural ligament between two bones of the wrist. Experiments 

of the literature show that the Young’s modulus E of the ligament is 

ranged between 50 and 100 MPa [9]. If assuming a uniform PDF 

and a risk of 5%, this leads to the confidence interval 
E = 75  10 MPa. The maximum elongation of the ligament and its 

torsion angle were estimated by Upal et al. [10] to about 0.9 mm and 

158 respectively. The material selected for the implant is PolyEther 

Ether Ketone (PEEK) which is a biocompatible thermoplastic organic 

polymer. Its Young’s modulus was evaluated by tensile tests to 

E0 = 3582  127 MPa (confidence level 95%). In relation to the fatigue 

limit, the maximum stress that can be applied to the material is 

restricted to 90 MPa. The maximum overall dimensions of the 

implant were specified by the surgeon to 18 1 8 1 2 mm. 

3.1. Implant design driven by material properties 

an implant with a very low stiffness, which is not directly 

compatible with the elastic modulus of PEEK. One way to 

overcome this impediment is to create an elementary pattern 

with holes. The equivalent Young’s modulus of such volume can 

then be evaluated through a micro-mechanical approach of 

porous materials. Fig. 4 shows the predictions of the classical 
Voigt and Hill models. Both models lead to simple linear 
expressions (Eqs.     (12) and (13)) that permit evaluating the 

density of holes required to adjust the stiffness of the elementary 

peek pattern to the Young’s modulus of the ligament. Hill’s 

approach, which is the most accurate in the case of random 

repartitions of voids, predicts that the material loses its 

consistency when the porosity exceeds 50%. 

2  E 

E 
E ¼ E0 ÿ E0  p) p ¼ 

E0 ÿ E 
¼ 97%;     Voigt Model 

0 

These two equations bring to the fore how it is difficult to obtain 

an implant that owns stiffness compatible with the elastic 

behaviour of the natural ligament. To accept the applied 

displacements (0.9 mm, 158) and reproduce the behaviour of the 

natural ligament (toe and linear regions in Fig. 5), the design of the 

proposed implant is based on two springs (with respective rate K1 

and K2 and n1, n2 number of windings) mounted in parallel with 
two stops (e1 and e2). 

Fig. 5 presents the rheological scheme of the implant. The first 
spring K1 was dimensioned to accept a torsion angle of 158 and an 
elongation of 0.9 mm. The second spring K2 was calculated to bring 

an elongation of 0.3 mm. The stop device e2 is a titanium cable 
designed to carry the final load. 

3.2. Optimization methodology 

The spring K2 was studied first. Each of its windings consists of 
The functionality of the implant is to reproduce the         an elementary pattern (central part) that was optimized through a 

mechanical behaviour of the ligament. This imposes designing         DOE methodology. This pattern is shown in Fig.       6. It is 
characterized by two main parameters: a width U1 and a radius 
U2. In Fig. 5, the number of windings (n2) was fixed to 3. 

(13) 
The mechanical behaviour of the elementary pattern was 

characterized by FEM simulations. Nine configurations were thus 

studied. The composite DOE matrix, presented in Table 1, was 

therefore used to define the optimal set of design parameters U1, 
U2 to be employed for the simulations. 

ˆ 
ˆ 

For each configuration, the FEM calculations permitted defining 

the maximum equivalent stress S of the material and the total load 

L applied to the spring at its maximum imposed elongation of 

0.3 mm. The mean response surfaces of the stress (yS) and the load 

(yL) versus the two factors U1, U2, and the associated SCBs were 

finally derived from the nine performed simulations. These two 
response surfaces are shown in Fig. 7. 

Table 1 
Design factors (U1, U2) and related normalized factors (x1, x2) for n2 = 3. 

U1 (mm) x1 U2 (mm) x2 
1.5 ÿ1 

2                                                         1 

1.5 ÿ1 

2                                                         1 
1.5 0 

Fig. 4. Modulus evolution versus porosity and topology. 
2 0

 
1.75 0 

0.45 ÿ1 

0.45 ÿ1 

0.65                                                  1 

0.65                                                  1 

0.55                                                  0 

0.55                                                  0 
0.45 0 

Fig. 5. Behaviours of the natural ligament and the designed product. 

E ¼ E0 ÿ 2  E0  p) p ¼ 
E0 ÿ E 

 49%;     Hill Model (12) 
0 Fig. 6. Design of the elementary pattern of spring K2. 

 



 

The same procedure was applied to springs of different 

numbers of windings (i.e. n2 = 2.5, 3 and 3.5). However, due to 

the maximum overall dimension limits specified by the surgeon, 

the best compromise proved to be 3. The challenge was then to 
maximize the load bearing capacity of the spring while maintain- 
ing the equivalent stress below the material limit of 90 MPa. This 

optimization under constraint is defined by following expressions: 

ˆ ˆ 

ˆ ˆ 
X X X X 

i¼0 i¼ i¼0 i¼ j j 

ˆ 
B X 

S 
  2 

2 

8 
> > > > > 

> > 
> > > 

> MaxðyLÞ while yS þ k  syS  Smax ¼ 90 MPa 
n       n n       n 

< with : yL ¼ bi j  xi  x j and yS ¼ bi jS 
 xi  x j 

>             
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi :syS 

¼     JB  MSEðBÞ  JT þ JXi  VARðXiÞ  JT þ 
E      

 s
E
 

(14) 

3.3. Optimization result with uncertainty 

x 1 U1 ¼ 1 ¼ 2 mm 

The manufacturing tolerance intervals of width U1 and radius 

U2 were fixed to TI = 0.1 mm. An optimization algorithm, based on 

Eq. (14) was used to define the best configuration of the spring. The 

width (U1, x1) and the radius (U2, x2) of the optimized winding 

pattern are shown in Eq. (15). The maximum load L held by the 

spring and its uncertainty were also evaluated. 

  

x2 ¼ ÿ0:155 
,     

U2 ¼ 0:534 mm 
) L ¼ 10:16  0:81 N (15) 

4. Numerical validation and experimental testing 

To confirm the results of the optimization procedure, two 

checks were made (Fig. 8). First an additional FEM simulation was 

realized with Abaqus software to validate the results of the D.O.E. 

approach. It was performed for the spring configuration corre-

sponding to the best design parameters. As expected, the 

maximum equivalent stress calculated for the largest imposed 

elongation was found below the allowable material limit of 

90 MPa. The load bearing capacity of the optimized spring was also 

evaluated to 10.24 N. This is very close to the value derived from 

the response surface. In second, two real springs were machined 

and tested. The manufactured prototypes were therefore stretched 

to the maximum elongation of 0.3 mm. Repeated tests permitted 

then to define the mean load applied to the part and to estimate the 

error bars. The load bearing capacity of the springs was thus 

evaluated to 10.31  0.55 MPa. Fig. 9 summarizes the different 

results. All values are in good agreement. 

5. Conclusion 

In this paper, a D.O.E. approach was proposed to build empirical 

polynomial models for design solution surfaces. An error and 

uncertainty propagation technique was also suggested to define 

the Statistical Confidence Boundaries of any design constraint. The 

method was applied successfully to the robust design of a 

biomedical wrist implant designed to replace a natural ligament. 

The main property of the device is to permit a large elongation 

while resisting to significant loads. Due to the great difference of 

stiffness of the biological matter and the polymer (PEEK) used for 

the implant, these constrains proved particularly difficult to 

satisfy. The designed device was therefore based on two springs 

mounted in parallel with two stops and a titanium wire to hold the 

final load. An optimization under constraint, based on results of 

FEM simulations, permitted then to define the best configuration 

and dimensions of the springs. The results were confirmed by tests 

carried out on real manufactured prototypes. 
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Fig. 7. Stress and load vs. width U1 and radius U2 and related SCB’s. 

Fig. 8. Numerical and experimental testing. 
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